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Abstract
In this paper, we challenge the conventional approach of state machine replication systems to
design deterministic agreement protocols in the eventually synchronous communication model. We
first prove that no such protocol can guarantee bounded communication cost before the global
stabilization time and propose a different approach that hopes for the best (synchrony) but prepares
for the worst (asynchrony). Accordingly, we design an optimistic byzantine agreement protocol
that first tries an efficient deterministic algorithm that relies on synchrony for termination only,
and then, only if an agreement was not reached due to asynchrony, the protocol uses a randomized
asynchronous protocol for fallback that guarantees termination with probability 1.

We formally prove that our protocol achieves optimal communication complexity under all
network conditions and failure scenarios. We first prove a lower bound of Ω(ft + t) for synchronous
deterministic byzantine agreement protocols, where t is the failure threshold, and f is the actual
number of failures. Then, we present a tight upper bound and use it for the synchronous part of the
optimistic protocol. Finally, for the asynchronous fallback, we use a variant of the (optimal) VABA
protocol, which we reconstruct to safely combine it with the synchronous part.

We believe that our adaptive to failures synchronous byzantine agreement protocol has an
independent interest since it is the first protocol we are aware of which communication complexity
optimally depends on the actual number of failures.
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1 Introduction

With the emergence of the Blockchain use case, designing efficient geo-replicated Byzantine
tolerant state machine replication (SMR) systems is now one of the most challenging problems
in distributed computing. The core of every Byzantine SMR system is the Byzantine
agreement problem (see [3] for a survey), which was first introduced four decades ago [33]
and has been intensively studied since then [11, 22, 26, 24]. The bottleneck in geo-replicated
SMR systems is the network communication, and thus a substantial effort in recent years
was invested in the search for an optimal communication Byzantine agreement protocol [20,
38, 10, 30].

To circumvent the FLP [17] result that states that deterministic asynchronous agreement
protocols are impossible, most SMR solutions [12, 20, 38, 23] assume eventually synchronous
communication models and provide safety during asynchronous periods but can guarantee
progress only after the global stabilization time (GST).

Therefore, it is quite natural that state-of-the-art authenticated Byzantine agreement
protocols [20, 38, 10, 30] focus on reducing communication cost after GST, while putting
up with the potentially unbounded cost beforehand. For example, Zyzzyva [23] and later
SBFT [20] use threshold signatures [34] and collectors to reduce the quadratic cost induced by
the all-to-all communication in each view of the PBFT [12] protocol. HotStuff [38] leverages
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ideas presented in Tendermint [10] to propose a linear view-change mechanism, and a few
follow-up works [30, 31, 9] proposed algorithms for synchronizing parties between views.
Some [30, 31] proposed a synchronizer with a linear cost after GST in failure-free runs, while
others [9] provided an implementation that guarantees bounded memory even before GST.
However, none of the above algorithms bounds the number of views executed before GST,
and thus none of them can guarantee a bounded total communication cost.

We argue in this paper that designing agreement algorithms in the eventually synchronous
model is not the best approach to reduce the total communication complexity of SMR
systems and propose an alternative approach. That is, we propose to forgo the eventually
synchronous assumptions and instead optimistically consider the network to be synchronous
and immediately switch to randomized asynchronous treatment if synchrony assumption does
not hold. Our goal in this paper is to develop an optimistic protocol that adapts to network
conditions and actual failures to guarantee termination with an optimal communication cost
under all failure and network scenarios.

1.1 Contribution

Vulnerability of the eventually synchronous model. A real network consists of synchronous
and asynchronous periods. From a practical point of view, if the synchronous periods are
too short, no deterministic Agreement algorithm can make progress [17]. Therefore, to
capture the assumption that eventually there will be a long enough synchronous period for
a deterministic Agreement to terminate, the eventually synchronous model assumes that
every execution has a point, called GST, after which the network is synchronous. In our
first result, we capture the inherent vulnerability of algorithms designed in the eventually
synchronous communication model. That is, we exploit the fact that GST can occur after an
arbitrarily long time to prove the following lower bound:

▶ Theorem 1. There is no eventually synchronous deterministic Byzantine agreement
protocol that can tolerate a single failure and guarantee bounded communication cost even in
failure-free runs.

Tight bounds for synchronous Byzantine agreement. To develop an optimal optimistic
protocol that achieves optimal communication under all failure and network scenarios we first
establish what is the best we can achieve in synchronous settings. Dolev and Reischuk [14]
proved that there is no deterministic protocol that solves synchronous Byzantine agreement
with o(t2) communication cost, where t is the failure threshold. We generalize their result by
considering the actual number of failures f ≤ t and prove the following lower bound:

▶ Theorem 2. Any synchronous deterministic Byzantine agreement protocol has Ω(ft + t)
communication complexity.

It is important to note that the lower bound holds even for deterministic protocols that are
allowed to use perfect cryptographic schemes such as threshold signatures and authenticated
links. Then, we present the first deterministic cryptography-based synchronous Byzantine
agreement protocol that matches our lower bound for the authenticated case. That is, we
prove the following:

▶ Theorem 3. There is a deterministic synchronous authenticated Byzantine agreement
protocol with O(ft + t) communication complexity.
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We believe these results are interesting on their own since they are the first to consider
the actual number of failures, which was previously considered in the problem of early
decision/stopping [15, 21], for communication complexity analysis of the Byzantine agreement
problem.

Optimal optimistic Byzantine agreement. Our final contribution is an optimistic Byzantine
agreement protocol that tolerates up to t < n/3 failures and has asymptotically optimal
communication cost under all network conditions and failure scenarios. That is, we prove
the following:

▶ Theorem 4. There is an authenticated Byzantine agreement protocol with O(ft + t)
communication complexity in synchronous runs and expected O(t2) communication complexity
in all other runs.

To achieve the result, we combine our optimal adaptive synchronous protocol with an
asynchronous fallback, for which we use a variant of VABA [1]. As we shortly explain, the
combination is not trivial since we need to preserve safety even if parties decide in different
parts of the protocol, and implement an efficient mechanism to prevent honest parties from
moving to the fallback in synchronous runs.

1.2 Technical overview
The combination of our synchronous part with the asynchronous fallback introduces two main
challenges. The first challenge is to design a mechanism that (1) makes sure parties do not
move to the fallback unless necessary for termination, and (2) has O(ft + t) communication
complexity in synchronous runs. The difficulty here is twofold: first, parties cannot always
distinguish between synchronous and asynchronous runs. Second, they cannot distinguish
between honest parties that complain that they did not decide (due to asynchrony) in the first
part and Byzantine parties that complain because they wish to increase the communication
cost by moving to the asynchronous fallback. To deal with this challenge, we implement a
Help&tryHalting procedure. In a nutshell, parties try to avoid the fallback part by helping
complaining parties learn the decision value and move to the fallback only when the number
of complaints indicates that the run is not synchronous. This way, each Byzantine party in a
synchronous run cannot increase the communication cost by more than O(n) = O(t), where
n is the total number of parties.

The second challenge in the optimistic protocol is to combine both parts in a way that
guarantees safety. That is, since some parties may decide in the synchronous part and others
in the asynchronous fallback, we need to make sure they decide on the same value. To this
end, we use the leader-based view (LBV) abstraction, defined in [37], as a building block
for both parts. The LBV abstraction captures a single view in a view-by-view agreement
protocol such that one of its important properties is that a sequential composition of them
preserves safety. For optimal communication cost, we adopt techniques from [38] and [1] to
implement the LBV abstraction with an asymptotically linear cost (O(n)).

Our synchronous protocol operates up to n sequentially composed pre-defined linear LBV
instances, each with a different leader. To achieve an optimal (adaptive to the number of
actual failures) cost, leaders invoke their LBVs only if they have not yet decided. In contrast
to eventually synchronous protocols, the synchronous part is designed to provide termination
only in synchronous runs. Therefore, parties do not need to be synchronized before views,
but rather move from one LBV to the next at pre-defined times. As for the asynchronous
fallback, we use the linear LBV building block to reconstruct the VABA [1] protocol in a way
that forms a sequential composition of LBVs, which in turn allows a convenient sequential
composition with the synchronous part.
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1.3 Related work
The idea of combining several agreement protocols is not new. The notion of speculative
linearizability [19] allows parties to independently switch from one protocol to another,
without requiring them to reach agreement to determine the change of a protocol. Aguilera
and Toueg [2] presented an hybrid approach to solve asynchronous crash-fault consensus
by combining randomization and unreliable failure detection. Guerraoui et al [18] defined
an abstraction that captures byzantine agreement protocols and presented a framework to
compose several such instances.

Some previous work on Byzantine agreement consider a fallback in the context of the
number rounds required for termination [7, 27, 35]. That is, in well-behaved runs parties
decide in a single communication round, wheres in all other runs they fallback to a mode that
requires more rounds to reach an agreement. We, in contrast, are interested in communication
complexity. To the best of our knowledge, our protocol is the first protocol that adapts its
communication complexity based on the actual number of failures.

The combination of synchronous and asynchronous runs in the context of Byzantine
agreement was previously studied by Blum et al. [5]. Their result is complementary to ours
since they deal with optimal resilience rather than optimal communication. They showed
lower and upper bounds on the number of failures that both (synchronous and asynchronous)
parts can tolerate. For the lower bound, they showed that ta + 2ts < n, where ta and ts is
the threshold failure in asynchronous and synchronous runs, respectively. In our protocol
ta = ts < n/3, which means that the protocol is optimal in the sense that neither ta or ts can
be increased without decreasing the other. For the upper bound, they present a matching
algorithm for any ta and ts that satisfy the weak validity condition. Our protocol, in contrast,
satisfy the more practical external validity condition (see more details in the next section)
with an optimal communication cost.

As for asynchronous Byzantine agreement, the lower bound in [1] shows that there is no
protocol with optimal resilience and o(n2) communication complexity. Two recent works
by Cohen et al. [13] and Blum et al [4]. circumvent this lower bound by trading optimal
resilience. That is, their protocols tolerate f < (1 − ϵ)n/3 Byzantine faults. We consider
in this paper optimal resilience and thus our protocol achieves optimal communication
complexity in asynchronous runs.

The use of cryptographic tools (e.g. PKI and threshold signatures schemes) is very
common in distributed computing to reduce round and communication complexity. To be
able to focus on the distributed aspect of the problem, many previous algorithms assume
ideal cryptographic tools to avoid the analysis of the small error probability induced by the
security parameter. This includes the pioneer protocols for Byzantine broadcast [16, 14]
and binary asynchronous Byzantine agreement [6], recent works on synchronous Byzantine
agreement [29, 32], and most of the exciting practical algorithms [23, 12] including the
state-of-the-art communication efficient ones [12, 38, 20, 10]). We follow this approach and
assume ideal threshold signatures schemes for better readability.

2 Model

Following practical solutions [12, 20, 38, 23, 28], we consider a Byzantine message passing
peer to peer model with a set Π of n parties and a computationally bounded adversary
that corrupts up to t < n/3 of them, O(t) = O(n). Parties corrupted by the adversary are
called Byzantine and may arbitrarily deviate from the protocol. Other parties are honest.
To strengthen the result we consider an adaptive adversary for the upper bound and static



A. Spiegelman 38:5

adversary for the lower bound. The difference is that a static adversary must decide what
parties to corrupt at the beginning of every execution, whereas an adaptive adversary can
choose during the executions.

Communication and runs. The communication links are reliable but controlled by the
adversary, i.e., all messages sent among honest parties are eventually delivered, but the
adversary controls the delivery time. We assume a known to all parameter ∆ and say that
a run of a protocol is eventually synchronous if there is a global stabilization time (GST)
after which all message sent among honest parties are delivered within ∆ time. A run is
synchronous if GST occurs at time 0, and asynchronous if GST never occurs.

The Agreement problem. Each party get an input value from the adversary from some
domain V and the Agreement problem exposes an API to propose a value and to output a
decision. We are interested in protocols that never compromise safety and thus require the
following property to be satisfied in all runs:

Agreement: All honest parties that decide, decide on the same value.

Due to the FLP result [17], no deterministic agreement protocol can provide safety and
liveness properties in all asynchronous runs. Therefore, in this paper, we consider protocols
that guarantee (deterministic) termination in all synchronous and eventually synchronous
runs, and provides a probabilistic termination in asynchronous ones:

Termination: All honest parties eventually decide.
Probabilistic-Termination: All honest parties decide with probability 1.

As for validity, honest parties must decide only on values from some domain V. For the
lower bounds, to strengthen them as much as possible, we consider the binary case, which is
the weakest possible definition:

Binary validity: The domain of valid values V = {0, 1}, and if all honest parties propose
the same value v ∈ V, than no honest party decides on a value other than v.

For the upper bounds, we are interested in practical multi-valued protocols. In contrast
to binary validity, in a multi-valued Byzantine agreement we need also to define what is a
valid decision in the case that not all parties a priori agree (i.e., propose different values).
One option is Weak Validity [33, 5], which allows parties to agree on a pre-defined ⊥ in that
case. This definition is well defined and makes sense for some use cases. When Pease et
al. [33] originally defined it, they had in mind a spaceship cockpit with 4 sensors that try
to agree even if one is broken (measures a wrong value). However, as Cachin et al, explain
in their paper [11] and book [25], this definition is useless for SMR (and Blockchains) since
if parties do not a priori agree, then they can keep agreeing on ⊥ forever leaving the SMR
with no “real” progress.

To solve the limitation of being able to agree on ⊥, we consider the external validity
property that was first defined by Cachin et al. [11], which is implicitly or explicitly considered
in most practical Byzantine agreement solutions we are aware of [1, 12, 38, 20, 23]. Intuitively,
with external validity, parties are allowed to decide on a value proposed by any party (honest
and Byzantine) as long as it is valid by some external predicate (e.g., all transaction are
valid in the block). To capture the above, we give a formal definition below.

External validity: The domain of valid values V is unknown to honest parties. At the
beginning of every run, each honest party gets a value v with a proof σ that v ∈ V such
that all other honest parties can verify.
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Note that our definition rules out trivial solutions such as simply deciding on some
pre-defined externally valid value because the parties do not know what is externally valid
unless they see a proof.

We define an optimistic Agreement protocol to be a protocol that guarantees Agreement
and External validity in all runs, Termination in all synchronous and eventually synchronous
runs, and Probabilistic-Termination in asynchronous runs.

Cryptographic assumptions. We assume a computationally bounded adversary and a
trusted dealer that equips parties with cryptographic schemes. Following a common standard
in distributed computing and for simplicity of presentation (avoid the analysis of security
parameters and negligible error probabilities), we assume that the following cryptographic
tools are perfect:

Authenticated link. If an honest party pi delivers a messages m from an honest party
pj , then pj previously sent m to pi.
Threshold signatures scheme. We assume that each party pi has a private function
share-signi, and we assume 3 public functions: share-validate, threshold-sign, and threshold-
validate. Informally, given “enough” valid shares, the function threshold-sign returns a
valid threshold signature. For our algorithm, we sometimes require “enough” to be t + 1
and sometimes n− t. A formal definition is given in the fullpaper [36].

We note that perfect cryptographic schemes do not exist in practice. However, since in
real-world systems they often treated as such, we believe that they capture just enough in
order to be able to focus on the distributed aspect of the problem. Moreover, all the lower
bounds in this paper hold even if protocols can use perfect cryptographic schemes. Thus, the
upper bounds are tight in this aspect.

Communication complexity. We denote by f the actual number of corrupted parties in
a given run and we are interested in optimistic protocols that utilize f and the network
condition to reduce communication cost. Similarly to [1], we say that a word contains a
constant number of signatures and values, and each message contains at least 1 word. The
communication cost of a run r is the number of words sent in messages by honest parties
in r. For every 0 ≤ f ≤ t, let Rs

f and Res
f be the sets of all synchronous and eventually

synchronous runs with f corrupted parties, respectively. The synchronous and eventually
synchronous communication cost with f failures is the maximal communication cost of runs
in Rs

f and Res
f , respectively. We say that the synchronous communication cost of a protocol A

is G(f , t) if for every 0 ≤ f ≤ t, its synchronous communication cost with f failures is G(f , t).
The asynchronous communication cost of a protocol A is the expected communication cost of
an asynchronous run of A.

3 Lower Bounds

We present two lower bounds on the communication complexity of deterministic Byzantine
agreement protocols in synchronous and eventually synchronous runs. For space limitation,
the proof of the following lemma appears to Appendix A.

▶ Theorem 1 (restated). There is no eventually synchronous deterministic Byzantine agree-
ment protocol that can tolerate a single failure and guarantee bounded communication cost
even in failure-free runs.
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We next prove a lower bound that applies even to synchronous Byzantine agreement
algorithms and is adaptive to the number of actual failures f . The proof is a generalization of
the proof in [14], which has been proved for the Byzantine broadcast problem and considered
the worst-case scenario (f = t). It is important to note that the proof captures deterministic
authenticated algorithms even if they are equipped with perfect cryptographic tools.

The proof of the following Claim is straight forward and for space limitation is omitted.

▷ Claim 5. The synchronous communication cost with 0 failures of any Byzantine agreement
algorithm is at least t.

The following Lemma shows that if honest parties send o(ft) messages, then Byzantine
parties can prevent honest parties from getting any of them.

▶ Lemma 6. Assume that there is a Byzantine agreement algorithm A, which synchronous
communication cost with f failures is o(ft) for some 1 ≤ f ≤ ⌊t/2⌋. Then, for every set
S ⊂ Π of f parties and every set of values proposed by honest parties, there is a synchronous
run r′ s.t. some honest party p ∈ S does not get any messages in r′.

Proof. Let r ∈ Rs
f be a run in which all parties in S are Byzantine that (1) do not send

messages among themselves, and (2) ignore all messages they receive and act like honest
parties that get no messages. By the assumption, there is a party p ∈ S that receives less
than t/2 messages from honest parties in r. Denote the set of (honest) parties outside S that
send messages to p in r by P ⊂ Π \ S and consider the following run r′:

Parties in S \ {p} are Byzantine that act like in r.
Parties in P are Byzantine. They do not send messages to p, but other than that act as
honest parties.
All other parties, including p, are honest.

First, note that the number of Byzantine parties in r′ is |S| − 1 + |P | ≤ f − 1 + t/2 ≤ t. Also,
since p acts in r as an honest party that does not receive messages, and all Byzantine parties
in r′ act towards honest parties in r′ (Π \ (S ∪ P )) in exactly the same way as they do in r,
then honest parties in r′ cannot distinguish between r and r′. Thus, since they do not send
messages to p in r they do not send in r′ as well. Therefore, p does not get any message
in r′. ◀

The next Lemma is proven by showing that honest parties that do not get messages
cannot safely decide. Not that the case of f > t/2 is not required to conclude Theorem 2
since in this case o(ft) = o(t2).

▶ Lemma 7. For any 1 ≤ f ≤ ⌊t/2⌋, there is no optimistic Byzantine agreement algorithm
which synchronous communication cost with f failures is o(ft).

Proof. Assume by a way of contradiction such protocol A which synchronous communication
cost with f failures is o(ft) for some 1 ≤ f ≤ ⌊t/2⌋. Pick a set of S1 ⊂ Π of f parties and
let V be the set of values that honest parties propose. By Lemma 6, there is a run r1 of A in
which honest parties propose values from V s.t. some honest party p1 ∈ S does not get any
messages. Now let S2 = {p} ∪ S1 \ {p1} s.t. p ∈ Π \ S1. By Lemma 6 again, there is a run
r2 of A in which honest parties propose values from V s.t. some honest party p2 ̸= p1 does
not get any messages. Since f ≤ ⌊t/2⌋, we can repeat the above 2t + 1 times by each time
replacing the honest party in Si that get no messages with a party not in Si ∪{p1, p2, . . . , pi}.
Thus, we get that for every possible set of inputs V (values proposed by honest parties) there
is a set T of 2t + 1 parties s.t. for every party p ∈ T there is a run of A in which honest
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parties propose values from V , p is honest, and p does not get any messages. In particular,
there exist such set T0 for the case in which all honest party input 0 and a set T1 for the case
in which all honest parties input 1. Since |T0| = |T1| = 2t + 1, there is a party p ∈ T1 ∩ T2.
Therefore, by the Termination and Binary validity properties, there is a run r in which p

does not get any messages and decides 0 and a run r′ in which p does not any messages and
decides 1. However, since r and r′ are indistinguishable to p we get a contradiction. ◀

The following Theorem follows directly from Lemma 7 and Claim 5.

▶ Theorem 2 (restated). Any synchronous deterministic Byzantine agreement protocol has a
communication cost of Ω(ft + t).

4 Asymptotically optimal optimistic Byzantine Agreement

Our optimistic Byzantine agreement protocol safely combines synchronous and asynchronous
protocols. Our synchronous protocol, which is interesting on its own, matches the lower bound
proven in Theorem 2. That is, its communication complexity is O(ft + t). The asynchronous
protocol we use has a worst-case optimal quadratic communication complexity. For ease of
exposition, we construct our protocol in steps. First, in Section 4.1, we present the local state
each party maintains, define the leader-based view (LBV) [37] building block, which is used by
both protocols, and present an implementation with O(n) communication complexity. Then,
in Section 4.2, we describe our synchronous protocol, and in Section 4.3 we use the LBV
building block to reconstruct VABA [1] - an asynchronous Byzantine agreement protocol
with expected O(n2) communication cost and O(1) running time. Finally, in section 4.4, we
safely combine both protocols to prove the following:

▶ Theorem 4 (restated). There is an authenticated Byzantine agreement protocol with
O(ft + t) communication complexity in synchronous runs and expected O(t2) communication
complexity in all other runs.

The correctness proof and communication analysis of the protocol appear in the fullpaper [36].

4.1 General structure
The protocol uses many instances of the LBV building block, each of which is parametrized
with a sequence number and a leader. We denote an LBV instance that is parametrized with
sequence number sq and a leader pl as LBV(sq, pl). Each party in the protocol maintains
a local state, which is used by all LBVs and is updated according to their returned values.
Section 4.1.1 presents the local state and Section 4.1.2 describes a linear communication
LBV implementation. Section 4.1.3 discusses the properties guaranteed by a sequential
composition of several LBV instances.

4.1.1 Local state
The local state each party maintains is presented in Algorithm 1. For every possible sequence
number sq, LEADER[sq] stores the party that is chosen (a priori or in retrospect) to be the
leader associated with sq. The COMMIT variable is a tuple that consists of a value val,
a sequence number sq s.t. val was committed in LBV(sq,LEADERS [sq]), and a threshold
signature that is used as a proof of it. The VALUE variable contains a safe value to propose
and the KEY variable is used as proof that VALUE is indeed safe. KEY contains a sequence
number sq and a threshold signature that proves that no value other than VALUE could
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be committed in LBV(sq,LEADERS [sq]). The LOCK variable stores a sequence number
sq, which is used to determine what keys are up-to-date and what are obsolete – a key is
up-to-date if it contains a sequence number that is greater than or equal to LOCK.

Algorithm 1 Local state initialization.

LOCK ∈ N ∪ {⊥}, initially ⊥
KEY ∈ (N× {0, 1}∗) ∪ {⊥} with selectors sq and proof, initially ⊥
VALUE ∈ V ∪ {⊥}, initially ⊥
COMMIT ∈ (V× N× {0, 1}∗) ∪ {⊥} with selectors val, sq and proof, initially ⊥
for every sq ∈ N, LEADER[sq] ∈ Π ∪ {⊥}, initially ⊥

4.1.2 Linear leader-based view
For space limitation, detailed pseudocode of the linear implementation of the LBV building
block is given in the fullpaper [36]. An illustration appears in figure 1. The LBV building
block supports an API to start the view and wedge the view. Upon a startView(⟨sq, pl⟩)
invocation, the invoking party starts processing messages associated with LBV(sq,pl). When
the leader pl invokes startView(⟨sq, pl⟩) it initiates 3 steps of leader-to-all and all-to-leader
communication, named PreKeyStep, KeyStep, and LockStep. In each step, the leader sends
its VALUE together with a threshold signature that proves the safety of the value for the
current step and then waits to collect n− t valid replies. A party that gets a message from
the leader, validates that the received value and proof are valid for the current step, then
produces its signature share on a message that contains the value and the step’s name, and
sends the share back to the leader. When the leader gets n − t valid shares, it combines
them into a threshold signature and continues to the next step. After successfully generating
the threshold signature at the end of the third step (LockStep), the leader has a commit
certificate which he sends together with its VALUE to all parties.

In addition to validating and share-signing messages, parties also store the values and
proofs they receive. The keyProof and lockProof variables store tuples consisting of the
values and the threshold signatures received from the leader in the KeyStep, and LockStep
steps, respectively. The commitProof variable stores the received value and the commit
certificate. When a party receives a valid commit certificate from the leader it returns.

As for the validation of the leader’s messages, parties distinguish the PreKeyStep message
from the rest. For KeyStep, LockStep and commit certificate messages, parties simply check
that the attached proof is a valid threshold signature on the leader’s value and the previous
step name. The PreKeyStep message, however, is used by the Agreement protocols to safely
compose many LBV instances. We describe this mechanism in more details below, but to
develop some intuition let us first present the properties guaranteed by a single LBV instance:

Commit causality: If a party gets a valid commit certificate, then at least t + 1 honest
parties previously got a valid lockProof.
Lock causality: If a party gets a valid lockProof, then at least t + 1 honest parties
previously got a valid keyProof.
Safety: All valid keyProof, lockProof, and commit certificates obtained in the same
LBV have the same value.

The validation of the PreKeyMessage in PreKeyStep makes sure that the leader’s value
satisfies the safety properties of the Byzantine agreement protocol that sequentially composes
and operates several LBVs. The PreKeyMessage contains the leader’s VALUE and KEY,
where KEY stores the last (non-empty) keyProof returned by a previous LBV instance
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together with the LBV’s sequence number. When a party gets a PreKeyMessage it first
validates, by checking the key’s sequence number sq, that the attached key was obtained in an
LBV instance that does not precede the one the party is locked on (the sequence number that
is stored in the party’s LOCK variable). Then, the party checks that the threshold signature
in the key (1) was generated at the end of the PreKeyStep step (it is a valid keyProof) in
LBV(sq,LEADER[sk]); and (2) it is a valid signature on a message that contains the leader’s
VALUE. Note that if the party is not locked (LOCK = ⊥) then a key is not required.

Upon a wedgeView(sq, pl) invocation, the invoking party stops participating in LBV(sq,pl)
and returns its current keyProof, lockProof, and commitProof values. These values
are used by both synchronous and asynchronous protocols, which are built on top of LBV
instances, to update the LOCK, KEY, VALUE, and COMMIT variables in parties’ local
states. Stopping participating in LBV(sq,pl) upon a wedgeView(sq, pl) invocation guarantees
that the the LBVs’ causality guarantees are propagated the KEY, LOCK, and COMMIT
variables in parties local states.

Communication complexity. Note that the number of messages sent among honest parties
in an LBV instance is O(n) = O(t). In addition, since signatures are not accumulated –
leaders use threshold signatures – each message contains a constant number of words, and
thus the total communication cost of an LBV instance is O(t) words.

Figure 1 A linear communication LBV illustration. The local state is used by and updated
after each instance. The keyProof, lockProof, and commitProof are returned when a commit
message is received from the leader or wedgeView is invoked.

4.1.3 Sequential composition of LBVs

As mentioned above, our optimistic Byzantine agreement protocol is built on top of the
LBV building blocks. The synchronous and the asynchronous parts of the protocol use
different approaches, but they both sequentially compose LBVs - the synchronous part of
the protocol determines the composition in advance, whereas the asynchronous part chooses
what instances are part of the composition in retrospect.

In a nutshell, a sequential composition of LBVs operates as follows: parties start an LBV
instance by invoking startView and at some later time (depends on the approach) invoke
wedgeView and update their local states with the returned values. Then, they exchange
messages to propagate information (e.g., up-to-date keys or commit certificates), update
their local states again and start the next LBV (via startView invocation). We claim that an
agreement protocol that sequentially composes LBV instances and maintains the local state
in Algorithm 1 has the following properties:
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Agreement: all commit certificates in all LBV instances have the same value.
Conditional progress: for every LBV instance, if the leader is honest, all honest parties
invoke startView, and all messages among honest parties are delivered before some honest
party invokes wedgeView, then all honest parties get a commit certificate.

Intuitively, by the LBV’s commit causality property, if some party returns a valid commit
certificate (commitProof) with a value v in some LBV(sq,pi), then at least t + 1 honest
parties return a valid lockProof and thus lock on sq (LOCK← sq). Therefore, since the
leader of the next LBV needs the cooperation of n− t parties to generate threshold signatures,
its PreKeyStep message must include a valid keyProof that was obtained in LBV(sq,pi).
By the LBV’s safety property, this keyProof includes the value v and thus v is the only
value the leader can propose. The agreement property follows by induction.

As for conditional progress, we have to make sure that honest leaders are able to drive
progress. Thus, we must ensure that all honest leaders have the most up-to-date keys. By
the lock causality property, if some party gets a valid lockProof in some LBV, then at least
t + 1 honest parties get a valid keyProof in this LBV and thus are able to unlock all honest
parties in the next LBV. Therefore, leaders can get the up-to-date key by querying a quorum
of n− t parties.

From the above, any Byzantine agreement protocol that sequentially composes LBVs
satisfies Agreement. The challenge, which we address in the rest of this section, is how to
sequentially compose LBVs in a way that satisfies Termination with asymptotically optimal
communication complexity under all network conditions and failure scenarios.

4.2 Adaptive to failures synchronous protocol

Algorithm 2 Adaptive synchronous protocol: Procedure for a party pi.

1: upon Synch-propose(vi) do
2: VALUE← vi

3: tryOptimistic()

4: procedure tryOptimistic()
5: trySynchrony(1, p1, 7∆)
6: for j ← 2 to n do
7: if i ̸= j then
8: trySynchrony(j, pj, 9∆)
9: else if COMMIT = ⊥ then

10: send “keyRequest” to all parties
11: wait for 2∆ time
12: trySynchrony(j, pj, 7∆)

13: procedure trySynchrony(sq, leader, T )
14: invoke startView(sq, leader) ▷ non-blocking invocation
15: wait for T time
16: ⟨keyProof, lockProof, commitProof⟩ ← wedgeView(sq, leader)
17: updateState(sq, leader, keyProof, lockProof, commitProof)

18: upon receiving “keyRequest” from party pk for the first time do
19: send “keyReply, KEY, VALUE” to party pk

20: upon receiving “keyReply, key, value” do
21: check&updateKey(key, value)

In this section, we describe a synchronous Byzantine agreement protocol with an asymp-
totically optimal adaptive communication cost that matches the lower bound in Theorem 2.
Namely, we prove the following Theorem:
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▶ Theorem 3 (restated). There is a deterministic synchronous authenticated Byzantine
agreement protocol with O(ft + t) communication complexity.

Figure 2 Illustration of the adaptive synchronous protocol. Shaded LBVs are not executed if
their leaders have previously decided.

A detailed pseudocode is given in Algorithms 2 and 3, and an illustration appears in
Figure 2. The protocol sequentially composes n pre-defined LBV instances, each with a
different leader, and parties decide v whenever they get a commit certificate with v in one of
them. To avoid the costly view-change mechanism that is usually unavoidable in leader-based
protocols, parties exploit synchrony to coordinate their actions. That is, all the startView
and wedgeView invocation times are predefined, e.g., the first LBV starts at time 0 and is
wedged at time 7∆ simultaneously by all honest parties. In addition, to make sure honest
leaders can drive progress, each leader (except the first) learns the up-to-date key, before
invoking startView, by querying all parties and waiting for a quorum of n− t parties to reply.

Algorithm 3 Auxiliary procedures to update local state.

1: procedure updateState(sq, leader, keyProof, lockProof, commitProof)
2: LEADERS[sq]← leader
3: if keyProof ̸= ⊥ then
4: KEY← ⟨sq, keyProof.proof⟩
5: VALUE← keyProof.val
6: if lockProof ̸= ⊥ then
7: LOCK← sq

8: if commitProof ̸= ⊥ then
9: COMMIT← ⟨commitProof.val, sq, commitProof.proof⟩

10: decide COMMIT.val

11: procedure check&updateKey(key, value)
12: if (KEY = ⊥ ∨ key.sq > KEY.sq) then
13: if threshold-validate(⟨preKeyStep, key.sq,
14: LEADER[key.sq], value⟩, key.proof) then
15: KEY← key
16: VALUE← value

17: procedure check&updateCommit(commit)
18: if COMMIT = ⊥ then
19: if threshold-validate(⟨lockStep, commit.sq,
20: LEADER[commit.sq], commit.val⟩, commit.proof) then
21: COMMIT← commit
22: decide COMMIT.val

Composing n LBV instances may lead in the worst case to O(t2) communication complexity
– O(t) for every LBV instance. Therefore, to achieve the optimal adaptive complexity, honest
leaders in our protocol participate (learn the up-to-date key and invoke startView) only in
case they have not yet decided. (Note that the communication cost of an LBV instance
in which the leader does not invoke startView is 0 because other parties only reply to the
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leader’s messages.) For example, if the leader of the second LBV instance is honest and has
committed a value in the first instance (its COMMIT ̸= ⊥ at time 7∆), then no message is
sent among honest parties between time 7∆ and time 16∆.

Termination and communication complexity. A naive approach to guarantee termination
and avoid an infinite number of LBV instances in a leader based Byzantine agreement
protocols is to perform a costly communication phase after each LBV instance. One common
approach is to reliably broadcast commit certificates before halting, while a complementary
one is to halt unless receiving a quorum of complaints from parties that did not decide. In
both cases, the communication cost is O(t2) even in runs with one failure.

The key idea of our synchronous protocol is to exploit synchrony in order to allow honest
parties to learn the decision value and at the same time help others in a small number of
messages. Instead of complaining (together) after every unsuccessful LBV instance, each
party has its own pre-defined time to “complain”, in which it learns the up-to-date key and
value and helps others decide via the LBV instance in which it acts as the leader.

By the conditional progress property and the synchrony assumption, all honest parties
get a commit certificate in LBV instances with honest leaders. Therefore, the termination
property is guaranteed since every honest party has its own pre-defined LBV instance, which
it invokes only in case it has not yet decided. As for the protocol’s total communication cost,
recall that the LBV’s communication cost is O(t) in the worst case and 0 in case its leader
already decided and thus does not participate. In addition, since all honest parties get a
commit certificate in the first LBV instance with an honest leader, we get that the message
cost of all later LBV instances with honest leaders is 0. Therefore, the total communication
cost of the protocol is O(ft + t) – at most f LBVs with Byzantine leaders and 1 LBV with
an honest one.

4.3 Asynchronous fallback
In this section, we use the LBV building block to reconstruct VABA [1]. Note that achieving
an optimal asynchronous protocol is not a contribution of this paper but reconstructing
the VABA protocol with our LBV building block allows us to safely combine it with our
adaptive synchronous protocol to achieve an optimal optimistic one. In addition, we also
improve the protocol of VABA in the following ways: first, parties in VABA [1] never halt,
meaning that even though they decide in expectation in a constant number of rounds, they
operate an unbounded number of them. We fix it by adding an auxiliary primitive, we call
help&tryHalting in between two consecutive waves. Second, VABA guarantees probabilistic
termination in all runs, whereas our version also guarantees standard termination in eventually
synchronous runs. For space limitation, the details are given in Appendix B.

4.4 Optimal optimistic protocol: combine the pieces

Algorithm 4 Optimistic byzantine agreement: protocol for a party pi.

1: upon Optimistic-propose(vi) do
2: VALUE← vi

3: tryOptimistic()
4: help&tryHalting(n) ▷ Blocking invocation
5: fallback(n)
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At a high level, parties first optimistically try the synchronous protocol (of section 4.2),
then invoke help&tryHalting and continue to the asynchronous fallback (of section 4.3) in
case a decision has not been reached. Pseudocode is given in Algorithm 4 and an illustration
appears in Figure 3. The parameters passed in Algorithm 4 synchronize the LBV sequence
numbers across the different parts of the protocol.

Figure 3 Illustration of the optimistic protocol. Both parts form a sequential composition of
LBV instances.

One of the biggest challenges in designing an agreement protocol as a combination of
other protocols is to make sure safety is preserved across them. Meaning that parties must
never decide differently even if they decide in different parts of the protocol. In our protocol,
however, this is inherently not a concern. Since both parts use LBV as a building block, we
get safety for free. That is, if we look at an execution of our protocol in retrospect, i.e, ignore
all LBVs that were not elected in the asynchronous part. Then the LBV instances in the
synchronous part together with the elected ones in the asynchronous part form a sequential
composition, which satisfies the Agreement property.

On the other hand, satisfying termination without sacrificing optimal adaptive complexity
is a non-trivial challenge. Parties start the protocol by optimistically trying the synchronous
part, but unfortunately, at the end of the synchronous part they cannot distinguish between
the case in which the communication was indeed synchronous and all honest parties decided
and the case in which some honest parties did not decide due to asynchrony. Moreover,
honest parties cannot distinguish between honest parties that did not decide and thus wish
to continue to the asynchronous fallback part and Byzantine parties that want to move to
the fallback part to increase the communication cost.

To this end, we implement the help&tryHalting procedure, which stops honest parties from
moving to the fallback part in synchronous runs. The communication cost of help&tryHalting
is O(ft). The idea is to help parties learn the decision value and move to the fallback part
only when the number of help request indicates that the run is asynchronous.

The pseudocode of help&tryHalting is given in Appendix D and an illustration appears in
Figure 4. Each honest party that has not yet decided sends a share signed helpRequest to
all other parties. When an honest party gets an helpRequest, it replies with its COMMIT
value. But if it gets t + 1 helpRequest messages, the party combines the shares to a
threshold signature and sends it in a complain message to all. When an honest party gets
a complain message for the first time, it echos the message to all parties and continues to
the fallback part. A termination intuition and complexity analysis of our full protocol are
given in Appendix C.

5 Discussion and Future Directions

In this paper, we propose a new approach to design agreement algorithms for communication
efficient SMR systems. Instead of designing deterministic protocols for the eventually
synchronous model, which we prove cannot guarantee bounded communication cost before
GST, we propose to design protocols that are optimized for the synchronous case but also
have a randomized fallback to deal with asynchrony. Traditionally, most SMR solutions
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(a) A few helpRequest messages – help and
halt.

(b) Too much helpRequest messages – the run
is asynchronous, move to the fallback part.

Figure 4 An illustration of the help&tryHalting procedure.

avoid randomized asynchronous protocols due to their high communication cost. We, in
contrast, argue that this communication cost is reasonable given that the alternative is an
unbounded communication cost during the wait for eventual synchrony.

We present the first authenticated optimistic protocol with O(ft + t) communication
complexity in synchronous runs and O(t2), in expectation, in non-synchronous runs. To
strengthen our result, we prove that no deterministic protocol (even if equipped with perfect
cryptographic schemes) can do better in synchronous runs. As for the asynchronous runs,
the lower bound in[1] proves that O(t2) is optimal in the worst case of f = t.

Future work. Note that our synchronous protocol satisfies early decision but not early
stopping. That is, all honest parties decide after O(f) rounds, but they terminate after
O(t). Therefore, a natural question to ask is whether exist an early stooping synchronous
Byzantine agreement protocol with an optimal adaptive communication cost. In addition, it
may be possible to improve our protocol’s complexity even further. In particular, the lower
bound on communication cost in synchronous runs applies only to deterministic algorithms,
so it might be possible to circumvent it via randomization [8].

Another interesting future direction is the question of optimal resilience in synchronous
networks. Due to the lower bound in [5], the resilience of our protocol is optimal since the
resilience in synchronous runs cannot be improved as long as the resilience in asynchronous
runs is the optimal t < n/3. However, if we consider synchronous networks in which we do
not need to worry about asynchronous runs, we know that we can tolerate up to t < n/2
failures. The open question is therefore the following: is there a synchronous Byzantine
agreement protocol that tolerates up to t < n/2 failures with an optimal communication
complexity of O(ft + t)?
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A Lower Bound For Eventually Synchronous Runs

▶ Theorem 1 (restated). There is no eventually synchronous deterministic Byzantine agree-
ment protocol that can tolerate a single failure and guarantee bounded communication cost
even in failure-free runs.

Proof. Assume by a way of contradiction that there are such algorithms. Let A be such
an algorithm with the lowest eventually synchronous communication cost with 0 failures,
and denote its communication cost by N . Clearly, N ≥ 1. Let RN ⊂ Res

0 be the set of all
failure-free eventually synchronous runs of A that have communication cost of N . For every
run r ∈ RN let mr be the last message that is delivered in r, let tr be the time at which it is
delivered, and let pr be the party that sends mr. Now for every r ∈ RN consider a run r′

that is identical to r up to time tr except pr is Byzantine that acts exactly as in r but does
not send mr. Denote by RN−1 the set of all such runs and consider two cases:

There is a run r′ ∈ RN−1 in which some message m by an honest party p is sent at some
time tr′ > tr. Now consider a failure-free run r′′ that is identical to run r except the
delivery of mr is delayed to tr′ + 1. The runs r′′ and r′ are indistinguishable to all parties
that are honest in r′ and thus p sends m at time time tr′ > tr in r′′ as well. Therefore,
the communication cost of r′′ is at least N + 1. A contradiction to the communication
cost of A.
Otherwise, we can construct an algorithm A′ with a better eventually synchronous
communication cost with 0 failures than A in the following way: A′ operates identically
to A in all runs not in RN and for every run r ∈ RN A′ operates as A except pr does not
send mr. A contradiction to the definition of A. ◀

B Fallback Description

On a high level, the idea in VABA [1] that was later generalized in ACE [37] is the following:
instead of having a pre-defined leader in every “round” of the protocol as most eventually
synchronous protocols have, they let n leaders operate simultaneously and then randomly
choose one in retrospect. This mechanism is implemented inside a wave and the agreement
protocol operates in a wave-by-wave manner s.t. parties exchange their local states between
every two conductive waves. To ensure halting, in our version of the protocol, parties also
invoke the help&tryHalting procedure after each wave. See Figure 5 for an illustration. A
full detailed pseudocode of our fallback protocol can be found in the fullpaper [36].

Wave-by-wave approach. To implement the wave mechanism we use our LBV and two
auxiliary primitives: Leader-election and Barrier-synchronization. At the beginning of every
wave, parties invoke, via startView, n different LBV instances, each with a different leader.
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Figure 5 Asynchronous fallback. Usig linear LBV to reconstruct the VABA [1] protocol.

Then, parties are blocked in the Barrier-synchronization primitive until at least n− 2t LBV
instances complete. (An LBV completes when t + 1 honest parties get a commit certificate.)
Finally, parties use the Leader-election primitive to elect a unique LBV instance, wedge it
(via wedgeView), and ignore the rest. With a probability of 1/3 parties choose a completed
LBV, which guarantees that after the state exchange phase all honest parties get a commit
certificate, decide, and halt in the help&tryHalting procedure. Otherwise, parties update
their local state and continue to the next wave. An illustration appears in figure 6.

Figure 6 An illustration of a single wave. The returned keyProof, lockProof, and commitProof
are taken from the elected LBV.

Since every wave has a probability of 1/3 to choose a completed LBV instance, the protocol
guarantees probabilistic termination – in expectation, all honest parties decide after 3 waves.
To also satisfy standard termination in eventually synchronous runs, we “try synchrony” after
each unsuccessful wave. Between every two conjunctive waves parties deterministically try
to commit a value in a pre-defined LBV instance. The preceding help&tryHalting procedure
guarantees that after GST all honest parties invoke startView in the pre-defined LBV instance
with at most 1∆ from each other and thus setting a timeout to 8∆ is enough for an honest
leader to drive progress. Description of the Barrier-synchronization and Leader-election
primitives can be found in [37].

C Protocol Termination Intuition And Complexity Analysis

Termination. A formal proof of Safety and Liveness is given in the fullpaper [36]. Here
we provide some intuition. Consider two cases. First, the parties move to the fallback part,
in which case (standard) termination is guaranteed in eventually synchronous runs and
probabilistic termination is guaranteed in asynchronous runs. Otherwise, less than t + 1
parties send helpRequest in help&tryHalting, which implies that at least t+1 honest parties
decided and had a commit certificate before invoking help&tryHalting. Therefore, all honest
parties that did not decide before invoking help&tryHalting eventually get a helpReply
message with a commit certificate and decide as well.

Note that termination does not mean halting. In asynchronous runs, helpRequest
messages may be arbitrary delayed and thus parties cannot halt the protocol after deciding
in the synchronous part. However, it is well known and straightforward to prove that halting
cannot be achieved with o(t2) communication cost in asynchronous runs, and thus our
protocol is optimal in this aspect.
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Round complexity. Since in synchronous runs all parties decide at the end of an LBV
instances with an honest leader, we get that the round complexity in synchronous runs is
O(f + 1). Since in asynchronous runs parties may go though n LBV instances without
deciding before starting the fallback, we get that the round complexity in asynchronous runs
is O(n + 1) in expectations.

Communuication complexity. The synchronous (optimistic) part guarantees that if the run
is indeed synchronous, then all honest parties decide before invoking help&tryHalting. The
help&tryHalting procedure guarantees that parties continue to the fallback part only if t + 1
parties send an helpRequest message, which implies that they move only if at least one
honest party has not decided in the synchronous part. Therefore, together they guarantee
that honest parties never move to the fallback part in synchronous runs.

The communication complexity of the synchronous part is O(ft + t), so to show that
the total communication cost of the protocol in synchronous runs is O(ft + t) we need to
show that the cost of help&tryHalting is O(ft + t) as well. Since in synchronous runs all
honest parties decide in the synchronous part, they do not send helpRequest messages,
and thus no party can send a valid complain message. Each Byzantine party that does
send helpRequest messages can cause honest parties to send O(t) replies, which implies a
total communication cost of O(ft) in synchronous runs.

As for all other runs, Theorem 1 states that deterministic protocols have an unbounded
communication cost in the worst case. Thanks to the randomized fallback, our protocol has
a communication cost of O(t2) in expectation.

D Help&tryHalting Pseudocode

Algorithm 5 Help and try halting: Procedure for a party pi.

Local variables initialization:
Shelp = {}; HALT← true

1: procedure help&tryHalting(sq)
2: if COMMIT = ⊥ then
3: ρ← share-signi(⟨helpRequest, sq⟩)
4: send “helpRequest, sq, ρ” to all parties
5: wait until HALT = false

6: upon receiving “helpReply, sq, commit” do
7: check&updateCommit(commit)

8: upon receiving “helpRequest, sq, ρ” from a party pj do
9: if share-validate(⟨helpRequest, sq⟩, pj , ρ) then

10: Shelp ← Shelp ∪ {ρ}
11: send “helpReply, sq, COMMIT” to pj

12: if |Shelp| = t + 1 then
13: ν ← threshold-sign(Shelp)
14: send “complain, sq, ν” to all parties

15: upon receiving “complain, sq, ν” do
16: if threshold-validate(⟨helpRequst, sq⟩, ν) then
17: send “complain, sq, ν” to all parties
18: HALT← false
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