Time-Optimal Loosely-Stabilizing Leader Election
in Population Protocols

Yuichi Sudo &=

Hosei University, Tokyo, Japan

Ryota Eguchi &
Nagoya Institute of Technology, Japan

Taisuke Izumi &
Osaka University, Japan

Toshimitsu Masuzawa &
Osaka University, Japan

—— Abstract

We consider the leader election problem in the population protocol model. In pragmatic settings
of population protocols, self-stabilization is a highly desired feature owing to its fault resilience
and the benefit of initialization freedom. However, the design of self-stabilizing leader election is
possible only under a strong assumption (i.e., the knowledge of the ezact size of a network) and
rich computational resource (i.e., the number of states). Loose-stabilization is a promising relaxed
concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that
starting from any configuration, the network will reach a safe configuration where a single leader
exists within a short time, and thereafter it will maintain the single leader for a long time, but not
necessarily forever. The main contribution of this paper is giving a time-optimal loosely-stabilizing
leader election protocol. The proposed protocol with design parameter 7 > 1 attains O(7 logn)
parallel convergence time and Q(n") parallel holding time (i.e., the length of the period keeping
the unique leader), both in expectation. This protocol is time-optimal in the sense of both the
convergence and holding times in expectation because any loosely-stabilizing leader election protocol
with the same length of the holding time is known to require Q(7logn) parallel time.

2012 ACM Subject Classification Theory of computation — Distributed algorithms

Keywords and phrases population protocols, leader election, loose-stabilization, self-stabilization
Digital Object Identifier 10.4230/LIPIcs.DISC.2021.40

Related Version Previous Version: https://arxiv.org/abs/2005.09944

Funding This work was supported by JSPS KAKENHI Grant Numbers 19H04085 and 20H04140.

Acknowledgements We truly thank anonymous reviewers for their constructive and helpful comments.
We also thank Przemyslaw Uznanski and Eric Severson: The first author of this paper got one of
the key ideas of this paper after the discussion with them at PODC 2019.

1 Introduction

We consider the population protocol (PP) model [5] in this paper. A network called the popu-
lation consists of n automata called agents. Pairs of agents execute interactions (i.e., pairwise
communication) by which they update their states. These interactions are opportunistic, that
is, they are unknown and unpredictable (or only predictable with probability). Agents are
strongly anonymous: they do not have identifiers and cannot distinguish neighbors with the
same state. As with the majority of studies on population protocols [5, 6, 4, 2, 14, 15, 22, 19],
we assume that exactly one pair of agents is selected to have an interaction uniformly at
random from all (}) pairs at each step. In the PP model, time complexity such as expected

© Yuichi Sudo, Ryota Eguchi, Taisuke Izumi, and Toshimitsu Masuzawa;
37 licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).

Editor: Seth Gilbert; Article No. 40; pp.40:1-40:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:y-sudou@ist.osaka-u.ac.jp
https://orcid.org/0000-0002-4442-1750
mailto:30514002@stn.nitech.ac.jp
mailto:t-izumi@ist.osaka-u.ac.jp
mailto:masuzawa@ist.osaka-u.ac.jp
https://doi.org/10.4230/LIPIcs.DISC.2021.40
https://arxiv.org/abs/2005.09944
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

Table 1 Self/Loosely-stabilizing leader election in the PP model (The convergence/holding time
is shown in expected parallel time).

Type Knowledge N Conviergence Ho.lding Hstates Design
time time parameter
[10] SS-LE N=n O(n?) o0 n -
[9] SS-LE N=n O(n) 00 O(n) -
[9] SS-LE N=n O(logn) 00 RO ™) -
[9] SS-LE N=n O(n+1) 0 nO™™ H=0(1)
[18] LS-LE n<N=0(n) O(n) Q(e™) O(n) -
[16] LS-LE n < N =0(n) O(n) Q(e™) O(n) -
[22] LS-LE n < N =poly(n) O(7log®n) Q(n") O(1?1og® n) T>1
ours LS-LE n <N =poly(n) O(7logn) Q(n") O(7logn) T>1

convergence time is usually evaluated in parallel time, that is, the number of steps divided
by n (i.e., the number of agents). This is a natural measure of time because in practice,
interactions typically occur in parallel in the population. For the remainder of this section,
we presume parallel time when we discuss time complexity.

In this paper, we focus on the problem of self-stabilizing leader election (SS-LE). This
problem requires that (i) starting from any configuration, a population reaches a safe
configuration in which exactly one leader exists; and thereafter, (ii) it keeps this leader
forever. These requirements guarantee tolerance against finitely many transient faults. Since
many protocols (self-stabilizing or non-self-stabilizing) in the literature assume a unique
leader [5, 7, 6], SS-LE is key to improving fault-tolerance of the PP model itself. However, it
is known that no protocol can solve SS-LE unless every agent in the population knows the
ezact size n of the population [7, 10] 1. Under this strong assumption (i.e., all agents know
exact n), several SS-LE protocols have been presented in the literature. Cai et al. [10] gave
the first SS-LE protocol under this assumption, which elects the unique leader within O(n?)
time starting from any configuration. Recently, Burman et al. [9] gave three SS-LE protocols,
which improve the convergence time at the cost of space complexity, that is, the number of
states per agent (Table 1). For example, one of their protocols converges in O(logn) time
but uses a super-exponential number of states.

We can discard the assumption of exact knowledge of n by slightly relaxing the re-
quirement of self-stabilization, that is, by taking an approach called loose-stabilization.
Loose-stabilization guarantees that the population reaches a safe configuration within a
relatively short time starting from any initial configuration; after that, the specification of
the problem (such as having a unique leader in the leader election) must be sustained for a
sufficiently long time, though not necessarily forever. Sudo et al. [18] gave a loosely-stabilizing
leader election (LS-LE) protocol by assuming that every agent knows a common upper bound
N of n. Their protocol is not self-stabilizing; however, it is practically equivalent to an SS-LE
protocol because it maintains the unique leader for an exponentially long time after reaching
a safe configuration. Further, it converges in a safe configuration within O(N) time starting
from any configuration.? Hence, the convergence time is O(n) if we have a good upper bound

1 Strictly speaking, they prove a slightly weaker impossibility. However, we can prove this impossibility
based on almost the same technique: a simple partitioning argument. See [22] for details (page 618,
footnote).

2 The convergence time of this protocol was proven to be O(N logn) in [18]. Later, it was found to be
O(N) according to Lemma 1 in [3].

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

N = O(n). In practice, the knowledge of N is a much weaker assumption than the exact
knowledge of n; the protocol works correctly even if we consider a large overestimation of n,
such as N = 100n. Recently, Sudo et al. [22] gave an LS-LE protocol with poly-logarithmic
convergence time, which has a design parameter 7 (> 1) controlling the convergence and
holding times. Given an upper bound N > n such that N = O(n®) for some constant ¢, their
protocol reaches a safe configuration within O(r log® n) time, and thereafter, it keeps the
single leader for (n™) time, both in expectation.

Izumi [16] provided a lower bound on the convergence time of an LS-LE protocol, given that
it keeps the unique leader for an exponentially long time after reaching a safe configuration.
Sudo et al. [22] generalized this lower bound as follows: if the expected holding time of an
LS-LE protocol is 8/n, its expected convergence time must be Q(log 3). Therefore, we have a
gap of log® n factor between this lower bound and the upper bound given by Sudo et al. [22]
when we require an expected holding time of Q(n7): the former is Q(7logn) and the latter
is O(log®n).

1.1 Our Contribution

We close the above-mentioned gap in this paper. That is, we develop an LS-LE protocol whose
expected convergence time is O(7logn) and expected holding time is (n”), where 7 > 1 is
the design parameter of the protocol. Interestingly, this convergence time is optimal for any
length of holding time. For 7 > 1, we have no asymptotic gap between this convergence time
and the lower bound given by Sudo et al. [22]. Even if a holding time of o(n) is sufficient, the
expected convergence time of our protocol with 7 = 1 remains optimal. This is because every
LS-LE protocol requires Q(logn) time to reach a safe configuration regardless of the length of
its holding time. Consider an execution of any LS-LE protocol starting from a configuration
where all agents are leaders. Then, n — 1 agents must have at least one interaction before
electing the unique leader. However, a simple analysis on the famous coupon collector’s
problem yields that this requires Q(logn) time (i.e., Q(nlogn) steps) in expectation. In
addition to time-optimality, the proposed protocol has a small space complexity: The number
of states per agent is O(7 logn), which is much smaller than O(72log® n) in [22].

The proposed protocol also shows how useful loose-stabilization is in the PP model.
When we set 7 = 100, its expected convergence time is O(logn), and the expected holding
time is Q(n'%), practically forever. This protocol needs only the knowledge of N such that
n < N = O(n¢) holds for some constant ¢. Under self-stabilization, if we require the same
convergence time, the only known solution [9] uses an super-exponential number of states
and requires a much stronger assumption, i.e., the knowledge of ezact n.

1.2 Further Related Work

Leader election has been extensively studied in the PP model. When we design non-self-
stabilizing protocols, we can assume that all agents are in a specific state at the initial
configuration. Leader election is then achieved by employing a simple protocol [5]. In this
protocol, all agents are initially leaders, and we have only one transition rule: when two
leaders meet, one of them becomes a follower (i.e., a non-leader). This simple protocol
elects a unique leader in linear time and uses only two states at each agent. This protocol is
time-optimal: Doty and Soloveichik [13] showed that any constant space protocol requires
linear time to elect a unique leader. In a breakthrough result, Alistarh and Gelashvili [4]
designed a (non-self-stabilizing) leader election protocol that converges in O(log® n) parallel
time and uses O(log3 n) states at each agent. Thereafter, a number of papers have been

40:3

DISC 2021

40:4

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

devoted to fast leader election, to name a few, [2, 14, 15, 19, 8]. Gasieniec, Stachowiak,
and Uznanski [15] gave an algorithm that converges in O(lognloglogn) time and uses a
surprisingly small number of states: only O(loglogn) states per agent. This is space-optimal
because it is known that every leader election protocol with O(n/polylog(n)) time uses
Q(loglogn) states [1]. Sudo et al. [19] gave a simple protocol that elects a unique leader
within O(logn) time and uses O(logn) states per agent. This is time-optimal because any
leader election protocol requires Q(logn) time even if it uses an arbitrarily large number of
states and the agents know the exact size of the population [17]. 3 At last, Berenbrink et
al. [8] gave a time and space optimal protocol, i.e., an O(logn)-time and O(loglogn)-states
leader election protocol.

SS-LE and LS-LE protocols have been presented also for a population where some pairs
of agents may not have interactions, i.e., the interaction graph is not complete [11, 12, 20,
21, 23, 24].

2 Preliminaries

2.1 Model

We denote the set of integers {z € N |z < z <y} by [z,y]. The omitted bases of logarithms
are 2.

A population is the set V of n agents (i.e., |V| = n) that change their states by pairwise
interactions. Every pair of agents (u,v) € E =V x V\{(w,w) | w € V} can interact
with each other. A protocol P on the population is defined by a 4-tuple P = (Q,Y, T, Tout)
consisting of a finite set () of states, a finite set Y of output symbols, a transition function
T:QxQ — Q xQ, and an output function 7, : @ — Y. When two agents interact, T
determines their next states based on their current states. The output function 7,,; maps
the current local state ¢ € @ to a value in the output domain m,,:(q) € Y. The state of each
agent including the current output are often described as a set of local variables. Throughout
this paper, we use the notation v.z to denote the value of a variable z managed by agent v.

We assume that all agents have a common knowledge N on n such that n < N = O(n°)
holds for some constant ¢, which is equivalent to the assumption that the agents have a
constant-factor approximation m of logn, i.e., alogn > m > logn for some constant o > 14,

A configuration is a mapping C' : V — @ that specifies the states of all agents. Given a
protocol P on n agents, the set of all possible configurations for P is denoted by Cny;(P). We

say that a configuration C' changes to C’ by an interaction e = (u,v), denoted by C B o ,
if (C'(w),C'(v)) =T(C(u),C(v)) and C'(w) = C(w) for all w € V' \ {u,v}. Then u and v
are respectively called the initiator and the responder of e. Given an interaction e, we say
that agent v € V' participates in e if v is either the initiator or the responder of e.

We assume the uniformly random scheduler T, which selects two agents to interact at
each step uniformly at random from all pairs of agents. Specifically, I' = T'y,I'1,... where
each I'; € F is a random variable such that Pr(T; = (u,v)) = ﬁ for any ¢ > 0 and
any distinct u,v € V. Given an initial configuration Cy € Ca(P), the execution of protocol
P under the uniformly random scheduler T' is defined as Zp(Cy,T') = Cy,Cq,... where

Cy P’—F>t Ci4+1 holds for all ¢ > 0. Note that each Cj is also a random variable.

3 This lower bound may look obvious, but it is not: it does not immediately follow from a simple coupon
collector argument because unlike SS-LE/LS-LE setting, we can now specify an initial configuration
such that all agents are followers.

4 In this sense, any protocol P should be parametric (with respect to m) such as P, =
(Qm, Ym, Tm, Tout,m) strictly. In this paper, we do not explicitly state parameter m of P for sim-
plicity.

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

2.2 Loosely-Stabilizing Leader Election

In leader election protocols, every agent is equipped with an output variable leader € {0, 1},
which indicates whether the agent is a leader. That is, if v.1eader = 1 holds, v is a leader,
and a follower otherwise. A configuration C' is called correct with leader v € V' if v outputs 1
and all other agents output 0. Given any configuration C, we define EIHp(C') as the expected
length of the longest prefix of Zp(C,T'), where any configuration is correct with a common
leader v € V. Note that EIHp(C') = 0 holds if a configuration C is not correct. For any
configuration C and any subset S C C,(P) of configurations, we also define EICp(C,S)
as the expected length of the longest prefix of Zp(C,T'), where any configuration is not in
S. The notation EIH (resp. EIC) stands for the Expected number of Interactions to Hold
(resp. Converge).

» Definition 1 (Loosely-stabilizing leader election [18]). Let « and (3 be positive real numbers.
Protocol P(Q,Y, T, Tout) s an (c, B)-loosely-stabilizing leader election protocol if there exists
a set S of configurations satisfying the two inequalities

Cergil}gP) EICp(C,S) <a and min EIHp(C) > 8.

We call § defined by the definition above the set of safe configurations of P. Note that
the condition § > 0 guarantees the correctness (i.e., uniqueness of leader) of configurations
in S. In terms of parallel time, an («, 8)-loosely-stabilizing leader election protocol P reaches
a safe configuration within «/n parallel time in expectation, and it keeps the elected leader
during the following 5/n parallel time in expectation. We call a/n and §/n the expected
convergence time and the expected holding time of P, respectively.

3 Toolbox
3.1 Epidemic

The protocol epidemic [6], denoted by Pgp, is often used to propagate the maximum value of
a variable to the whole population, which is defined as: (i) each agent has only one variable
x, and (ii) when two agents u and v interact, they substitute max(u.z,v.x) for their variables
(i.e., u.x and v.z). Then, we have the following lemma.

» Lemma 2 ([6]).® Let k be any non-negative integer, Do € Can(Pgp) be any configuration
of Pgp, and | = max,cy v.2 in configuration Dy. The execution Zpy, (Do, T') reaches the
configuration such that u.x =1 holds for any u € V within O(knlogn) steps with probability
1—0(n=F).

3.2 Countdown with Higher Value Propagation

The protocol of counting down with higher value propagation (CHVP) [18] is a useful technique
to design loosely-stabilizing protocols, particularly for detecting the absence of a leader. It is
defined as the following protocol Pcp: each agent has only one variable y, and when two
agents u and v interact, they substitute max(u.y — 1,v.y — 1,0) for their y. We have the
following two lemmas.

5 While the original protocol by Angluin et al. [6] is an one-way version of Pgp (i.e., higher value is
propagated only from an initiator to a responder), there is no difference on asymptotic propagation
time between them (Lemma 8 in [18]).

40:5

DISC 2021

40:6

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

» Lemma 3 (Lemma 1 in [3]).% Let [y and Iy be any two integers such that l; > ly >
0, k be any non-negative integer, and Dy € Can(Pcp) be any configuration of Pep such
that I} = maxyecy v.y holds. The execution Zp(Do,T') reaches a configuration satisfying
max,ey v.y < lo within O(n(ly — Iy + klogn)) steps with probability 1 — O(n=F).

» Lemma 4 (Lemma 5 in [22]).7 Let Dy € Can(Pcp) be any configuration and | be the
integer that satisfies | = max,ey v.y at Do. There exists a constant ¢ such that Zp., (Do, T)
reaches a configuration satisfying min,cy v.y > | — cklogn within O(knlogn) steps with
probability 1 — O(n=").

3.3 Lottery Game and Quick Elimination

The lottery game, originally introduced by Alistarh et al. [1] as a part of their leader election
protocol, is a probabilistic process of filtering leaders. An abstract form of the lottery game
is stated as follows: Let V' be the set of leaders. Every leader v € V'’ makes independent
fair coin flips until it observes tail for the first time. Then, the number of observed heads s,
(called the level of v) is propagated to other leaders. The agent identifying another agent
with a higher level drops out as a loser.

There are a few implementations of the lottery game in population protocol models.
Alistarh et al. [1] and Sudo et al. [19] develop (non-loosely-stabilizing) leader election protocols,
based on their own implementations and analyses for this game. In this paper, we adopt the
implementation shown in [19], called quick elimination (QE). The pseudocode of QE is given
in Algorithm 1, which describes the state transition when two agents ag and a; interact,
where ag is an initiator and a; is a responder. Since the propagation of level values is easily
implemented by the epidemic, the main non-trivial point is how to synthesize coin flips using
the randomness of the scheduler. The implementation QE simply utilizes the asymmetry of
interactions. That is, if v joins an interaction as the initiator, it receives head as the result of
its coin flip, and receives tail if it joins as the responder. Each agent maintains two variables,
done and level, in addition to an output variable leader. The flag done € {0, 1} implies
whether the agent is still in the decision of its level (i.e., it continues (synthetic) coin flips
during done = 0). Starting from the state with done = 0 and level = 0, the agent v with
v.leader = 1 first decides its level: it increments v.level every time it observes head, and it
stops incrementation and sets done to 1 when it observes tail for the first time. Agents that
have decided their levels perform the epidemic to share the maximum level (lines 6-7). If an
agent sees a higher level, it becomes a follower (line 7).

While the lottery game was used as a scheme to eliminate leaders in the past literature,
we rather see it as a Monte Carlo protocol for leader election, i.e., we focus on the probability
that exactly one player wins (or survives as a leader). The following lemma is the key
ingredient of our protocol, which is simple but a new observation that has not been addressed
so far.®

Precisely, k is assumed to be a constant in the original lemma, but the same proof applies in the case
that k& depends on n.

7 We obtain this lemma by substituting d = k43, d = k+ 3, d’ = 6, and t = [knlnn] for the first
inequality in Lemma 5 in [22].

This observation might not be new if the results of coin flips by the agents were independent of each
other. However, they are not independent in our model because when two agents have an interaction, one
of them observes head and the other observes tail. Thus, to the best of our knowledge, this observation
is new.

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

Algorithm 1 QE() (ao is an initiator and a; is a responder).

1 for i € {0,1} s.t. a;.done = 0 A g;.1leader =1 do

2 if i =0 then

3 ‘ ap.level < min(ag.level 4+ 1,2m)

4 else

5 L ai.done + 1
ag.done = 1 A aj.done =1

6 if , then
AJi € {0,1} : a;.1evel < aj_;.level

7 L a;.leader < 0; a;.level < a;_;.level

» Lemma 5. Consider the execution of QF under the uniformly random scheduler I' starting
from a configuration where at least one leader exists and done = 0 and level = 0 hold for
all agents. When all leaders finish deciding their levels (i.e., done = 1 holds for all leaders),
exactly one leader has the mazimum level (max,cy v.level) with probability at least 1/16.

Proof. Let V' be the set of leaders at the initial configuration. Let X, be the level computed
by agent v € V’. That is, X, is the integer such that v € V' joins X, interactions
as an initiator before it joins an interaction as a responder for the first time. We show
that p, = Pr(Xy, > [logn] + 2 A A,y u Xo < [logn] +1) > 1/16n holds for any
u € V’'. Then, the probability that some agent becomes the unique winner is obviously
lower bounded by ZuGV’ Py > 1/16. Thus, the lemma holds because when done = 1 holds
for all leaders, every agent except for the unique winner has a smaller level or must have
become a follower before. Since Pr(X, > [logn] + 2) > 1/8n holds, it suffices to show
4 =Pr(A,cvn(uy Xv < [logn] + 1] X, = [logn] +2) > 1/2. By the union bound, we have
q=1=3 cvnqu Pr(Xv = [logn] +2 | X, > [logn] +2). When two agents u and v both
with done = 0 interact with each other, one of them necessarily reaches the decision of its
level. That is, u and v have at most one common interaction before either one decides its level.
This implies that to obtain X, > [logn] + 2 under the condition X, > [logn] + 2, v must
observe at least [logn] + 1 heads at the coin flips independently of the first [logn] + 2 coin
flips by w. That is, we have Pr(X, > [logn] +2 | X, > [logn] +2) < (1/2)Mesn1+1 < 1/2n,
and thus, ¢ > 1—n-(1/2n) > 1/2. <

4 Time-optimal LS-LE

In this section, we give an LS-LE protocol Pro(7), where the integer 7 > 1 is a design
parameter controlling the performance of the protocol. Starting from any initial configuration,
this protocol reaches a safe configuration within O(rnlogn) steps and keeps the single leader
in the following ©(n") steps. The number of states per agent is ©(rm) = ©(7logn). In the
rest of this paper, we use terminologies “with high probability” to mean “with probability
1—-0(1/n)” and “with very high probability” to mean “with probability 1 —O(1/n™)”". Further,
the terminology “quickly” is used for implying “within O(rnlogn) steps”.

4.1 Protocol in a Nutshell

The protocol Pro(7) elects a unique leader by iteratively performing the following two phases,
both taking ©(rnlogn) steps with very high probability.

40:7

DISC 2021

40:8

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

Check phase: The protocol checks whether the population has at least one leader. Each
leader agent propagates a heartbeat message to all others using the epidemics. The agents
not receiving that message until the end of the phase conclude that the population has
no leader, and they become leaders. Since two or more agents may become leaders, they
are filtered in the election phase.

Election phase: Each agent performs QE. As shown in Lemma 5, this phase decreases
the number of leader agents to one with a constant probability.

There are two major issues for implementing these phases: how to realize a loosely-stabilizing
synchronization mechanism to yield the transition between two phases, and how to combine
it with the task of each phase using only a small number of states. The protocol CHVP,
stated in Section 3.2, is one of the possible solutions for the first issue, which provides a
loosely-stabilizing (synchronized) timeout mechanism; thus, it can be utilized for global
phase synchronization. However, addressing the second issue is more challenging. Since the
check phase only consumes a constant number of states, it is easily combined with CHVP. In
the election phase, both QE and CHVP internally keep a variable of a non-constant size.
The former manages a variable level € [0,2m], and the latter manages a variable whose
range is [0, O(7m)], as we will see in Section 4.2. Thus, to bound the number of states by
O(mm) = O(7logn) in total, they must share a single non-constant variable.

We resolve this matter by designing a new loosely-stabilizing task sharing scheme called
mode switching. Unlike the task-sharing techniques in the past literature [15, 19], it dynami-
cally changes the mode of each agent during the election phase. The two modes respectively
correspond to synchronization and QE, and each agent is engaged in the task associated with
its own mode. In total, the protocol is equipped with three different roles of agents, i.e., check
phase, synchronization in election phase, and QE in election phase. We call each role a class
of agents, and they are respectively referred to as checker, synchronizer, and elector. It should
be noted that dynamic mode change is crucial for attaining loose stabilization: A non-correct
initial configuration filled by electors obviously causes a deadlock because the timeout of the
election phase never occurs. Thus, it is indispensable to install a mechanism that changes
electors to synchronizers. That mechanism, however, prevents the quick propagation of the
maximum level in QE owing to the lack of a sufficiently large number of electors (recall that
even agents not involved in the lottery game must work as a medium in the epidemic). In
fact, if only o(n) electors remain, we cannot guarantee with very high probability that the
epidemic of the maximum level finishes quickly. This observation implies that the mode
change from synchronizers to electors is also necessary.

The remaining concern is how to design synchronization and QE with adapting to dynamic
change. The task of QE is robust for such dynamics if an agent with mode change always
joins as a follower. However, CHVP is not robust because the countdown timer is rewound
by a newly joining agent with a high counter value. Fortunately, we can obtain an alternative
solution for this matter: simply using a local countdown timer, which just counts the number
of interactions performed by the timer holder. While CHVP is necessary to recover global
synchronization from the highly deviated situations where two agents are in different phases
or have two counter values with a large difference, we can delegate such a role entirely to
the check phase. Then, the election phase can use the timeout mechanism not necessarily
synchronized among all agents.

4.2 Variables and Groups

For describing the protocol, we use two (hard-coded) fixed values, rmax and bpax, both
of which are ©(rm) = ©(7logn) for sufficiently large hidden constants. We also define
Tmid = C'max for an appropriate 1 > ¢ > 0 such that ¢/(1 — ¢) becomes sufficiently large. All

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

Table 2 Variables used in protocol Pro. Each time an agent changes its class, class-specific
variables are set to the initial value specified below. The initial value of a variable detect is not a
fixed value: the value of a common variable v.leader is copied to v.detect each time an agent v
becomes a checker.

Variable name Initial value

leader € {0,1} -
Common variables phase € {CH,EL} | -

mode € {A, B} -

t i max max
Variables for checkers imerr € [0, rmax] ['ma

detect € {0,1} leader

1 1 2
Variables for electors evel € [0, 2m] 0

done € {0,1} 0
Variables for synchronizers | timerp € [0, bmax] | bmax

Table 3 Descriptors for specific subsets of agents.

Vi ={v eV |vleader =1}, Vp = {v € V | v.1leader = 0}
Vou = {v € V | v.phase = CH}, Vg, = {v € V | v.phase = EL}
Va={v € Vg | v.mode = A}, Vg = {v € Vg1, | v.mode = B}
Vens = {v € Vou | Tmia < v.timerg < rmax}

Ver< = {'U € Ven | 0 <w.timerp < rmid}

Vione = {v € VL N V4 | v.done = 1}

Vindone = {v € Vo, N V4 | v.done = 0}

the hidden constants are appropriately fixed in the “on-demand” manner in the proof details.

We also assume n > 3 for the simplicity of argument; however, it is not essential. It can be
easily observed that this protocol is a self-stabilizing leader election protocol in the case of
n=2.

The set of variables used in protocol Prg is shown in Table 2. As stated in Section 4.1,

in protocol Prgo, there are three classes of agents: checkers, synchronizers, and electors.

Each class has a set of variables specific for the associated task, and an agent manages the
variables related to its own class as well as the set of common variables. Note that the list of
variables in Table 2 contains two O(7logn)-state variables (timerp and timerp) and one
O (log n)-state variable (level), but they are used exclusively. That is, at any configuration,
each agent has the responsibility of managing only one of the three. Thus, the total number
of states necessary for storing all variables in Table 2 is bounded by O(7logn). The column
“Initial value” in Table 2 indicates the initial values set for class-specific variables. The
initialization occurs when the agent changes its class. For avoiding unnecessary complication,
this initialization process is not explicitly stated in the pseudocode presented later. The class
of each agent is identified by two common variables phase and mode. More precisely, the
agent v with v.phase = CH is a checker, that with v.phase = EL and v.mode = A an elector,
and that with v.phase = EL and v.mode = B a synchronizer. The set of agents belonging to
each class is denoted by Veg, Va, and Vi respectively. In addition, we introduce several
notations for describing the set of agents satisfying some condition, as listed in Table 3.

4.3 Details of the Protocol

The pseudocode of Pro is shown in Algorithm 2. The main bodies of the two phases are
realized by lines 3 and 16 and the procedure GoToElection(). Line 3, which corresponds
to the check phase, performs the propagation of detect flags (i.e., the existence of leader

40:9

DISC 2021

40:10

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

Algorithm 2 Pro (ao is an initiator and a; is a responder).

1 for each i € {0,1} s.t. a; € Vg do a;.leader < 0
2 if ag,a; € Veoy then

3 ap.detect < aj.detect < max(ag.detect, a;.detect)

4 ap.timerg aj.timerp + max(ag.timerp — 1,a;.timerg — 1,0)
5 if ag.timerg = 0 then

6 L GoToElection(0); GoToElection(1)

7 else if 3i € {0,1} : a; € Vgr Aai—; € Vou> then

8 ‘ a;.phase < CH // Reset checker’s variables by Table 2
9 else if Ji€{0,1}:a; € Vog< Nai1—; € Vg, then

10 L GoToElection(i)

11 if ag,a; € Vg then
12 if ag,a1 € VAN Ve Aag.level = ay.1level then

13 ‘ ai.mode < B // Reset synchronizer’s variables by Table 2
14 else if ag,a; € Vp then
15 L a;.mode < A where i = max{j € {0,1} | a;.timerp > a;_;.timerp}

// Reset elector’s variables by Table 2
w6 | QE()
17 if ag, a1 € Vigone A ag.1level = aq.1evel then aq.leader + 0 // Vione C VL,
18 for each i € {0,1} s.t. a; € Vg do a;.timerp + max(a;.timerp — 1,0)

19 for each i€ {0,1} s.t. a; € Vg Aa;.timerp =0 do a,.phase + CH
// Reset checker’s variables by Table 2

20 function GoToElection(i):
21 if a;.detect = 0 then q;.leader + 1
22 (a;.phase,a;.mode) < (EL,A) // Reset elector’s variables by Table 2

agents) using the epidemic. Line 16 indeed corresponds to the task of QE. The procedure
GoToElection() corresponds to the phase transition from check to election, where the agent
not detecting the existence of leaders becomes a leader. The remaining part is devoted to the
synchronization mechanism including the mode switching scheme. Lines 4-6 correspond to
the implementation of CHVP, where the timer variable timerp is updated (line 4), and the
transition to the election phase is triggered when timeout occurs (lines 5 and 6). Lines 7-10
are the mechanism supporting smooth phase transition, which is crucial for guaranteeing
the correctness criteria of the synchronization mechanism explained later. Lines 7-8 and
9-10 respectively address the transition from check to election and its reversal. Lines 11-19
correspond to the task for synchronizers and electors. The core of this part is the mode
switching scheme, described in lines 12-15. The switch from elector to synchronizer happens
when a follower agent interacts with another follower with the same level (lines 12-13), and
the opposite occurs when two synchronizers interact with each other (lines 14-15). It is
shown in the next section that this scheme appropriately control the size of two classes. Line
18 is the countdown of local timers held by synchronizers, and line 19 is the phase transition
from election to check. The leader elimination in line 17 is not for the leader election itself,
but rather to handle the initial configurations consisting only of leaders with the same level.
Without this code, the protocol would be deadlocked in that case. A synchronizer is always
a follower, as guaranteed by line 1.

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

For stating the precise goal of the synchronization mechanism, we explain its intended
behavior as well as the concise reason why such a behavior is attained.

Behavior 1 Starting from any configuration in C,y(Pro(7)), the population quickly reaches
a configuration where V' = Vgy> holds with very high probability. The CHVP protocol
shrinks the large deviation among all timers in the check phase. Therefore, once an
agent goes back to the check phase from the election phase and resets its timerg to ryax,
the population quickly reaches a configuration where V = Vgg>. One may think that
the population gets stuck in the election phase once it reaches a configuration where all
agents are electors (i.e., there is no synchronizers). However, even starting from such
a configuration, the population quickly creates at least one synchronizer because the
following events occur with very high probability: (i) all leaders quickly decide their
levels; (ii) the maximum level quickly propagates to the whole population as long as there
is no synchronizer; (iii) since all the agents have the same level, the number of followers
quickly becomes ©(n) as long as there is no synchronizer; and (iv) two followers with the
same level have an interaction quickly and one of them becomes a synchronizer. Once a
synchronizer is created, some agent quickly goes back to the check phase because each
synchronizer simply counts down its local timer.

Behavior 2 Once the current configuration satisfies V' = Vo>, CHVP decreases timer values
(i.e., timerp) while maintaining a relatively smaller deviation among agents. Since timer
values of agents in Vops> are all ©(7logn), the check phase continues during ©(7n logn)
steps with very high probability. When an agent is timed out, it moves to the election
phase. Then, owing to the low deviation of CHVP timers, no agent is still in Vog>, and
thus, the transition in lines 9-10 quickly takes all other agents to the election phase with
very high probability. During this period, no agent goes back to the check phase from
the election phase with very high probability because the upper limit b,,.x of timerp is
©(7logn) with a sufficiently large hidden constant.

Behavior 3 In the election phase, the fastest timer (i.e., the agent with the smallest timer
value) of all synchronizers determines the pace. Since it is never rewound, the election
phase keeps ©(rnlogn) steps with very high probability. Similar to the behavior from
check to election, when an agent becomes a checker, all other agents are quickly brought
back to the check phase with very high probability. During this period, no agent goes to
the election phase from the check phase with very high probability because the upper
limit 7max of timery is O(7logn) with a sufficiently large hidden constant.

The correctness criteria of the synchronization mechanism is that the system iterates
Behaviors 2 and 3 with very high probability after recovery from unintended situations
(by Behavior 1), which is necessary for our protocol to elect a unique leader in the loosely-
stabilizing manner. The formal proof of the correctness is given in the next section.

In QE(), we expect that the largest level is quickly propagated to all leaders with very
high probability. Sudo et al. [19] proved that this is true if |V4| = ©(n) holds and V4 remains
the same during this period. However, Pro frequently executes the mode switching from A to
B and from B to A. Without the mode switching, the number of agents with level = spyax
is monotonically non-decreasing, while with the mode switching, it decreases when an agent
with level = syax changes its mode from A to B. Therefore, we must evaluate the effect of
the mode switching on the speed of the propagation. Fortunately, there is no severe effect of
the mode switching for our purpose: every leader in Vyone whose level is not the largest
becomes a follower within O(nlogn) steps with probability 1 — o(1).

40:11

DISC 2021

40:12

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

5 Analysis

To express claims in a formal manner, we first define the following notations.
Ax: the set of all configurations Cay(Pro(7)) where Vx = V holds. For example, Acy
is the set of all configurations where every agent is in the check phase (i.e., Vo = V).
Cgr>: the set of all configurations in Ag;, where v.timerp > byax/2 holds for every
NS VB.
Creset: the set of all configurations in C.;(Pro(7)) where there is at least one agent
v € Vop such that v.timerg = rmax.
The first goal of this section is to prove the following three lemmas (Lemmas 6, 7, 8). Intu-
itively, Lemma 6 claims that synchronization is recovered quickly with very high probability
from any configuration in Cay(Pro(7)), and Lemmas 7 and 8 claim that once the synchro-
nization is recovered, the check phase and the election phase are iterated thereafter, both
taking ©(7nlogn) steps with sufficiently large hidden constants, with very high probability.
In the rest of this paper, for any set C, we say that an execution enters C when it reaches
a configuration in C.

» Lemma 6. Let Cy be any configuration in Can(Pro(7)) and let = = ZEp (+)(Co,T).
Ezecution & enters Acu> quickly with very high probability.

» Lemma 7. Let Cy be any configuration in Acg> and let = = Zp (+)(Co,T). Then, the
following hold with very high probability:

1. execution = enters Cgr> quickly,

2. no agent moves from the election phase to the check phase before = enters Cgr>, and
3. execution 2 stays in Acy for Q(nrmia) = Q(rnlogn) steps.

» Lemma 8. Let Cy be any configuration in Cpr> and let = = Zp()(Co,T). Then, the
following hold with very high probability:

1. execution = enters Acu> quickly,

2. no agent moves from the check phase to the election phase before E enters Acu>, and
3. execution Z stays in Agr for Q(nrmia) = Q(tnlogn) steps.

In what follows, we first prove Lemma 6 by giving four supplemental lemmas (Lemmas 9,
10, 11, and 12). We next prove Lemmas 7 and 8.

» Lemma 9. Starting from any configuration Cy € Agr, exvecution Zp,+)(Co,T) quickly
enters Creset OT Teaches a configuration in Agp, satisfying Vandone = 0 with very high probability.

Proof. Let Z = Zp (7)(Co,T'). When an agent goes back to the check phase from the election
phase, it substitutes rpax for its timerg (lines 8 and 19). Therefore, = never leaves A gy, until
it enters Creset- Let v be any agent that satisfies v € Vindone in Cp. As long as v € Vindone
holds, v makes a coin flip every time v has an interaction. Since every agent joins an interaction
with probability 2/n at each step, by the Chernoff bound, v has 2logn or more interactions
within sufficiently large O(n logn) steps with probability 1 — O(1/n?). Therefore, v.done = 1
holds within O(nlogn) steps with probability 1 — (1/2)2%°e" — O(1/n?) = 1 — O(1/n?)
because each coin flip results in “tail” with probability exactly 1/2, by which v leaves Vindone-
By the union bound, execution = enters Cyesey Or reaches a configuration in Agy, satisfying
Vindone = @ within O(nlogn) steps with probability 1 — O(1/n). We obtain the lemma by
repeating this analysis 7 times. |

» Lemma 10. Starting from any configuration Cy € Agr satisfying Vindone = 0, execution
Epro(r)(Co,T) quickly reaches a configuration in Agy satisfying Vi # 0 with very high
probability.

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

Proof. Let = = Zp,(+)(Co,T'). In execution Z, no leader has done = 0 before = reaches
a configuration in Ag; where Vg # 0. Therefore, it suffices to show that Z reaches a
configuration in Agy, where Vg # () within O(nlogn) steps with high probability because we
obtain the lemma by repeating this trial 7 times.

While both Vindone = 0 and Vg = () hold, nothing prevents the epidemic from propagating
the maximum value of levels. Thus, by Lemma 2, the maximum value is propagated to the
whole population within O(nlogn) steps with high probability [6]. Once all agents have the
same level, the number of followers increases by one every time two leaders meet (line 17).
As long as |Vp| < n/2 and Vg =) hold, two leaders meet each other with probability at
least 1/4 at each step. Hence, |Vg| > n/2 or Vg # () holds within O(nlogn) steps with high
probability. In the former case, at each step thereafter, two followers have an interaction
and one of them becomes a synchronizer (line 13) with a constant probability. Therefore,
|[VB| # 0 holds within O(logn) steps with high probability. <

» Lemma 11. Starting from any configuration Cy € Agr satisfying Ve # 0 holds, execution
Epro(r)(Co,T) quickly enters Cresey with very high probability.

Proof. Before Zp (7)(Co,T) enters Creset, the smallest timerp in the population (i.e.,
min,ey, timerpg) is monotonically non-increasing. It decreases by one or a timeout of
timerp occurs when a synchronizer with the smallest timerp has an interaction (line 18),
which occurs with probability at least 2/n at each step. Since bpax = ©(7logn), by the
Chernoff bound, some synchronizer encounters the timeout of timerp quickly with very high
probability. |

» Lemma 12. Starting from any configuration Cy € Can(Pro(7)), evecution Zp,+)(Co,T')
quickly enters Creset with very high probability.

Proof. Let = = EPT()(T)(CO7 I'). Note that = enters Cpeset Whenever an agent goes back to
the check phase from the election phase. Before = enters Creset O Agr, maxycy,, v.timerp
is monotonically non-increasing and this value decreases at a pace faster than or equal to
the pace at which the maximum value of variable y decreases in the CHVP protocol in
Section 3. Therefore, by Lemma 3 with {1 = ryax, I2 = 0, k = 7, E reaches a configuration
C" € Creset U Agr quickly with very high probability. Once Z enters Agy, it enters in Creget
quickly with very high probability by Lemmas 9, 10, and 11. <

Proof of Lemma 6. By Lemma 12, we can assume that Cy € Creset- Since we assume
Tmax — Tmid = O(7 logn) with a sufficiently large hidden constant, by Lemma 4 with [= ryax
and k = 7, execution Zp, . ()(Co,T') enters Acy> quickly with very high probability. <

Proof of Lemma 7. The last claim is trivial because each agent has an interaction with
probability 2/n at each step and at least one agent must have r,;q interactions until execution
= leaves Acy. We prove the first and the second claims below.

By Lemma 3 with k = 7, = enters Acg< within O(n(rmax — rmia)) = O(tnlogn) steps
or at least one agent goes to the election phase during the period with very high probability.
Since we assume that rmia/("max — ™mia) is a sufficiently large constant, together with the
third claim and the union bound, we observe that E enters Acpy< quickly with very high
probability. Thereafter, by Lemma 3 with k& = 7, at least one agent goes to the election
phase within O(rnlogn) steps with very high probability. Remember that whenever an
agent in Vog< and an agent in Vg meet, the former moves to the election phase. Hence,
once an agent goes to the election phase, the agents in the population go to the election
phase one after another in completely the same way as the epidemic protocol in Section 3.1.

40:13

DISC 2021

40:14

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

Therefore, by Lemma 2 with & = 7, = reaches a configuration C € Ag;, quickly with very
high probability. Since byax is sufficiently large, no agent has more than b,y /2 interactions
during this period with very high probability. Therefore, C' € Cgr> holds with very high
probability. From the above, we conclude that the first and second claims also hold. <

Proof of Lemma 8. The last claim is trivial because each agent has an interaction with
probability 2/n at each step and at least one agent must have byax/2 interactions until
execution = leaves Agy. By Lemmas 9, 10, and 11, = reaches a configuration Cpegety within
O(tnlogn) steps with very high probability. Thereafter, in completely the same way as
given in the second paragraph of the proof of Lemma 7, we can prove that = enters Acy>
quickly (by the epidemic) and Voy< = @ always holds during this period with very high
probability. Thus, the first claim holds. No agent goes to the election phase when it belongs
to Ver>, from which the second claim follows.]

» Lemma 13. Let Cy be a configuration in Agr, where Vindone = O holds and let = =
Epro(r)(Co,T). Let V! C VL NVa be the set of leaders whose level are not the largest in
Co. Then, execution = reaches a configuration in Agr where all agents in V' are followers
or enters Creset Within O(nlogn) steps with probability 1 — o(1).

Proof. In this proof, we ignore the case that some agent goes back to the check phase (i.e.,
= enters Creset) because this ignorance only decreases the probability claimed in the lemma.
Let [be the maximum level of the population (i.e., max,cy, v.1level) in Cy. To obtain the
lemma, it suffices to show that all leaders in V' observe the maximum level [and become
followers within O(nlogn) steps with probability 1 — o(1).

First, we analyze ng = |V4| in execution E. This value increases by one if two agents in
VB meet, and it decreases by one if two followers with the same level in V4 meet. Therefore, at
each step where ny < n/3, n4 increases with probability at least 4/9, while n4 decreases with
probability at most 1/9. The gap of these probabilities and the Chernoff bound guarantee
that even if ny < n/3 in Cy, na reaches n/3 within O(n) steps with high probability. Let
C’ be the configuration at this time. Once = reaches C’, the above gap of probabilities, the
Chernoff bound, and the union bound guarantee that n4 > n/4 always holds for arbitrarily
large Q(nlogn) steps with high probability. Thus, we can assume n4 > n/4 in the following
discussion on execution = after C’.

Consider the suffix of Z after C’. Let np = [{v € V4 | v.1evel = [}|. This value increases
by one if an interaction happens between two agents in V4 such that one has the maximum
level [and the other has a lower level. It decreases by one if an interaction happens between
two followers in V4, both with level [. Note that ny; > 1 always holds because n,; decreases
only if two agents with level [have an interaction. Since we assume n4 > n/4, at each step
where ny; < n/8, ny increases with probability pie > (nas - (n/4 —nar))/(5) = nar/(4n),
while nj; decreases with probability paec < n3,/n?. As long as n/2% < nyr < n/28 we have
Pine > 1/211 and pgec < 1/216. This large difference between pi,. and pgec guarantees that
once nys reaches n/28, nyr > n /2% always holds for arbitrarily large Q(nlogn) steps with
high probability, by the Chernoff bound and the union bound. During this period, each
leader in V'’ meets an agent in V4 with the maximum level | with probability (1/n) at each
step. Thus, once n4 > n/2% holds, all leaders in V' become followers within O(nlogn) steps
with high probability.

Thus, all we have to do is to show that nys > n/28 holds within O(nlogn) steps starting
from C'. First, we show that n,; reaches 24 Inn or larger within O(nlogn) steps starting from
C’. When ny; < 241nn, pime = Q(1/n) and pgec = O((log? n)/n?) always hold. Therefore, by
the Chernoff bound, n s reaches 24 Inn or larger within O(nlogn) steps with high probability.

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

Next, for any integer k such that 24Inn < k < n/2%, we show that once nys reaches k, nys
reaches 2k with high probability. As long as k/2 < np; < 2k, we have piye > k/8n and
Pdec < 4k%/n? < k/64n. Therefore, by the Chernoff bound, we have the followings:
during the first 16n steps, nys is always k/2 or larger with probability at least 1 —
e~ (1/3)(k/0) =1 — O(1/n?),
during the first > 16n steps, nys increases at least xk/16n times with probability
1—0(1/n?), and
during the first © > 16n steps, nys decreases at most xk/32n times with probability
1—0(1/n?).
Therefore, by the union bound (for x = 16n,16n+1,...,32n), nys reaches k+ (2k — k) = 2k
within 32n steps with high probability. Therefore, once nj; reaches 241Inn or larger value, it
doubles in every 32n steps with high probability until it reaches n/28. Thus, nys reaches
n/2® within O(nlogn) steps with probability 1 — O((logn)/n) =1 — o(1). <

By the correctness of the synchronization and Lemma 13, we can easily show Lemmas 15
and 16 (see Appendix for a complete proof), where we define a set S of safe configurations
by Definition 14.

» Definition 14 (Safe configurations). Define S as the set of all configurations where V =
Veus> holds, exactly one leader vy exists in the population, and v;.detect = 1 holds.

» Lemma 15. minges EIHPTQ(T)(C) = Q(TLTJrl).
» Lemma 16. maXcec,, (Pro(r)) EICPTQ(T) (07 S) = O(TTL log TL)
Thus, we obtain the main theorem.

» Theorem 17. For any 7 € N, Pro(7) is an (O(rnlogn),Q(n7))-LS-LE protocol.

6 Conclusion

We gave a time-optimal LS-LE protocol in the population protocol model. Given a design
parameter 7 > 1 and integer N > n such that N is at most polynomial in 7, the proposed pro-
tocol elects the unique leader within O(7logn) parallel time starting from any configuration
and keeps it for Q(n") parallel time, both in expectation.

—— References

1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-space
trade-offs in population protocols. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2560-2579. STAM, 2017.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2221-2239. STAM, 2018.

3 Dan Alistarh, Barttomiej Dudek, Adrian Kosowski, David Soloveichik, and Przemystaw
Uznanski. Robust detection in leak-prone population protocols. In International Conference
on DNA-Based Computers, pages 155-171. Springer, 2017.

4 Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population pro-
tocols. In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming, pages 479-491, 2015.

5 Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235-253,
2006.

6 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3):183-199, 2008.

40:15

DISC 2021

40:16

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Dana Angluin, James. Aspnes, Michael J Fischer, and Hong Jiang. Self-stabilizing population
protocols. ACM Transactions on Autonomous and Adaptive Systems, 3(4):13, 2008.

Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader
election in population protocols. In Proceedings of 52nd Annual ACM Symposium on Theory
of Computing, 2020.

Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric Severson,
and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pages 3344,
2021.

Shukai Cai, Taisuke Izumi, and Koichi Wada. How to prove impossibility under global fairness:
On space complexity of self-stabilizing leader election on a population protocol model. Theory
of Computing Systems, 50(3):433-445, 2012.

Hsueh-Ping Chen and Ho-Lin Chen. Self-stabilizing leader election. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, pages 53—59, 2019.

Hsueh-Ping Chen and Ho-Lin Chen. Self-stabilizing leader election in regular graphs. In
Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 210-217,
2020.

David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. Distributed Computing, 31(4):257-271, 2018.

Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2653-2667. STAM, 2018.

Leszek Gasieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost logarithmic-time
space optimal leader election in population protocols. In The 31st ACM on Symposium on
Parallelism in Algorithms and Architectures, pages 93-102. ACM, 2019.

Taisuke Izumi. On space and time complexity of loosely-stabilizing leader election. In
International Colloguium on Structural Information and Communication Complezity, pages
299-312, 2015.

Yuichi Sudo and Toshimitsu Masuzawa. Leader election requires logarithmic time in population
protocols. Parallel Processing Letters, 30(01):2050005, 2020.

Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu. Kakugawa,
and Toshimitsu Masuzawa. Loosely-stabilizing leader election in a population protocol model.
Theoretical Computer Science, 444:100-112, 2012.

Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and Toshimitsu Ma-
suzawa. Time-optimal leader election in population protocols. IEEE Transactions on Parallel
and Distributed Systems, 2020.

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely-
stabilizing leader election on arbitrary graphs in population protocols without identifiers nor
random numbers. In International Conference on Principles of Distributed Systems, 2015.
Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K Datta,
and Lawrence L Larmore. Loosely-stabilizing leader election for arbitrary graphs in population
protocol model. IEEE Transactions on Parallel and Distributed Systems, 30(6):1359-1373,
2018.

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K Datta,
and Lawrence L Larmore. Loosely-stabilizing leader election with polylogarithmic convergence
time. Theoretical Computer Science, 806:617-631, 2020.

Yuichi Sudo, Masahiro Shibata, Junya Nakamura, Yonghwan Kim, and Toshimitsu Masuzawa.
Self-stabilizing population protocols with global knowledge. IEEE Transactions on Parallel
and Distributed Systems, 32(12):3011-3023, 2021.

Daisuke Yokota, Yuichi Sudo, and Toshimitsu Masuzawa. Time-optimal self-stabilizing leader
election on rings in population protocols. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, (to appear), 2021.

Y. Sudo, R. Eguchi, T. lzumi, and T. Masuzawa

A Omitted proofs

We prove Lemmas 15 and 16 in Sections A.1 and A.2, respectively.

A.1 Holding Time
We prove Lemma 15, which claims mingces EIHp, ()(C) = Q(n™"1).

Proof of Lemma 15. Let Cy be any configuration in S and let £ = Zp_(+)(Co, T'). Since
the unique leader v; in Cy satisfies v;.detect = 1 and rp,;q is a sufficiently large ©(7logn)
value, by Lemma 2 with & = 7 and the third claim of Lemma 7, all agents detect the
existence of a leader quickly with very high probability. Therefore, by the first and second
claims of Lemma 7, it holds with very high probability that = quickly reaches a configuration
C’ € Cpr> where vy is the unique leader and no agent has a higher level than v;.1evel. This
is because v; goes to the election phase exactly once before = reaches C’ with very high
probability, and the level of every agent is initialized to zero when it goes to the election
phase. Thereafter, v; never becomes a follower before it goes back to the check phase and

goes to the election phase again; this is because only a leader can increase max,cy v.level.

By Lemma 8, = quickly enters Acgy> again and v; does not move to the election phase from
the check phase during this period with very high probability. At this time, from the above
discussion, v; is still the unique leader in the population and v;.detect = 1 holds. This
means that the population has come back to S.

Now, we observed that an execution of Pro under the uniformly random scheduler T'
starting from any configuration in S goes back to a configuration in S after ©(7nlogn) steps
and v; is always the unique leader during this period with very high probability. Therefore,
letting X = minces EIHp,(+)(C), we have X > (1 — O(n™7))(©(rnlogn) + X). Solving
this inequality gives X = Q(rn"Tllogn) = Q(n™1). <

A.2 Convergence Time

We prove Lemma 16, which claims maxcec,,(Pro(r)) EICPo () (C,S) = O(tnlogn).

Proof of Lemma 16. Let Cy be any configuration in Can(Pro(7)) and let = = Zp, ()(Co, T).

It suffices to show that = enters S quickly with a constant probability; this is because, letting
Y = maxcec,, (Pro(r) EICPo () (C;S), it yields Y < O(rnlogn) + (1 — €2(1))Y, and this
inequality gives Y = O(rnlogn).

We can assume Cy € Cgr> by Lemmas 6 and 7. By Lemma 8, = reaches a configuration
C" € Acu> within O(tnlogn) steps and no agent goes to the election phase from the check
phase during this period with very high probability. An agent executes detect < leader
when it goes back to the check phase (See Table 2). Therefore, after = reaches C’, at least

one follower becomes a leader when it goes to the election phase if there exists no leader in C’.
Moreover, the agents initialize their 1evel and done to 0 when they move to the election phase.

Therefore, by Lemmas 5, 7, 8, and 9, Z quickly reaches a configuration C” € Cgr> where
exactly one leader, say v;, has the maximum level with a constant probability. Thereafter,
by Lemmas 8 and 13, = reaches a configuration in Ag; where only v; is a leader within
O(nlogn) steps with probability 1 — o(1). In the next O(rnlogn) steps, = enters S with
very high probability by Lemma 8. Thus, we conclude that ZE enters S within O(7nlogn)
steps with a constant probability. |

40:17

DISC 2021

	1 Introduction
	1.1 Our Contribution
	1.2 Further Related Work

	2 Preliminaries
	2.1 Model
	2.2 Loosely-Stabilizing Leader Election

	3 Toolbox
	3.1 Epidemic
	3.2 Countdown with Higher Value Propagation
	3.3 Lottery Game and Quick Elimination

	4 Time-optimal LS-LE
	4.1 Protocol in a Nutshell
	4.2 Variables and Groups
	4.3 Details of the Protocol

	5 Analysis
	6 Conclusion
	A Omitted proofs
	A.1 Holding Time
	A.2 Convergence Time

