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Abstract
Nakamoto consensus underlies the security of many of the world’s largest cryptocurrencies, such as
Bitcoin and Ethereum. Common lore is that Nakamoto consensus only achieves consistency and
liveness under a regime where the difficulty of its underlying mining puzzle is very high, negatively
impacting overall throughput and latency. In this work, we study Nakamoto consensus under a wide
range of puzzle difficulties, including very easy puzzles. We first analyze an adversary-free setting
and show that, surprisingly, the common prefix of the blockchain grows quickly even with easy
puzzles. In a setting with adversaries, we provide a small backwards-compatible change to Nakamoto
consensus to achieve consistency and liveness with easy puzzles. Our insight relies on a careful choice
of symmetry-breaking strategy, which was significantly underestimated in prior work. We introduce a
new method – coalescing random walks – to analyzing the correctness of Nakamoto consensus under
the uniformly-at-random symmetry-breaking strategy. This method is more powerful than existing
analysis methods that focus on bounding the number of convergence opportunities.
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1 Introduction

Nakamoto consensus [19], the elegant blockchain protocol that underpins many
cryptocurrencies, achieves consensus in a setting where nodes can join and leave the system
without getting permission from a centralized authority. Instead of depending on the identity
of nodes, it achieves consensus by incorporating computational puzzles called proof-of-work [9]
(also known as mining) and using a simple longest-chain protocol.1 Nodes in a network
maintain a local copy of an append-only ledger and gossip messages to add to the ledger,
collecting many into a block. A block consists of the set of records to add, a pointer to the
previous block in the node’s local copy of the ledger, and a nonce, which is evidence the node
has done proof-of-work, or solved a computational puzzle of sufficient difficulty, dependent
on the block. The node then broadcasts its local chain to the network. Honest nodes choose
a chain they see with the most proof-of-work to continue building upon.

Previous work defined correctness and liveness in proof-of-work protocols (also referred
to as the Bitcoin backbone) using three properties: common-prefix, chain-quality, and chain-
growth [12,15,21]. Informally, common-prefix indicates that any two honest nodes share a

1 We use “longest chain” to mean the one with the most proof-of-work given difficulty adjustments, not
necessarily the one with the most blocks, though without considering difficulty adjustments they are
the same.
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common prefix of blocks, chain-growth is the rate at which the common prefix grows over
time, and chain-quality represents the fraction of blocks created by honest nodes in a chain.
In previous work, achieving these properties critically relied on the setting of the difficulty
factor in the computational puzzles. We express this as p, the probability that any node will
solve the puzzle in a given round. Previous work analyzing Nakamoto consensus has shown
that for consistency and liveness p should be very small in relation to the expected network
delay and the number of nodes [12,21]. For example, mining difficulty in Bitcoin is set so
that the network is only expected to find a puzzle solution roughly once every ten minutes.

Requiring a small p increases block time, removing a parameter for improving transaction
throughput. One way to compensate is by increasing block size, which could result in burstier
network traffic and longer transaction confirmation times for users. Newer chains which
do not use proof-of-work seem to favor short block times, probably because users value a
fast first block confirmation: in EOS, blocks are proposed every 500 milliseconds [10] and
Algorand aims to achieve block finality in 2.5 seconds [18], whereas in Bitcoin blocks only
come out every ten minutes.

Common belief is that larger p fundamentally constrains chain growth (i.e., the growth
of the common prefix), even in the absence of an adversary, due to the potential of increased
forking: nodes will find puzzle solutions (and thus blocks) at the same time; because of the
delay in hearing about other nodes’ chains nodes will build on different chains, delaying
agreement. Another common conjecture, explicitly mentioned in [12], is that the choice of
symmetry-breaking strategies, or ways honest nodes choose among multiple longest chains, is
not relevant to correctness.

In this paper, we show that these common beliefs are incorrect. In particular, we show
that when p is beyond the well-studied region even the simple strategy of choosing among
chains of equal length randomly fosters chain growth, especially in the absence of adversaries.

Contributions. In this work, we formally analyze Nakamoto consensus under a wide range
of p including large p. We confirm previous (informal) analysis that Nakamoto consensus
requires small p in the presence of adversaries, but show that surprisingly, it does not in a
setting without adversaries, even if p = 1 (all nodes mine blocks every round) with a minor
change in nodes’ symmetry-breaking strategy. Previous work assumed the requirement of
convergence opportunities, a period when only one honest node mines a block, in order to
achieve consistency [17, 21]; we show that in fact convergence opportunities are not required
for common-prefix and chain growth. With an additional backwards-compatible modification
to Nakamoto consensus, we can derive a bound on the chain growth for a wider range
of p (including large p) in a setting with adversaries. Our key idea in this modification
is to introduce a verifiable delay function [5] to prevent the adversaries from extending
a chain by multiple blocks in a round. Our analysis is based on a new application of a
well-known technique, coalescing random walks. To our knowledge this is the first application
of coalescing random walks to analyze the common-prefix and chain quality of Bitcoin
and other proof-of-work protocols. We thoroughly analyze Nakamoto consensus with the
uniformly-at-random symmetry-breaking strategy and discuss different symmetry-breaking
strategies including first-seen, lexicographically-first, and global-random-coin.

In summary, our contributions are as follows:
A new approach for analyzing the confirmation time of the Bitcoin protocol under
the uniformly-at-random symmetry-breaking strategy in the adversarial-free setting via
coalescing random walks. Our analysis works for a new region of p, and shows that
previous works’ requirement for convergence opportunities was unneeded.
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New notions of adversarial advantages and coalescing opportunities to provide a more
general analysis of common-prefix and chain growth in Nakamoto consensus in the
presence of adversaries.

Related Work. Proofs-of-work were first put forth by Dwork and Naor [9]. Garay, Kiayias,
and Leonardas [12] provided the first thorough analysis of Nakamoto’s protocol in a
synchronous static setting, introducing the ideas of common-prefix, chain quality and chain
growth. Later work [15] extended the analysis to a variable difficulty function. Pass, Seeman,
and shelat [21] extended the idea of common-prefix to future self-consistency, and provided an
analysis of Nakamoto consensus in the semi-synchronous setting with an adaptive adversary.
Several additional papers used this notion of future self-consistency [17,27]. [17, 21] relied on
convergence opportunities, or rounds where only one node mines a block, to analyze chain
growth. In this work we show that convergence opportunities are not required for chain
growth, and relying on them underestimates chain growth with high p; in the adversary-free
setting we show chain growth even with p = 1 (no convergence opportunities; all nodes
mine a block every round). Other work considered the tradeoffs between chain growth
and chain quality [15, 16, 21, 23, 26]; however, to the best of our knowledge, none of these
works considered different symmetry breaking strategies to enable faster chain growth while
maintaining chain quality. In our paper, we thoroughly explore this domain. Another line
of work [11,25] considers how the uniformly-at-random symmetry breaking strategy affects
incentive-compatible selfish mining attacks; our analysis applies to general attacks.

Random walks have been used to analyze the probability of consistency violations in
proofs-of-stake protocols [3]; ours is the first work that uses coalescing random walks to
analyze the common-prefix and chain quality of Bitcoin and other proof-of-work protocols.

2 Model and Definitions

In this section, we present the specific model we use and briefly describe the Bitcoin
cryptosystem. We follow the formalization presented in [15,17,21].

Network and Computation Model. Following previous work [12, 14, 15, 21, 24, 27], we
consider a synchronous network where nodes send messages in synchronous rounds, i.e.,
∆ = 1; equivalently, there is a global clock and the time is slotted into equal duration rounds.
Each node has identical computing power. Notably, the synchronous rounds assumption is
significantly more relaxed than assuming ∆ = 0.2 Our model operates in the permissionless
setting. This means that any miner can join (or leave) the protocol execution without getting
permission from a centralized or distributed authority. For ease of exposition, we assume
the number of participants remains n. Our results can be easily generalized to handle
perturbation in the population size by a stochastic dominance argument as long as the
population size does not deviate too far from n, and the proportion of Byzantine participants
does not increase due to the perturbation.

Adversary Model. Throughout this paper, we assume that all Byzantine nodes are controlled
by a probabilistic polynomial time (PPT) adversary A that can coordinate the behavior of all
such nodes. A operates in PPT which means they have access to random coins but can only

2 In fact, the analysis based on Poisson race [2, 20] essentially assumes all mined blocks can be ordered in
a globally consistent way, i.e., ∆ = 0, which does not hold in our synchronous network model.
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use polynomial time to perform computations. At any time during the run of the protocol, A
can corrupt up to b nodes at any point in time where b is a parameter that is an input to the
protocol. The corrupted nodes remain corrupted for the remainder of the protocol. Finally,
A cannot modify or delete the messages sent by honest nodes, but can read all messages
sent over the network and arbitrarily order the messages received by any honest nodes.

2.1 Bitcoin Cryptosystem
A blockchain protocol is a stateful algorithm wherein each node maintains a local version
of the blockchain C. Each honest node runs its own homogeneous version of the blockchain
protocol. Nodes receive messages from the environment Z(1λ), where λ is the security
parameter chosen based on the population size n. The environment is responsible for all the
external factors related to a protocol’s execution. For example, it provides the value of b to
the nodes. Detailed description of the environment can be found in [21].

The protocol begins by having the environment Z initialize n nodes. The protocol
proceeds in synchronous rounds; at each round r, each node receives a message from Z. In
each round, an honest node attempts to mine a block containing its message to add to its
local chain. We provide formal definitions of the Bitcoin cryptosystem below.

Blocks and Blockchains. A blockchain C ≜ B0B1B2 · · ·Bℓ for some ℓ ∈ N is a chain of
blocks. Here B0 is a predetermined genesis block that all chains must build from. A block
Bℓ, for ℓ ≥ 1, is a triple Bℓ = ⟨s, x, nce⟩, where s, x, nce ∈ {0, 1}∗ are three binary strings of
arbitrary length. Specifically, s is used to indicate this block’s predecessor, x is the text of
the block containing the message (e.g. transactions) and other metadata, and nce is a nonce
chosen by a node.

Proofs-of-Work. The Bitcoin cryptosystem crucially uses nonces as proofs-of-work for
determining whether a block can be legally added to a chain.3 Proof-of-work (PoW) is
rigorously defined in previous work [12, 14, 15, 21, 24, 27] based on the use of the random
oracle model.

▶ Definition 1 (Random Oracle Model). A random oracle H : {0, 1}∗ → {0, 1}λ on input
x ∈ {0, 1}∗ outputs a value selected uniformly at random from {0, 1}λ if x has never been
queried before. Otherwise, it returns the previous value returned when x was queried last.

▶ Definition 2 (Bitcoin PoW). All nodes access a common random oracle H : {0, 1}∗ →
{0, 1}λ. We say a node successfully performs a PoW with proof x ∈ {0, 1}∗ if H(x) ≤ D.

▶ Definition 3 (Valid Chain). A blockchain C = B0B1 · · ·Bℓ = B0⟨s1, x1, nce1⟩ · · · ⟨sℓ, xℓ, nceℓ⟩
is valid with respect to a given puzzle difficulty level D ∈ {1, · · · , 2λ} if the following hold: (1)
H(B0) = s1 and H (Bℓ′) = sℓ′+1 for ℓ′ = 1, · · · , ℓ− 1; and (2) H (Bℓ′) ≤ D for ℓ′ = 0, · · · , ℓ.

Longest Chain Rule. The length of a valid chain C is the number of blocks it contains.
We refer to the local version of the blockchain kept by node i as the local chain at node i,
denoted by Ci. In each round r, node i tries to mine a block via solving a PoW puzzle with

3 Note that in practice, the nonce is effectively concatenated with a miner’s public key (included in the
coinbase transaction) to ensure unique queries. The public key does not need to be verified. Importantly,
this means that the miner can just generate a (pk, sk) pair on their local computer without the need to
verify that identity with a third-party authority.
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the specified difficulty D. If a block is successfully mined, then node i extends its local chain
with this block and broadcasts its updated local chain to all other nodes in the network,
which will be delivered at each node at the beginning of the next round. At the beginning
of the next round, before working on PoW, node i updates its local chain to be the longest
chain it has seen. If there are many longest chains, node i chooses one of them uniformly at
random.

For ease of exposition, henceforth, Ci is referred to the local chain at the end of a round;
Ci(t) is the local chain of node i at the end of round t. Equivalent to using the difficulty
parameter D, one can instead consider p ≜ D/2λ. The notion of p used in lieu of D has
been considered in [12,14,15,17,21,24] to simplify notation. Henceforth, we will quantify the
algorithm performance in terms of p rather than D and λ.

We use the phrase with overwhelming probability throughout this paper. With
overwhelming probability is defined as with probability at least 1− 1

poly(λ)c for any constant
c ≥ 1. We use the phrase with all but negligible probability in λ to mean that the probability
is upper bounded by some negligible function ν(λ) on λ (defined in Definition 4).

▶ Definition 4 (Negligible Probability). A function ν is negligible if for every polynomial p(·),
there exists an N such that for all integers n > N , it holds that ν(n) < 1

p(n) . We denote such
a function by negl. An event that occurs with negligible probability occurs with probability
negl(n).

2.1.1 Properties of the Protocol
In this paper, we will analyze the Nakamoto consensus in terms of two characteristics
(generalized from definitions in [12, 17, 27]). The common prefix is defined as a sub-chain
that is a common prefix of the local chains of all honest nodes at the end of a round. The
two properties maximal common prefix and maximal inconsistency are defined intuitively as:
the maximal prefix that is the same across all honest chains and the maximal number of
blocks in any honest chain that is not shared by all other honest chains, respectively.

▶ Property 5 (Maximal common-prefix and maximal inconsistency). Given a collection of
chains C =

{
C̃1, · · · , C̃m

}
that are kept by honest nodes, the maximal common-prefix of chain

set C, denoted by PC, is defined as the longest common-prefix of chains C̃1, · · · , C̃m. The
maximal inconsistency of C, denoted by IC, is defined as

max
i:1≤i≤m

∣∣C̃i − PC
∣∣ , (1)

where C̃i − PC is the sub-chain of C̃i after removing the prefix PC and |·| denotes the length
of the chain, i.e., the number of blocks in the chain.

3 Fundamental Limitations of Existing Approaches

To the best of our knowledge, existing work assumes extremely small p. In fact, the seemingly
mild honest majority assumption in [13,22] also implicitly assumes small p.

▶ Proposition 6. If the honest majority assumption in [13] holds, then p ≤ n−2b
2(n−b)2 .

A formal statement of the honest majority assumption and the proof of Proposition 6 can be
found in the full version. Note that the upper bound in this proposition is only a necessary
condition. Having p satisfy this condition does not guarantee protocol correctness.

DISC 2021
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Figure 1 Example growth of a set of chains starting with the genesis block at round r = 0. Here,
in this example p = 1, n = 4, and b = 0.

▶ Remark 7. Proposition 6 implies that in the vanilla Nakamoto consensus protocol, unless
b
n is non-trivially bounded above from 1

2 , p needs to be extremely low – even much lower
than the commonly believed Θ( 1

n ). See the full version. for detailed arguments.
To the best of our knowledge, most of the existing analyses focus on bounding the number of
“convergence opportunities”, which for ∆ = 1 is defined as the number of rounds in which
exactly one honest node mines a block, and for general ∆, it is defined as the global block
mining pattern that consists of (i) a period of ∆ rounds where no honest node mines a block,
(ii) followed by a round where a single honest player mines a block, (iii) and, finally, another
∆ rounds of silence from the honest nodes [17,21]. Obviously, guaranteeing sufficiently many
convergence opportunities necessarily requires p to be small; in the extreme case when p = 1
there will be no convergence opportunities at all. An important insight from our results is
that convergence opportunities are not necessary for common-prefix growth. This is illustrated
Fig. 1 which depicts the chain growth when there are 4 honest nodes and p = 1. Each
node mines a block every round and each is associated with a color. In particular, blocks
1, 5, 9, 13, 17, 21, 25, 29 are mined by the pink node, blocks 4, 8, 12, 16, 20, 24, 28, 32 are mined
by the blue node, etc. In each round, each node chooses one of the existing longest chains
uniformly at random to extend. As shown in Fig. 1, there are no convergence opportunities
in any of these 8 rounds and the four nodes never choose the same chain to extend. However,
instead of the trivial common prefix (the genesis block) the longest chains at the end of round
8 (the four chains ending with blocks 32, 29, 30, and 31, respectively) share the common
prefix genesis→ 4→ 6→ 10→ 15. In general, as we show in Section 4, even for the extreme
case when p = 1, the common prefix of the longest chains still grows as time goes by.

4 Uniformly-at-Random Symmetry-Breaking Strategy

Bitcoin uses the first-seen symmetry-breaking strategy; nodes will only switch to a new chain
with more proof-of-work than their current longest chain. In this section, we investigate the
power of the uniformly-at-random symmetry-breaking strategy, in which each honest node
chooses one of its received longest chains uniformly at random to extend upon – independently
of other nodes and independently across rounds. We choose to start with the uniformly-at-
random strategy because (1) it is easy to implement, especially in a distributed fashion, and
(2) despite its simplicity, it is very powerful in fostering chain growth.



L. Su, Q. C. Liu, and N. Narula 39:7

For ease of exposition, we first present our results in the adversary-free setting (Sections 4.1
and 4.2) and then in the adversary-prone setting (Section 4.3).

4.1 Warmup: p = 1 and Adversary-Free
Even the adversary-free setting (i.e., b = 0) is surprisingly non-trivial to analyze. Hence we
build insights by first considering the simpler setting where p = 1 as a warmup.

▶ Theorem 8. Suppose that p = 1 and b = 0. Then for any given round index t ≥ 1, in
expectation, the local chains at the honest nodes share a common prefix of length t + 1−O(n).

▶ Remark 9. In Theorem 8, the expectation is taken w. r. t. the randomness in the symmetry
breaking strategy. Theorem 8 says that large p indeed boosts the growth of the common
prefix among the local chains kept by the honest nodes, and that, though temporal forking
exists among local chains kept by the honest nodes, such forking can be quickly resolved by
repetitive symmetry-breaking across rounds.

The following definition and theorem are useful to see the intuitions of Theorem 8.

▶ Definition 10 (Coalescing Random Walks [1]4). In a coalescing random walk, a set of
particles make independent random walks on a undirected graph G = (V, E) with self-loops.
Whenever one or more particles meet at a vertex, they unite to form a single particle, which
then continues the random walk through the graph. We define the coalescence time, denoted
by CG, to be the number of steps required before all particles merge into one particle.

▶ Theorem 11 ([1, 7]). If G = (V, E) is complete, then E [CG] = O(n).

In the proof of Theorem 8, we build up the connection between the longest chains and
the backwards coalescing random walks on complete graphs, and show that the maximal
inconsistency among n longest chains turns out to be the same as the number of steps it
takes n random walks on the n-complete graph to coalesce into one. Finally, we use the
existing results on coalescing random walks to conclude.

Main proof ideas of Theorem 8. We cast our proof insights via an example presented in
Fig. 1. In this figure, there are four miners. For ease of exposition, we use the colors pink,
yellow, green, and blue to represent each of the miners, respectively. As shown in Fig. 1,
there are 4 longest chains at the end of round 8 and these chains share a maximal common
prefix ending at block 15. The maximal inconsistency of these 4 longest chains is 4; that is,
these 4 longest chains are NOT inconsistent with each other until the most recent 4 blocks of
each chain. For expository convenience below, instead of using numbers to represent each of
the blocks, we use the tuple (color, r) to represent a block that is mined by a certain miner
at round r. The maximal inconsistency of the longest chains can be characterized by the
coalescing time on complete graphs. To see this, let’s consider the four longest chains held
by honest miners during round 8 backwards.
Backwards-Chain #1: (blue, 8) → (pink, 7) → (blue, 6) → (yellow, 5) → (green, 4) →
(yellow, 3)→ (yellow, 2)→ (blue, 1)→ (gray, 0), which can be read as “block (blue, 8) is
attached to block (pink, 7) which is further attached to block (blue, 6) ... attached to the
genesis block (gray, 0). ”

4 The original definition given in [1] assumes no self-loops, but its analysis applies to the graphs with
self-loops.

DISC 2021
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Backwards-Chain #2: (pink, 8) → (yellow, 7) → (pink, 6) → (green, 5) → (green, 4) →
(yellow, 3)→ (yellow, 2)→ (blue, 1)→ (gray, 0) .

Backwards-Chain #3: (yellow, 8)→ (yellow, 7)→ (pink, 6)→ (green, 5)→ (green, 4)→
(yellow, 3)→ (yellow, 2)→ (blue, 1)→ (gray, 0).
Backwards-Chain #4: (green, 8) → (green, 7) → (yellow, 6) → (green, 5) →
(green, 4)→ (yellow, 3)→ (yellow, 2)→ (blue, 1)→ (gray, 0) .

Since p = 1 and there is no adversary, the number of longest chains received by each
honest node at each round is n. Under our symmetry-breaking rule, in each round t, each
miner chooses which of the longest chains received at the beginning of round t to extend
on uniformly-at-random. Thus, neither the previous history up to round t nor the future
block attachment choices after round t affects the choice of the chain extension in round t.
Reasoning heuristically5, we can view each of the backwards-chain as a random walk on a
4-complete graph with vertex set {pink, yellow, green, blue}. In particular, Backwards-Chain
#1 can be viewed as a sample path of a random walk starting at the blue vertex, then moves
to the pink vertex, then back to the blue vertex etc., and finally to the blue vertex. Similarly,
Backwards-Chains #2, #3, and #4 can be viewed as the sample paths of three random
walks starting at the pink vertex, yellow vertex, and green vertex, respectively. These four
random walks (starting at four different vertices) are not completely independent. For any
pair of random walks, before they meet, they move on the graph independently of each other;
whenever they meet, they move together henceforth. Concretely, backwards-chains 2 and 3
meet at (yellow, 7) and these chains are identical starting from block (yellow, 7); this holds
similarly for other pairs of backwards chains. Finally, these four backward chains all meet
at the block (green, 4) and move together henceforth. Notably, this block is exactly the
last block in the maximal common prefix of the four longest chains of round 8. Thus, the
maximal inconsistency among the longest chains of round 8 is identical to the number of
backwards steps it takes for all these four random walks to coalesce into one. This relation is
not a coincidence. It can be shown (detailed in the proof of Theorem 8) that this identity
holds for general n. Formal proof of Theorem 8 can be found in Appendix 7.

4.2 General p: Adversary-Free
The analysis for general p is significantly more challenging than that of p = 1 in two ways:
(1) we need to repeatedly apply coupling arguments; and (2) we need to characterize the
coalescence time of a new notion of coalescing random walks (the lazy coalescing random
walks), the latter of which could be of independent interest for a broader audience.

▶ Theorem 12. Suppose that np = Ω(1). If p < 4 ln 2
n , in expectation, at the end of round t,

the local chains at the nodes share a common prefix of length (1 + (1− (1− p)n) t)−O( 1
npe−np ).

If p ≥ 4 ln 2
n , in expectation, at the end of round t, the local chains at the nodes share a

common prefix of length (1 + (1− (1− p)n) t)−O

(
2np

(1−2 exp(− 1
3 np))

)
.

▶ Remark 13. The expression of the common prefix length in Theorem 12 contains two
terms with the first term (i.e., (1 + (1− (1− p)n) t)) being the only term that involves t.
Intuitively, from this term, we can read out the common prefix length growth rate w.r.t. t.
The second term (which is expression in terms of Big-O notation) can be interpreted as a
quantification of the maximal inconsistency of the honest chains.

5 Formally shown in the proof of Theorem 8 via introducing an auxiliary process.
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Now we further interpret these two terms via simplifying the expression using the
inequalities (1− np) ≤ (1− p)n ≤ exp (−np).
(1) When np = o(1), it is true that (1 − p)n ≈ (1 − np) for large n, which implies that

(1− (1− p)n) t ≈ npt = o(t), i.e., the common prefix grows at a speed o(t). The
maximal inconsistency bound O( 1

npe−np ) is not tight. Nevertheless, via a straightforward
calculation, we know that the maximal inconsistency is O(1).

(3) When np = ω(1), we have 0 ≤ (1 − p)n ≤ exp (−np) → 0 as np → ∞. Thus the
common-prefix grows at the speed (1− (1− p)n) t ≈ t = Ω(t) with maximal inconsistency
O(np) for sufficiently large np.

(4) When np = c ∈ (0, 1), it is true that (1 − p)n = (1− c/n)n → exp (−c) as n → ∞.
The common-prefix grows at the speed of Θ(t) for sufficiently large n and the maximal
inconsistency is O(1).

Overall, when np gets larger, the common-prefix growth increases and the maximal
inconsistency grows at a much slower rate.

The following definition and lemma are used in proving Theorem 12. This lemma could
be of independent interest to a broader audience and its proof can be found in the appendix.

▶ Definition 14 (Lazy coalescing random walk). For any fixed u ∈ (0, 1), we say n particles
are u-lazy coalescing random walks if for each step: with probability (1− u), each particle
stays at its current location; with probability u, each particle moves to an adjacent vertex
picked uniformly at random. If two or more particles meet at a location, they unite into
a single particle and continue the procedure. The coalescence time is the same as that in
Definition 10.

▶ Lemma 15. Suppose that G is a complete graph of size |V | = ng (where ng ≥ 2) with
self-loops. For any u ∈ (0, 1), the coalescence time of the u-lazy coalescing random walks is
CG(ng) = O(ng/u).

Proof Sketch of Theorem 12. When p < 4 ln 2
n , we can use Poisson approximation to

approximate the distribution of number of blocks in each round. A straightforward calculation
shows that the probability of having exactly one block in a round is np exp (−np). Thus,
in expectation, the maximal inconsistency is O

(
1

np exp(−np)

)
. Henceforth, we restrict our

attention to the setting where p ≥ 4 ln 2
n and quantify the expected maximal inconsistency

among the longest chains of round t. It is attempting to apply arguments similar to that
in the proof of Theorem 8 and derive a bound on the maximal inconsistency via stochastic
dominance. However, the obtained bound on the maximal inconsistency is O(n) which could
be extremely loose for a wide range of p. Nevertheless, based on the insights obtained in this
coarse analysis, we can come up with a much finer-grained analysis and obtain the bound in
Theorem 12. Similar to the proof of the special case when p = 1, in our fine-grained analysis
for general p ∈ (0, 1), we couple the growth of the common prefix in Nakamoto protocols with
the coalescing time random walks on complete graphs. The major differences from the proof
of p = 1 are: (1) instead of the standard coalescing random walks, we need to work with
a lazy version of it, formally defined in Definition 14; (2) there is no fixed correspondence
between a color and a node – in our proof of general p, the correspondence is round-specific
rather than fixed throughout the entire dynamics; (3) there is no bijection between a sample
path of the Nakamoto dynamics and that of the backwards coalescing random walks, thus,
we need to rely on stochastic dominance to build up the connection of these two dynamics.
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4.3 General p: Adversary-Prone
Throughout this section, we assume p < 1. In this subsection, we consider adversary-prone
systems, i.e., b > 0. Simple concentration arguments show that when bp ≥ (1 + 2c) for any
given c ∈ (0, 1), using vanilla Nakamoto consensus the chain quality could be near zero. To
make larger p feasible, we introduce a new assumption – Assumption 16 – which we then
remove in Section 5 by providing a construction that ensures Assumption 16 with all but
negligible probability. Specifically, we use a cryptographic tool called a VDF to ensure that
over a sufficiently long time window, the corrupt nodes can only collectively extend a chain
by more than one block in a round with negligible probability.

▶ Assumption 16. In each round, a chain can be extended by at most 1 block.

To strengthen the protocol robustness, we make the additional minor modification
requiring each honest node to selectively relay chains at the beginning of a round.

Selective relay rule. At each honest node i, for each iteration t ≥ 1: Node i looks at the
chains it received in the previous round t− 1, and if any of them are longer than its own
local longest chain, it not only chooses one of the longest chains to replace its local one, it
also broadcasts it to other nodes before it begins mining in round t.
As implied by our proof, this modification can reduce the maximal difference between the
lengths of the longest chains kept by the honest nodes and by the corrupt nodes. Intuitively,
if the adversary sends two chains of different lengths to two different groups of honest nodes,
with the selective relay rule, only the longer chain would survive in this round. Notably, it is
possible that none of them survive in this round. Even with the assurance guaranteed by
Assumption 16, compared with the adversary-free settings, the analysis for the adversary-
prone setting is challenging. This is because the corrupt nodes could deviate from the
specified symmetry breaking rule. For example, a corrupt node can choose not to extend its
longest chain, or can choose from its set of longest chains in any way that provides advantage.
In addition, a corrupt node can hide blocks it has mined from the honest nodes for as long
as it wants, or from some subset of the honest nodes during a round.

For simplicity and for technical convenience, we assume that a corrupt node randomly
chooses among longest chains that end with an honest block. This assumption is only imposed
in the rare event when simultaneously both the adversary has no adversary advantage (see
Definition 17) and only honest nodes mine blocks in the most recent nonempty round.

In contrast to the adversary-free setting where the lengths of honest nodes’ local chains
differ by at most 1, in the presence of an adversary, such difference could be large. To
precisely bound this difference, we introduce a random process we call adversary advantage:

▶ Definition 17 (Adversary advantage). Let {N (t)}∞
t=0 be the random process defined as

N (0) = 0, and
for t ≥ 1,

N (t) =


N (t− 1) + 1, if only corrupt nodes found blocks in round t;
max{N (t− 1)− 1, 0}, if only honest nodes found blocks in round t;
N (t− 1), otherwise.

Note that the random process {N (t)}∞
t=0 is independent of the adversarial behaviors of the

corrupt nodes. To make the discussion concrete, we introduce the following definition.
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▶ Definition 18. The length of the longest chains kept by the honest nodes at round t is
defined as the length of the longest local chains kept by honest nodes at the end of round t.

▶ Lemma 19. For any t ≥ 1, at the end of round t, the length of the longest chains kept by
the adversary – henceforth referred to as an adversarial longest chain of round t – is at most
N (t) longer than the length of a chain kept by an honest node.

Proof of Lemma 19 can be found in the full version. From its proof, we can deduce an
attacking strategy of the adversary that meets the upper bound in Lemma 19. The following
lazy random walk, referred to as coalescing opportunities, is important in our analysis. It
can also be used to quantify the chain quality.

▶ Definition 20. Let t1, t2, · · · be the rounds in which at least one node mines a block with
the understanding that t0 = 0. Let J (m) be a random walk defined as

J (m) =


0, if m = 0;
J (m− 1) + 1, if only honest nodes mine a block during round tk;
J (m− 1)− 1, if only corrupt nodes mine a block during round tk;
J (m− 1), otherwise.

▶ Remark 21. A couple of interesting facts on the coalescing opportunities dynamics are:
Among the most recent m blocks in a longest chain, there are at least J (m) blocks mined
by the honest nodes. In addition, regardless of the behaviors of the adversary, for any two
longest chains, there are at least J (m) block positions each of which has non-zero probability
of being in the common prefix of these two chains.

Let p+1 = P {J (m) = J (m− 1) + 1} and p−1 = P {J (m) = J (m− 1)− 1}, i.e., p+1
(resp. p−1) is the probability for J (m) to move up (resp. down) by 1. We have

p+1 =
(1− p)b

(
1− (1− p)n−b

)
1− (1− p)n

and p−1 =
(
1− (1− p)b

)
(1− p)n−b

1− (1− p)n
. (2)

It is easy to see that when b > 1
2 n, it holds that p+1 > p−1. For ease of exposition, let

p∗ = P {J (t) ̸= J (t− 1)} = p+1 + p−1.

▶ Lemma 22. With probability at least
(

1− exp
(
− (p+1−p−1)2M

16p∗

)
− exp

(
− (p∗)2M

2

))
, it

holds that J (M) ≥ (p+1−p−1)M
4 .

Lemma 22 gives a high probability lower bound on the number of coalescing opportunities
during M nonempty rounds.

▶ Theorem 23. For any given T ≥ 1 and M ≥ 4
β(p+1−p−1) where β = (n−b)p

2(3np)2 , at the end of
round T , with probability at least

1− exp
(
− (p∗)2M

2

)
− exp

(
− (p+1 − p−1)2M

16p∗

)
− 2

β
exp

(
−1

2(n− b)
)

over the randomness in the block mining, the expected maximal inconsistency among a given
pair of honest nodes is less than M , where the expectation is taken over the randomness in
the symmetry breaking.
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▶ Remark 24. It is worth noting that β = (n−b)p

2(3np)2 = 1
18

(n−b)
n

1
np , i.e., β is a function of the

fraction of honest nodes and the total mining power of the nodes in the system.
Suppose that n ≥ 2 log 4

ϵβ for any given ϵ ∈ (0, 1). Let

M∗ = max
{

4 log 1/ϵ

(p∗)2 ,
4

β(p+1 − p−1) ,
16p∗

(p+1 − p−1)2 log 4
ϵ

}
.

From Theorem 23, we know that with probability at least 1− ϵ, the maximal inconsistency
is less than M∗. Roughly speaking, when b gets smaller, M∗ mainly gets smaller.

Proof of Theorem 23. We use Nt to denote the number of blocks generated during round t

and associate each node with a distinct color in {c1, · · · , cn}. If node i mines a block during
round t, we use (ci, t) to denote this block. The genesis block is denoted as (c1, 0). Recall
that the blocks mined during round t are collectively referred to as the block layer t. As the
randomness in the block generation (i.e., puzzle solving of individual nodes) is independent
of the adversarial behaviors of the corrupt nodes and is independent of which chain an honest
node chooses to extend, we consider the auxiliary process wherein the nodes mine blocks
for the first T rounds, and then the corrupt nodes and honest nodes sequentially decide
on block attachments. Let {i1, · · · , iK} be the set of rounds such that Nik

̸= 0 for each
ik ∈ {i1, · · · , iK}. Let j1 and j2 be any two honest nodes whose chains at the end of round
T are denoted by C1(T ) and C2(T ), respectively. For each of these chains, we can read off a
sequence of colors

for Chain C1(T ) : c1c(1, 2)c(1, 3) · · · c(1, ℓ1), and
for Chain C2(T ) : c1c(2, 2)c(2, 3) · · · c(2, ℓ2),

where ℓ1 and ℓ2, respectively, are the lengths of chains C1(T ) and C2(T ), c1 is the color
of the genesis block, c(1, k) for k ∈ {2, · · · , ℓ1} is the color of the k–th block in C1(T ) and
c(2, k) for k ∈ {2, · · · , ℓ2} is the color of the k–th block in C2(T ). If ℓ1 ̸= ℓ2, without loss of
generality, we consider the case that ℓ1 < ℓ2; the other case can be handled similarly. We
augment the color sequence c1c(1, 2)c(1, 3) · · · c(1, ℓ1) to the length ℓ2 sequence as

c1c(1, 2)c(1, 3) · · · c(1, ℓ1)c(1, ℓ1 + 1) · · · c(1, ℓ2),

by setting c(1, k) = c0 for k = ℓ1 + 1, · · · , ℓ2 where c0 /∈ {c1, · · · , cn} is a special color
that never shows up in a real block. It is easy to see that C1(T ) and C2(T ) start to be
inconsistent at their k-th block if and only if c(1, k′) ̸= c(2, k′) for each k′ ∈ {k, · · · , ℓ2}. Let
{ih1 , · · · , ihR

} ⊆ {i1, · · · , iK} such that for each ihr
∈ {ih1 , · · · , ihR

} it holds that
Only honest nodes successfully mined blocks;
N (ihr−1) = 0.

For ease of exposition, we refer to each of ihr
as a coalescing opportunity. Recall that each

of the honest nodes extends one of the longest chains it receives. By Lemma 19, we know
that each of C1(T ) and C2(T ) contains a block generated during round ihr

. Let (c′
1, ihr

)
and (c′

2, ihr ) be the blocks included in C1(T ) and C2(T ), respectively. If (c′
1, ihr ) is in the

k-th position in C1(T ), then (c′
2, ihr

) is also in the k-th position in C2(T ). For each ihr
, we

denote the set of chains (including the forwarded chains) received by j1 and j2 at round ihr
,

denoted by Cr
1 and Cr

2 . Since the adversary can hide chains to a selective group of honest
nodes, Cr

1 and Cr
2 could be different. The probability of j1 and j2 extending the same chain

at round ihr is
|Cr

1 ∩ Cr
2 |

|Cr
1 | |Cr

2 |
≥ NB(ihr−1)(

NB(ihr−1) + AB(ihr−1) + AB(ĩhr−1)
)2 (3)
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where the inequality follows from Lemma 33 of the the full version. By Lemma 22, we know
that in the M non-empty block layers that are most recent to round T ,

R ≥ J (M) ≥ (p+1 − p−1)M
4

holds with probability at least
(

1− exp
(
− (p∗)2M

2

)
− exp

(
− (p+1−p−1)2M

16p∗

))
. In addition, it

can be shown that for each of the r ensured by Lemma 22 we have

max{|Cr
1 | , |Cr

2 |} ≤ NB(ihr−1) + AB(ihr−1) + AB(ĩhr−1)1{AB(ihr−1) = 0}.

For any ik, let Xk be the number of blocks mined by the honest nodes during round ik

such that Xk ̸= 0. Using conditioning and Hoeffding’s inequality, the following holds with
probability at least

(
1− 2 exp

(
− 1

2 (n− b)
))

,

Xk ≥
1
2(n− b)p and Xk + Yk + Yk−11{Yk = 0} ≤ 3np,

which implies that Xk

Xk+Yk+Yk−11{Yk=0} ≥
(n−b)p

2(3np)2 ≜ β. On average over the random symmetry
breaking, it takes at most 1/β coalescing opportunities backwards for chains C1(T ) and
C2(T ) to coalesce into one. Thus, we need (p+1−p−1)M

4 ≥ 1
β . ◀

5 VDF-Based Scheme

In this section, we present a scheme to ensure Assumption 16. The key cryptographic tool we
use in the following scheme is the construction of the verifiable delay function, F(x), which
we define informally below. Please refer to [4] for the formal definition (also defined formally
in the full version of our paper).

▶ Definition 25 (Verifiable Delay Function (informal)). Let λ be our security parameter.
There exists a function F with difficulty X = O(poly(λ)) where the output y ← F(x) (where
x ∈ {0, 1}λ) cannot be computed in less than X sequential computation steps, even provided
poly(λ) parallel processors, with probability at least 1 − negl(λ). The VDF output can be
verified, quickly, in O(log(X)) time.

We set the difficulty of the VDF to the duration of a round; in other words, the difficulty
is set such that the VDF produces exactly one output at the end of each round. We amend
default Nakamoto consensus by adding the following procedure. We believe this could be
added in a backwards-compatible way to existing Nakamoto implementations, like Bitcoin.
Backwards-compatibility is desirable in decentralized networks because it means that a
majority of the network can upgrade to the new protocol and non-upgraded nodes can still
verify blocks and execute transactions. Below we describe a scheme that, when added to
Nakomoto consensus, assures Assumption 16. The proof of the following theorem is in the
full version of our paper.

▶ Theorem 26. Assumption 16 is satisfied by our VDF-based scheme.

VDF-Scheme Overview. The VDF-scheme works intuitively as follows. We number the
rounds beginning with round 0. All nodes have the genesis block B0 in their local chains in
round 0 and starting mining blocks in round 1. In round 0, the VDF output is computed
using 0 as the input. During each round j > 0, each node computes a VDF output, yj ,
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39:14 The Power of Random Symmetry-Breaking in Nakamoto Consensus

(using F) for the current round j where the input to F is the output of the VDF, yj−1,
from the previous round concatenated with the round number, j. Both inputs are necessary;
the output of the VDF from the previous round ensures that we cannot compute the VDF
output for this round until we have obtained the output for the previous round, and the
round number is necessary to ensure that the output is not used for a future round. Once the
VDF output is computed, each honest node attempts to mine a block using the VDF output
as part of the input to the mining attempt. This also ensures that the block generation rate
of honest nodes is upper bounded by np. Then, each node which successfully mines a block
sends the new chain to all other nodes.

All honest nodes verify that each chain satisfies two conditions:
1. Let o1, . . . , oℓ be the VDF outputs contained in blocks B1, . . . , Bℓ, respectively, of a chain

C (the genesis block does not contain a VDF output). Let r1, . . . , rℓ be the rounds where
o1, . . . , oℓ were computed, respectively. Then, r1 < · · · < rℓ−1 < rℓ.

2. oi is the VDF output computed from round ri ≥ i− 1.
The honest nodes also check all proofs included in the chains, confirming that the VDF
outputs are correctly computed and the blocks are correctly mined using the VDF outputs.
An honest node discards any chain which does not pass verification.

Pseudocode. The precise pseudocode of our VDF-based scheme is given below. Using F ,
each honest node i performs the following:
1. Initially, all honest nodes use input 0 at the start of the protocol to obtain output

y0 = F(0) for round 0.
2. Let dj = F(yj−1) be the output of the VDF for round j and yj = dj−1|j.6 i stores yj .
3. When i mines a block Bj , i includes the output yj−1 = dj−1|j from the previous round

in Bj , ie. Bj is mined with yj−1 as part of the input.
4. Each node which successfully mines a block adds the mined block to its local chain. Then,

it broadcasts its local chain to all other nodes.
5. For each longest chain received, each node verifies the following:

a. Let o1, . . . , oℓ be the VDF outputs stored in each block in order starting with the first
block and ending with the ℓ-th block. Let r1, . . . , rℓ be the rounds associated with the
VDF output. Then, rℓ > rℓ−1 > · · · > r1.

b. The k-th block in the chain (starting from the genesis block) is mined using yk′ from
round k′ ≥ k − 1.

c. The proofs of the VDF output and the mining output are correct, i.e. the block is
correctly mined using the corresponding VDF output.

6. If i receives a chain where more than one block in the chain is mined with the same yj

(for any j smaller than the current round), the node discards the chain.
7. At the end of round j, i sets yj+1 ← F(yj)|j + 1 and begins computing the next value
F(yj+1) using yj+1 as input.

Due to space constraints, we do not include the proof of Theorem 26; please find the full
proofs in the full version of our paper. However, the intuition for our proof is straightforward.
Items 5a and 5b ensure that no chain accepted by an honest node contains more than one
block per VDF output. Setting the difficulty of the VDF to the duration of the round ensures
that at most one VDF output is produced during a round. Together, these two observations
prove Theorem 26, namely, that any chain held by an honest node can be extended by at
most one block each round.

6 Here, a|b is the commonly used notation indicating concatenation between a and b.
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6 Discussion

Validation and Communication Costs. A higher p means a faster block rate and thus more
blocks. The validation and bandwidth complexity of Nakamoto protocols are proportional
to block size and the number of blocks that are mined, since each miner validates and then
communicates every mined block to all other miners (in practice, nodes do not necessarily
gossip shorter chains, and taking advantage of nodes’ memory overlap can help reduce block
transfer size [8]). One needs to determine the optimal value of p that trades off validation
and bandwidth complexity and chain growth. This work expands the space of p to consider.

Other Symmetry-Breaking Strategies. Here we consider three other symmetry-breaking
strategies with high p. First-seen is where all honest nodes take the first chain out of the
longest-length chains they see, and lexicographically-first is where honest nodes take the
lexicographically-first chain of the set of longest chains according to some predetermined
ordering, for example alphabetically. Intuitively, the adversary can control the network and
thus cause different honest nodes to see different chains of the same length first for first-seen,
impacting common-prefix, or grind on blocks to always produce the lowest lexicographically-
ordered chain for lexicographically-first, impacting chain-quality. A third strategy is to use
a global-random-coin: Suppose that all nodes have access to a permutation oracle P that
returns a permutation sampled uniformly at random of a number of elements passed into it
where any subset of elements obey the same partial ordering. With P symmetry-breaking is
trivial since all honest nodes will agree on the result of the coin flip. Furthermore, if the coin
is fair, then the number of honest blocks added to the chain is proportional to the fraction of
honest nodes. However, in reality, it is difficult and oftentimes infeasible to ensure such a
strong guarantee.

Conclusion. In this work we show that unlike previously thought, convergence opportunities
are not necessary to make chain progress. We use coalescing random walks to analyze the
correctness of Nakamoto consensus under a regime of puzzle difficulty previously thought to
be untenable, expanding the space of p for protocol designers.
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7 Proof of Theorem 8

Proof of Theorem 8. We formalize the arguments of the main proof ideas in Section 4.1.
Let {c1, · · · , cn} be a set of n different colors. We associate each node in the system with a
color. We use (ci, t) to denote the block generated by honest node i during round t and (c0, 0)
to denote the genesis block. We use (ci, t)→ (ci′ , t− 1) to denote the event that block (ci, t)
is attached to block (ci′ , t−1), which occurs with probability 1

n under our symmetry-breaking
rule. To quantify the maximal inconsistency of the longest chains of round T , we consider the
following auxiliary random process. It can be easily shown that there is a bijection between
the sample paths of the Bitcoin blockchain protocol and the sample paths of this auxiliary
process, and that the auxiliary process and the original blockchain protocol with random
symmetry breaking have the same probability distribution.

Auxiliary random procedure: For any given T ≥ 1, do the following:
(i) Let each color generate a block for each of the rounds in {1, 2, · · · , T};
(ii) Attach each of the block (ci, 1) for i = 1, · · · , n to the genesis block (c0, 0);
(iii) For each t ≥ 2 and each (ci, t), attach it to one of the blocks {(ci, t− 1) , i = 1, · · · , n}

uniformly at random (i.e., with probability 1/n).

Connecting to coalescing random walks: Here, we formally quantify the connection between
the maximal inconsistency among the longest chains of round T with the coalescing time of
n random walks on an n-complete graph. Since p = 1 and there is no adversary, the number
of longest chains received by each honest node at each round is n. Let C(T, c1), · · · , C(T, cn)
be the n longest chains of round T ending with blocks (c1, T ) , · · · , (cn, T ), respectively. We
first show that each of these n chains can be coupled with a random walk on the n-complete
graph. Without loss of generality, let’s consider C(T, c1) which can be expanded as

C(T,c1):=(c0,0)←(ci1,1)←···←
(
cit−1,t−1

)
←(cit

,t)←···←
(
ciT −1,T−1

)
←(c1,T ), (4)

where ct is the color of the (t + 1)-th block in the chain. Note that the chain C(T, c1) is
random because the sequence of block colors c0ci1 · · · cit−1cit

· · · ciT −1c1 is random. Moreover,
the randomness in C(T, c1) is fully captured in the randomness of the block colors. We have

P
{

C(T,c1)=(c0,0)←(ci1,1)←···←
(
cit−1,t−1

)
←(cit,t)←···←

(
ciT −1,T−1

)
←(c1,T )

}
(a)= P {(c0, 0)← (ci1 , 1)}

T∏
t=2

P
{(

cit−1 , t− 1
)
← (cit

, t)
}

=
T∏

t=2
P

{(
cit−1 , t− 1

)
← (cit

, t)
}

,

where the last equality is true as P {(c0, 0)← (ci1 , 1)} = 1, and the equality (a) holds because
under our symmetry-breaking rule, neither the previous history up to round t nor the future
block attachment choices after round t affects the choice of the chain extension in round t.
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Moreover, the probability of any realization of the color sequence c0ci1 · · · cit−1cit · · · ciT −1c1

(i.e., a sample path on the block colors in Bitcoin) is
( 1

n

)T −1. Let’s consider the complete
graph with vertex set {c1, c2, · · · , cn}. Under our symmetry breaking rule, the backwards color
sequence c1ciT −1 · · · cit

cit−1 · · · ci1 (without considering the genesis block) is a random walk on
the n-complete graph starting at vertex c1. Similarly, we can argue that C(T, c2), · · · , C(T, cn)
correspond to n− 1 random walks on the n-complete graphs starting at vertices c2, · · · , cn,
respectively. As argued in the main proof ideas paragraph, these n random walks are not
fully independent. In fact, they are coalescing random walks, and their coalescence is exactly
the maximal inconsistency among the longest chains of round T .

With the above connection of the longest chain protocol augmented by uniformly-at-
random symmetry breaking with coalescing random walks. We conclude by applying
Theorem 11. ◀

8 Proof of Lemma 15

Proof of Lemma 15. To characterize the coalescence time, similar to the analysis in [6], for
any given k ∈ {1, · · · , ng}, we construct a larger graph Q = Qk = (VQ, EQ), where VQ = V k

and two vertices v, w ∈ V k if {v1, w1} , · · · , {vk, wk} are edges of G. Let Mk be the time
until the first meeting in the original graph G. Let S ⊆ VQ denote the set of all possible
configurations of the locations of the ng random walks at the first meeting,

Sk = {(v1, · · · , vk) : vi = vj for some 1 ≤ i < j ≤ k} . (5)

It is easy to see that there is a direct equivalence between the u-lazy random walks on
G and the single u-lazy random walk on Q. Since Q is a complete graph with self-loops,
the limiting distribution of lazy random walk on Q is the same as the standard random
walk on Q. Let πQ ∈ R|V k| be the stationary distribution of a standard random walk on
Q and let πQ

Sk
=

∑
v∈Sk

πQ
v . By [6, Lemma 4], we know that for any 1 ≤ k ≤ k∗ where

k∗ ≜ max{2, log ng}, it holds that

πQ
Sk
≥ k2

8ng
.

Let Hv,Sk
denote the hitting time of vertex set Sk starting from vertex v and let

HQ
π (HSk

) =
∑

v∈V k

πQ
v Hv,Sk

denote the expected hitting time of Sk from the stationary distribution πQ. From [1, Lemma
2.1] and the fact we can contract the vertex set Sk into one pseudo vertex, similar to [6, proof
of Theorem 2], we have that

EπQ [HSk
] =

∑∞
t=0

(
P t

Sk
(Sk)− πQ

St

)
πQ

Sk

=

∑∞
t=0

(
(1− u)t + (1− (1− u)t) πQ

Sk
− πQ

Sk

)
πQ

Sk

≤ 8ng

k2
1
u

(
1− πQ

Sk

)
≤ 8ng

uk2 .

In addition, by conditioning on whether the particles stay at their initial locations or not, we
have

E [Mk] = (1− u) (1 + E [Mk]) + u (1 + EπQ (HSk
)) ,
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which implies that

E [Mk] ≤ 1
u

(
1 + 8ng

k2

)
= O

( ng

uk2

)
.

Thus, for any k such that 1 ≤ k ≤ k∗ = {2, log ng}, we have

E [Ck] ≤
k∑

s=2
E [Ms] ≤ O(ng/u).

Let Wu be a lazy random walk on the complete graph G with initial location u. In each
round, with probability (1− u), Wu stays at its current location and with probability u it
moves to one of the current neighbors (including self-loops) uniformly at random. Let πG

the limiting distribution of the location vertex of Wu. By [6, Eq.(8)], its mixing time is
tmix = 3 log ng

log(1/(1−u)) , i.e., for any given u ∈ V , when t ≥ ⌈ 3 log ng

log(1/(1−u))⌉,

∥P t
u − πG∥1 =

∑
v∈V

∣∣P t
u(v)− πG

v

∣∣
=

∣∣1− πG
u

∣∣ (1− u)t +
∑

v:v∈V,v ̸=u

∣∣(1− (1− u)t
)

πG
v − πG

v

∣∣
≤ 2(1− u)t ≤ 2

n3
g

≤ 1
n2

g

.

Here, with a little abuse of notation, we use P t
u to denote the distribution of the state ofWu at

round t. Let t∗ = k∗ log ng (k∗tmix + 3EπQ (HSk∗ )). Following the arguments in [6, Section
5], we have

C(ng) ≤ 4t∗ + E [Ck∗ ]
≤ 4 log ng (k∗tmix + 3EπQ (HSk∗ )) + O(ng/u)

≤ 4 log4 ng

log 1
1−u

+ 12 log2 ng
8ng

u log2 ng

+ O(ng/u)

≤ 4 log4 ng

u
+ 96ng

u
+ O(ng/u)

= O(ng/u),

where the last inequality follows from log 1/(1− u) ≥ u. ◀
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