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—— Abstract

In this paper we propose a game theoretical framework in order to formally characterize the robustness
of blockchains systems in terms of resilience to rational deviations and immunity to Byzantine
behaviors. Our framework includes necessary and sufficient conditions for checking the immunity
and resilience of games and an original technique for composing games that preserves the robustness
of individual games. We prove the practical interest of our formal framework by characterizing the
robustness of various blockchain protocols: Bitcoin (the most popular permissionless blockchain),
Tendermint (the first permissioned blockchain used by the practitioners), Lightning Network, a
side-chain protocol and a cross-chain swap protocol. For each one of the studied protocols we identify
upper and lower bounds with respect to their resilience and immunity (expressed as no worse payoff
than the initial state) face to rational and Byzantine behaviors.
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1 Introduction

Distributed Ledger Technologies (DLTs) allow sharing a ledger of transactions among multiple
users forming a peer-to-peer (P2P) network. DLTs characterized by a block architecture are
called “blockchains”. They enable users to transfer cryptoassets in a decentralized manner
by means of modular protocols adopted by the users themselves. Beyond the traditional
blockchain architectures (layer-1 protocols), the literature proposes other protocols that
respectively define and regulate interactions in an overlaying network (layer-2 protocols) and
interactions between different blockchains (cross-chain protocols). Each of these protocols
establishes the instructions users must follow in order to interact with or through a blockchain.
In a blockchain system players can be classified, as proposed in [2] for classical distributed
systems, in three different categories: (i) players who follow the prescribed protocol i.e.,
altruistic, (ii) those who act in order to maximise their own benefit i.e., rational, and (iii)
players who may deviate arbitrarily from the prescribed protocol, i.e. Byzantine (cf. [18]).
Interactions among users are usually modeled with game theory which analyzes the decision-
making process in presence of multiple rational agents, called players or agents.
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In the context of blockchain systems, game theoretical frameworks were introduced
in [36, 37] to analyze security aspects and incentive compatibility of Nakamoto’s consensus
protocol (i.e., Proof-of-Work [25]) characterizing the very first blockchain implementation
known as Bitcoin. Users participating in the consensus mechanism (i.e., miners) are considered
as individually rational moved by the mere intention to increase their revenues i.e., the
rewards earned form the mining activities [7, 32]. Authors in [8, 13, 35, 12] adopt different
utility functions for miners and pools that consider costs and relative rewards. Concerning
layer-2 and cross-chain protocols, game theoretical analysis are carried out by [5, 6, 15].
These analyses are strictly specific to the particular deployment context rather than to a
generic blockchain. Most of the game theoretical models adopted to design secure and robust
blockchain protocols, surveyed in [23], (i) address protocols characterizing specific blockchain
implementations, (ii) analyze miners’ behaviours in the consensus phase and (iii) adopt Nash
Equilibria as solution concept.

Concerning rational agents, the existing analyses include the study of equilibria and the
evaluation of their properties. The most studied and adopted solution concept in literature
is the Nash Equilibrium, i.e., a strategy profile in which no player has interest in individually
deviating from her own strategy. A first approach to the analysis of robustness is to compare
Nash Equilibria, through indices such Price of Byzantine Anarchy [24], Price of Malice [24]
and Price of Anarchy [20]. This approach summarizes the outcomes of the games representing
protocols, but it does not show explicitly the implementation risks of such systems. A second
approach is to analyze peculiar Nash Equilibria. Authors of [28] take probability into account
and extend the concept of Nash Equilibrium. In [18], virtual utility — alternative to the
classical game utility — is introduced to capture the blockchain agreement structure. The
analysis of robustness with respect to Byzantine agents was modeled in [3] with a Bayesian
game. The authors provide the analysis of Tendermint protocol [22]. This method allows
making forecasts on the expected outcomes of a game, but it does not provide a comprehensive
analysis of the risks. It should be noted that none of the previous works is generic enough to
propose a methodology for analyzing the robustness of blockchain protocols to both rational
and Byzantine players.

The first generic framework for analyzing the robustness of distributed protocols with
respect to the behavior of rational and Byzantine players was proposed by the authors of [1]
who introduced the concept of mechanism (i.e., a pair game-prescribed strategy). Moreover
in [1] authors introduced the notions of (i) k-resilience, (ii) practicality and (iii) ¢-immunity.
A strategy profile is defined as k-resilient if there is no coalition with at most &k players having
an incentive to deviate from the prescribed protocol. The category of practical strategy
profiles is defined when equilibria with weakly dominated strategies are excluded. Finally,
t-immunity denotes a situation where no player gets a lower outcome if there are at most ¢
Byzantine players that can play any possible strategy. Interestingly, despite its mathematical
beauty this framework was never used to analyze the robustness of blockchain protocols.

Our contribution. In this paper we follow the line of work opened in [1] and present a
game theoretical framework aiming at characterizing the robustness of blockchain protocols.
Our contributions can be summarized as follows: (a) we prove that t-immunity property
defined in [1] is not verified by a large class of blockchain protocols (cf. Table 1). It should
be noted that the authors of [1] already observed that “t-immunity is often impossible to
be satisfied by practical systems” and left open the definition of a weaker property; (b)
we introduce the new concept of t-weak-immunity; a mechanism is t-weak-immune if any
altruistic player receives no worse payoff than the initial state, no matter how any set of
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t players deviate from the prescribed protocol. This new concept is sufficiently strong to
capture the robustness of a large class of blockchain protocols (cf. Table 1); (c) we identify
and prove necessary and sufficient conditions for a mechanism to be k-resilient and ¢-weak-
immune; (d) we define a new operator for game composition and prove that it preserves the
robustness properties of the individual games; (e) we use our generic framework and the
composition operator we study the robustness of a representative set of layer-1, layer-2 and
cross-chain protocols: Tendermint [22], Bitcoin [25], Lightning Network protocol [30], the
side-chain protocol [29] and the very first implementation of a cross-chain swap protocol
proposed in [27] and formalized in [15].

For each one of the analyzed protocols we provide bounds on the number of Byzantine
processes in order to verify t-weak immunity. Furthermore, for the same class of protocols
we compute bounds on the number of rational processes in order to achieve k-resilience. Our
results are reported in Table 1. Interestingly, our analysis allowed us to spot the weakness
of the Lightning Network protocol [30] to Byzantine behaviour. Therefore, we propose and
further analyze an alternative version of the protocol.

The paper is structured as follows. Section 2 is devoted to the definition of mechanism,
(k, t)-robustness, necessary and sufficient conditions for optimal resilience and weak immunity
and, composition of mechanisms. We apply in Section 3 the methodology developed in
Section 2 to prove the robustness of the protocols presented in [25, 22, 30, 29, 27]. Section 4
concludes the paper. All the illustrations of the models as well as all the proofs for the results
presented in this paper are available at [38].

Table 1 Immunity and resilience properties for Tendermint [22], Bitcoin [25], Lightning Net-
work [30], a side-chain protocol [29] and a cross-chain swap protocol [27, 15] with respect to the
number of rational deviating agents (k) and the number of Byzantine deviating agents (¢) where n
is the total number of players in the game.

Protocol k-resilience t-immunity  ¢-weak immunity Results
Tendermint Yes, k < n/3 No Yes, t < n/3 Thm. 8
Bitcoin Yes, k < 3n/20 No No Thm. 10
Lightning Network Yes, k < 3n/20 No No Thm. 12
Closing module Yes No No Thm. 17
(Alternative closing module) (Yes) (No) (Yes) Thm. 18
Other modules Yes No Yes Thm. 14, 15, 20, 22, 23
Side-chain (Platypus) Yes, k < n/3 No Yes, t < n/3 Thm. 25
Cross-chain Swap Yes No Yes Thm. 28

2 Games theoretical framework for Analyzing protocols robustness

2.1 Preliminaries on Game Theory

The basic idea of a game is to capture a set of players which may act sequentially or
simultaneously (cf. [21] for more details). The theoretical concept adopted in this paper
is the one of extensive form game. A game of this type is represented formally by a tuple
I'=(N,T,P,(An)nev, (u;)ien) where N is the set of players, T = (V, E) is a directed rooted
tree, Z C V is the set of terminal nodes, P : V'\ Z — N is a function assigning to each
non-end node a player in N, Ay, = {(xp,x;) € E} for each node h € V'\ Z is the set of edges
going from node h to some other nodes and represents the set of actions at node h of the tree
T,Q;={s:V\Z— Ay x Ag x ... Ap x--- X Ag,h : P(h) =i} is the set of pure strategies
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of player i, S; = {0 : Qi — [0,1], > cq, 0i(s) = 1} is the set of mixed strategies of player
i and u; : Z — R is the utility function for player i € N. Every pure strategy of player 4
is a function that assigns an action a € Aj to every node h € V' \ Z in which player i is
involved (formally, h : P(h) = 4). A mixed strategy is a probability distribution over the set
of pure strategies of player i. For the sake of simplicity in the notation, analyses and proofs
will involve pure strategies only, as the results can be easily generalized then for general
mixed strategies. Every game in extensive form can be reformulated in a more compact way
(i.e., normal form) with a tuple I' = (N, S, u), in which the set of players N = {1,...,n}
denotes the players involved in the protocol, S = &1 x S X -+ - X §,, where §; is the set of
strategies of player i and v : § — R" is the utility function of the players. Each player can
pick her own strategy o; € S; generating a strategy profile o = (01,09,...,0;,...,0,) €S
and a utility vector u(c) whose i-th component denotes the utility for player .

A solution concept o € S is a strategy profile such that the outcome u(o) pleases
every player so that they have no incentive in changing their strategy o;. The most
known solution concept is the Nash FEquilibrium, where no player has an incentive to
unilaterally change strategy [26]. Formally, a strategy profile o is a Nash Equilibrium if
Ui (01,02, ..., Oiyovoy0n) > ui(01,09,...,7i,...,0,) for every player i and for every 7; € S;.
Nash [26] proved that every game in normal form admits at least one Nash Equilibrium. A
Nash Equilibrium o € § is said to be strong if and only if for all C C N and all 7¢ € S¢, there
exists ¢ € C such that u;(0c,0-¢) > ui(7¢,0-¢) i.e., given the strategy of its complements
as given, no coalition can deviate in a way that benefits all of its members [9]. Strong Nash
Equilibria are easy to be identified but they do not always exist. A Nash Equilibrium is said
to be stable if it is still a Nash Equilibrium after small deviations in the game [16]. Moreover,
as stated in [19], there always exists a stable Nash Equilibrium. Stable Nash Equilibria
survive after the iterated deletion of weakly dominated strategies, i.e., those strategies o; € S;
that perform as well as or worse than another strategy o} € S; no matter which strategy the
other players choose (formally, we have that u;(o;, 7—;) < u;(o},7—;) for all 7_; € S_;). In
the process of iterated deletion, weakly dominated strategies are excluded from the set of
strategies available to players and the set of Nash Equilibria is recomputed.

In the paper we analyze protocols modeled as games by studying the strategy profile
associated to rational and Byzantine players; we identify the Nash Equilibria of the games
and assign some properties to the respective strategy profiles.

2.2 Mechanisms and Robustness

The paper analyzes blockchain protocols in which players can either decide to follow or not
the prescribed instructions. The aim of the paper is to model these problems and understand
whether the players are incentivized to follow or deviate from the prescribed protocol being
respectively altruistic or Byzantine agents. In the following (i) we recall and extend the game
theoretical framework based on the concept of mechanism and its properties, (ii) we define
new properties on protocol robustness and (iii) we study properties interdependence.

Let us consider a game in normal form I' = (N, S, u) where players find themselves in
an initial state, i.e., before starting the application of the protocol. We assign u;(c) = 0 for
every o € § when the player i is indifferent between the outcome of the strategy profile o and
the initial state one. Analogously, we assign positive utility, u;(c) > 0, when the outcome
of o corresponds to the final state provided by the protocol and negative utility, u;(c) < 0,
when the outcome of ¢ is worse than the initial state one. The values of u;, for all i € N,
correspond to the marginal utility with respect to the initial state. Every decision-making
problem is modeled by a game I' = (N, S, u), which shows all the possible strategies available
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to the players, including following the prescribed protocol and all its possible deviations. A
specific protocol consists of a strategy profile 0 = (01,...,0,) € S and it is denoted by a
pair (T, o), called mechanism [1]. Every player ¢ is advised to play strategy o; € S; i.e., the
recommended strategy o is the prescribed protocol. Evaluating the robustness to deviations
of a distributed protocol corresponds to identifying the properties of the mechanism (T, o).
Players can decide to deviate for two different reasons. On one hand, they can cooperate in
order to find a strategy profile that provides a better outcome than the one given by the
protocol. On the other hand, some players can behave maliciously for no specific reason and
harm the altruistic ones. These two behaviours are prevented, according to [1], if prescribed
distributed protocols are respectively (i) practical and k-resilient and/or (ii) t-immune.

A mechanism (T, o) is practical if o is a Nash Equilibrium of the game I" after the iterated
deletion of weakly dominated strategies. Players have a very low incentive to play weakly
dominated strategies since they have available a different strategy providing no lower outcome
in any scenario. If a mechanism is practical, these strategies are not played.

A mechanism (T, o) is k-resilient if there is no coalition of at most k players having an
incentive to simultaneously change strategy to get a better outcome. Formally, a strategy
profile o € S is a k-resilient equilibrium if for all C C N with 1 < |C] < k, all 7¢ € S¢
and all ¢ € C, we have u;(c¢c,0_¢) > u;(7c,0-¢). The concept of k-resilience denotes the
tendency of a set of k players to cooperate to move to an equilibrium that differs from the
prescribed one. Hence k-resilience generalizes the concept of Nash Equilibrium.

A mechanism (T, o) is t-immune if, given at most ¢ players choosing any strategy different
from the prescribed one, the rest of the players receive at least the utility they would get
if everyone followed the protocol. Formally, a strategy profile o € S is t-immune if for all
T C N with |T| < t,all 7p € Sy and all ¢ € N\ T, we have u;(c_p,7r) > u;(0). The
property of t-immunity is very strong and difficult to satisfy since it requires that the protocol
provides the best outcome no matter how a set of ¢ players deviates. We therefore introduce a
weaker version of the property — t-weak-immunity — guaranteeing that non deviating players
receive at least the utility value of the initial state (i.e., players receive a positive outcome).

» Definition 1 (t-weak-immunity). A mechanism (T, o) is t-weak-immune if for all T C N :
IT| <t, all 70 € St and alli € N\ T, we have u;(c_1,7r) > 0.

A player that joins a t-weak-immune mechanism will not suffer any loss (i.e., outcome
with negative utility) if there are at most ¢ deviating players in the game. We say that a
mechanism is weak immune if it is t-weak-immune for all ¢ € N and that a mechanism is
(k,t)-robust if it is k-resilient and t-weak-immune.

Following the terminology introduced in [1], if every strict subset of players has no
incentive to change their strategy o, we say that the mechanism (I", o) is strongly resilient.
The concepts of k-resiliency and practicality are strictly connected with the properties of
Nash Equilibria, such as strength [9] and stability [16, 19], which have been fully studied
in [11]. Indeed, it is possible to prove that (i) if a mechanism (T', o) is strongly resilient,
then o is a strong equilibrium of I" and that (ii) if ¢ is a stable equilibrium of T, then the
mechanism (I', o) is practical (cf. [38] for details). In [16], authors prove that there always
exists at least one stable Nash Equilibrium, therefore as a corollary there is always at least
one practical mechanism. We know from [19] that the properties of strength and stability
are independent. This means that we cannot draw conclusions about a property knowing
whether the other property is fulfilled or not. Thus, we can state the following theorem.

» Theorem 2 (independence). The property of strongly resiliency and practicality are inde-
pendent.
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We say that a mechanism (I', o) is optimal resilient if it is practical and strongly resilient.
In the sequel we verify whether protocols can be modeled with strongly resilient and/or
practical mechanisms. Both properties have to be verified since they are independent. If a
protocol does not provide a mechanism with a strong Equilibrium, it is necessary to compute
k such that k-resiliency is fulfilled. On the other hand, given a generic game T, it is always
possible to easily identify which are the practical mechanisms that always exist.

2.3 Composition of Games and Mechanisms

Blockchains systems are complex protocols designed in a modular way. In order to study the
robustness of such complex protocols, we need to analyze the individual modules and infer
the properties of the system by composition. For this scope we introduce the new notion
of composition of games that, to the best of our knowledge, has never been defined in the
literature. Given two different games A and B, the composition of games is defined by the
operator ®, hence A ® B denotes the composition of game A and B. Given two games that
are played separately and independently, the composition corresponds to players picking a
strategy from each game and receiving as utility the sum of the utilities of the two games.

» Definition 3 (games composition). Given A = (N,S4,u4) and B = (N,Sp,up) two
games in normal form with the same set of players N, two different sets of strategies
Sa = {84, :i € N} and Sp = {Spi : i € N} and two different utility functions: u, :
Sis — RY and up : Sp — RV then, it is possible to define a new game C = A® B, called
composition of A and B, characterized as follows: C = (N,Sc,uc), where N is the set
of the players, Sc := {(sai,SBi), Sai € Sai,spi € Spi, Vi € N} is the set of strategies and
uc({(cai,opi)}) i=ua{oai}) + up({opi}) is the utility function.

In the context of non-cooperative games linear transformations of utility functions are
considered invariant transformations since they preserve the main properties of the game [14].
Therefore, we define the utility function of the composition of games as the sum of the utility
functions of the composed games. It is possible to extend the definition of games composition
to pairs of games in which different sets of players are involved. Indeed, if a player ¢ is
involved in game A but not in game B, it is possible to extend game B = (N,Sp,up) to
B’ = (N',85,us) in which player i is added (N’ = N U {i}) and she is assigned a “null”
strategy (Sp = Sg x {op}) not influencing the utilities of the outcomes. Formally, for all
s € Sp and for all j € N’ \ {i} we have that u/(s, ) = u;(s), while for i € N" we have that
u;(s,09) = 0. Intuitively it is possible to extend the definition of games composition to more
than two games. In Section 3.3.4 we use the notation A ® B ® C' to represent either game
AG(BOC) or (A® B)® C. The following propositions allow us to (i) model the building
blocks of complex protocols, (ii) study the properties of the subsequent mechanisms and (iii)
deduce the properties of the composed protocol through the composition of mechanisms.

Concerning the solutions of the composition of games, we prove that Nash Equilibria can
be identified by selecting equilibria within the single games. It is not possible to create or
destroy Nash equilibrium strategies by composing independent games.

» Theorem 4 (Nash Equilibria composition). Let A = (N,Sa,u4) and B = (N,Sp,up) be
two games in normal form representation. Then, {(cai,08:)} is a Nash Equilibrium for
A® B if and only if {oai} and {op;} are Nash Equilibria respectively for A and B.

Moreover, the operator composition is not only closed with respect to Nash Equilibria,
but also closed with respect to the property of practicality. Let A = (N,Sa,ua) and
B = (N,Sg,up) be two games and let (A,04) and (B, o) be two practical mechanisms.
Then, (A ® B,{04i,0pi}) is a practical mechanism.
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Concerning robustness properties for composition of games, we can state the following
results on resiliency and weak immunity for two composed games. The results can be
generalized for the composition of multiple games.

» Theorem 5 (resiliency). Let A = (N,S4,ua) and B = (N,Sp,up) be two games and
let (A,04) and (B,op) be two mechanisms respectively k-resilient and k'-resilient. Then,
(A©® B,{0ai,0B:}) is a min(k, k')-resilient mechanism.

» Theorem 6 (weak immunity). Let A = (N,S4,u4) and B = (N,Sg,ug) be two games and
let (A,04) and (B,op) be two mechanisms respectively t-weak-immune and t'-weak-immune.
Then, (A® B,{oai,0Bi}) is a min(¢,t')-weak-immune mechanism.

The first result states that given two k, k'-resilient mechanisms, the threshold on the
maximum number of rational players allowed in the composition of games is the minimum
among the number of rational players in the individual mechanisms. According to the second
theorem, given two t, t’-weak immune mechanisms, the threshold on the maximum number
of Byzantine players allowed in the composition of games is the minimum among the number
of Byzantine players in the individual, as well. The proofs make use of the definition of
k-resilience and ¢t-weak immunity respectively; if a mechanism is k-resilient, then the protocol
is followed if there are at most k rational players while if a mechanism is ¢t-weak immune it
provides non-negative outcomes if there are at most ¢ Byzantine players.

3 Applications

In this section we prove the effectiveness of our framework by analyzing the robustness of
different blockchain protocols. Section 3.1 and 3.2 analyze layer-1 protocols (Tendermint [22]
and Bitcoin [25]) while Section 3.3 and 3.4 address layer-2 protocols (Lightning Network

[30], a protocol on top of the Bitcoin blockchain and the side-chain protocol Platypus [29]).

Finally, Section 3.5 analyzes a cross-chain swap protocol [27] allowing two users to exchange
cryptoassets belonging to two different blockchains. Names of the variables in the following

sections are consistent with the notation used in the papers where protocols are introduced.

3.1 Tendermint

This section addresses the Tendermint consensus (i.e., Tendermint-core [22, 4]) which is
characterized by three rounds: the Pre-Propose round, the Propose round and the Vote

round. During the Pre-Propose round, the proposer presents a block to the other participants.

During the Propose round, each participant chooses whether to accept or not the block and
broadcasts her decision. If the votes for the proposal exceed a predetermined threshold v

then participants start the Vote phase. If the block receives more than v votes, it is validated.

Tendermint’s consensus algorithm sets v = n — f = %n; the threshold representing the
number of non-faulty actors (as n denotes the total number of nodes and f the total number
of faulty nodes) is set to % of the network participants.

» Definition 7. The Tendermint game is a mechanism (T'%, o%¢) such that the game T'*¢
represents the decision-making problem and the strategy o' is the prescribed consensus
protocol. Once a proposal v is received, N players choose either to check or not to check
the validity of the value, then they can choose either to Vote or Not to Vote for it. At the
very first stage of the game (stage a) a player can choose either to check (C) the validity or
not check (NC). If she checks it, she can choose to Vote or Not Vote for it, in case value
v s valid (stage b) or not (stage c¢). If she does not check it (stage d), she can choose to
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Vote (V) or Not Vote (NV ) for it. Every strategy T is represented by a vector (a,b,c,d) in
which a € {C,NC}, b,c,d € {V,NV}. The utility for player i is u;(7) = 1 if a valid block is
approved or a non-valid block is not approved, u;(T) = 0 if a valid block is not approved and
u; (1) < 0 4f a non-valid block is approved.

The strategy prescribed by Tendermint’s consensus protocol is ¢ = (C,V, NV, NV) i.e.,
to check for the validity of the proposal and then if the block is valid to vote for it, otherwise
not vote for it. If the number of rational or Byzantine players allowed is f < %n, the other
players have the necessary threshold to validate a block. Indeed, they can veto any validation
of blocks proposed by malicious nodes. The mechanism (¢, 5*¢) is thus not f-weak-immune
for any f > %n and we can state the following results.

» Theorem 8. The mechanism (I''°, o) is (f, f)-robust for any f < in.

3.2 Bitcoin

Bitcoin is a permissionless blockchain based on the Proof-of-Work mechanism [25] where
every user has a chance to publish a new block in the distributed ledger. The user probability
to mine a new block is proportional to her computational power «.. Bitcoin’s protocol requires
that once a block is mined, it should be broadcast to every other user. In case two or more
blocks are mined at the same moment, the players split their effort to mine from any of the
blocks (i.e., a fork is generated). Hence, published blocks are not automatically validated;
they are considered as valid when belonging to the longest chain i.e., the longest branch of
the ledger called main chain. A valid block generates a reward to the users who mined it.
As for Tendermint, Bitcoin’s protocol can be represented by a mechanism (I'**¢, o).
We take into account the worst-case scenario, in which the Byzantine users coordinate, thus
they are represented by a single player i. The altruistic users act in the same way and can
therefore be represented by a second player j. The strategies of the players correspond to
choosing (i) where in the chain add a new block and (ii) when to publish the mined blocks.

bte i e., she follows the protocol by mining on

Player j plays only one strategy defined by o
the main chain or splitting her effort if there is more than one chain of the same length
available. Since the game is stochastic, we group all the equivalent states of the game in
the same class; we consider two states as equivalent if they have the same configuration
independently from the precise position in the chain (i.e., the difference between the number
of mined blocks by the ¢ and j is the same). In the Bitcoin blockchain a best practice is to
consider a block as valid if belonging to a chain where at least B (usually, B = 6) blocks
have been published afterwards, because it is presumably considered impossible to create
a longer chain that does not include it. This block is invalidated if a fork is made at the
previous block and more than B + 1 blocks are published starting from it. In this way, the
block does not belong to the longest chain anymore and it is not considered as valid.

» Definition 9. The Bitcoin game is a mechanism (% g%¢) such that the game T
represents the decision-making problem and the strategy o®¢ is the prescribed protocol. The
game T is characterized by two players i and j, who have respectively mining power o and
1 — o and every state of the game can be represented by the state class {xy}refoa,...,B+1}
where xy, is the number of blocks mined, yet not published, at level k by player i. The block
at level k = 0 is the only one to be published. The initial state of the game is {z; = 0}
Vk €{0,1,..., B + 1}, while the final state of the game is represented by the state class with
value 1 > 1. While player j has only one possible strategy o**¢, player i can choose which
branches to mine from (i.e. at which level k add the block). The utility of the players is the
number of bitcoins they own according to the published blocks on the longest chain.
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The game theoretical framework let us state the following results on Bitcoin’s mechanism
robustness. Any subset of players T with |T'| = t having mining power a > 0 have a small
probability, not negligible, to perform a successful attack, by building a longer chain which
does not include a block which was already considered valid (Theorem 10).

» Theorem 10. The Bitcoin mechanism (%, a%¢) is not t-weak-immune for any t.

» Theorem 11. The Bitcoin mechanism (I, g%) is k-resilient if k players have at most
a< 2% as total mining power.

On the long run the majority of users (a > %) produce the longer chain. However, on
the short run a minority of users (o < %) can make a fork on the longer chain with positive
probability. The following theorem provides the value of this probability.

» Theorem 12. The probability for a Byzantine player with computation power «, with
a < %, to prevent a transaction to be published within A > 0 blocks is:

A-1
Z(l —Dda_p(a))- ¥ (1—a)® M) where,
k=1

Pa(a) =

@
-«
M (k) is a function defined in [17] mapping natural numbers to the sequence 1,1,2,5,13,42. ...

3.3 Lightning Network

In the Bitcoin blockchain transactions are collected in blocks, validated and published on
the ledger. Bitcoin faces a problem of scalability, in terms of speed, volume and value of the
transactions. In order to overcome these issues authors in [30] introduce a layer-2 class of
protocols called Lightning Network. The latter allows users to create bidirectional payment
channels to handle unlimited transactions in a private manner i.e., off-chain without involving
the blockchain. Two users A and B open a channel by publishing on the Bitcoin blockchain
two transactions towards a fund F. The amounts of the two transactions constitute the initial
balance of the channel. In Section 3.3.1 we analyze the module to open a channel. The
fund F can send or receive cryptoassets via blockchain transactions only if both users sign
them. Once the channel is opened, users can exchange by simply privately updating the
balance of the channel (cf. Section 3.3.2). The protocol to update the balance is discussed
in Section 3.3.3. A further construction allowing users to create transactions within the

channel that can be triggered at will is adopted in the protocol to update the balance (cf.

Section 3.3.4). When the users decide to close the channel, two transactions are published
on the Bitcoin blockchain: one from F to A and another from F to B. The value of the
transactions corresponds to the ones of the latest balance. The protocol to close the channel
is presented in Section 3.3.2. Lightning Network allows transactions also between users who
have not opened a common channel (i.e., routed payment). Indeed, two users can perform a
transaction through a path of open channels, using other users as intermediate nodes. This
protocol is analyzed in Section 3.3.4.

3.3.1 Opening module

In order to open a channel, the Bitcoin users create a transaction Tz towards F and two

different commitments (C'la for A and C'1b for B) letting them close the channel unilaterally.

The protocol [30] specifies in which order the commitments Tz, Cla and C1b have to be

signed by the users. We formalize the protocol with a game in extensive form T'°P (cf.
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Definition 13) where at every node of the tree (i.e., decision step) the player involved in the
protocol has two actions available: either following it by signing the commitment required or
not following it. The initial state corresponds to having no channel opened, while the final
state corresponds to having the channel opened. We assign “null” utility to the initial state
and positive utility (by convention fixed to 1) to the final state. If at any step the players
do not follow the protocol, they get back to the initial state with outcome (0,0). If they do
follow it at every step, they are able to open the channel having as an outcome (1,1). We
denote by 0°? = ({C1ba.,Txa.},{Cla.p,Trap}) the strategy profile recommended by the
protocol in which the actions are played respectively at nodes ({1, 3}, {2, 4}).

» Definition 13. The opening game T'°P is a game in extensive form, with two players {A, B}
and 4 nodes, labeled by a number (1 is the root):
1. A has two actions available: C1b.. provides outcome ; Clbya. leads to node 2.

0,
0,0); Cla.g leads to node 3.

(0,0)
2. B has two actions available: Cla.. provides outcome (0,0)
3. A has two actions available: Tx.. provides outcome (0,0); Tz 4. leads to node 4.
4. B has two actions available: Tx 4. provides outcome (0,0); Tz ap provides outcome (1,1).

The protocol is thus represented by the mechanism (I'°?, 0°P), whose properties we analyze
in the sequel.

» Theorem 14. The mechanism (I'°P,c°P) is not immune.

The mechanism would be immune if both players receive no lower payoff than u(c°?) =
(1,1), no matter what the other player chooses. A counterexample is B deviating from
o ={Cla.p,Txap} to g = {Cla..,Txap}, i.e. B refusing to signing C'la at step 2. For
player A the outcome of uxs (o, 75) =0 < 1 = u(cP).

» Theorem 15. The mechanism (I'°P,0°P) is optimal resilient and weak immune.

3.3.2 Classical and alternative closing modules

As described in Section 3.3.1 both users A and B can unilaterally close the channel by
publishing respectively on the blockchain commitment C'la and C1b. If a user decides to
unilaterally close the channel, she receives her part of the fund after that a given number A
of blocks are validated on the Bitcoin blockchain, while the other user receives it immediately.
The protocol recommends to close the channel by creating a new transaction, namely ES,
that let the players receive their cryptoasset immediately. We model the problem with the
following game in normal form.

» Definition 16. The closing game I'" = (N, S,u) of the channel with balance (x4, xp) with
xa,xp > 0 is a game in normal form, with two players {A, B} who have available three
different pure strategies each: Sa = {Claap, DN, ES} and Sp = {Clbap, DN, ES}. The
value of the utility can be found in the following payoff table.

B
Clbap DN ES
Claap (%7 %) (0,1) (0,1)
A DN (1,0) | (=1,-1) | (=1,-1)
ES (1,0) (-1,-1) (1,1)

First, we assume that the channel (z4,zp5) is funded by both players i.e., x4,z > 0. If
one of the two players has no asset involved in the channel, we have to model the problem with
a degenerate game, in which she can arbitrarily play any possible strategy. We recommend
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users to never unilaterally fund the channel. The players have three different strategies:
publishing their commitment, seeking a deal to create a new transaction ES or just doing
nothing DN. We assign null utility to players who receive their asset after A blocks, positive
utility (normalized to 1) if they receive it immediately, negative utility if they cannot redeem
their cryptoassets. If they both try and publish their commitment (Claap,Clbap) we
assume they have equal probability to get their commitment published first. The protocol
recommends the strategy profile ¢ = (ES, ES) i.e., both players seek a deal. In the following
we analyze the properties of the mechanism (', 0¢!).

» Theorem 17. Under the assumption x4 > 0 or zp > 0, the mechanism (I, o) is
optimal resilient, but not weak immune.

To prove that the mechanism is not weak immune it is sufficient to show a counterexample.
Indeed, if A chooses ES as required by the protocol and B chooses the Byzantine strategy
N, player A receives a negative outcome u4(c%, DN) = us(ES,DN) = —1. Since the
mechanism is not weak immune, it is not immune either. We thus provide an alternative
protocol that satisfies the property of weak immunity.

» Theorem 18. Under the assumption x4 > 0 or xg > 0, the only weak immune mechanism
is (I, 0*) with 0* = (Claap,Clbap).

If users play this strategy, they never get a negative utility if the other player deviates. It is
easy to prove that this is the only strategy profile with this property.

3.3.3 Updating module

Performing a transaction within a channel consists in updating its balance. Technically,
the previous commitments (Cla and C1b) with balance (z4,xp) are replaced by two new
commitments (C2a and C'2b) with different balance (2’4, 2/3). In order to prevent players from
publishing old commitments, they sign two Breach Remedy Transactions (BR1la and BR1b),
that can invalidate C'la and C2b. Indeed, if any party publishes an outdated commitment
the other one can retrieve all the cryptoassets in the fund. If, for instance, A publishes the
outdated commitment C'la, she can retrieve her fund x 4 unless B publishes BR1a before A
blocks are validated. The protocol to update the balance requires the players to sign the
commitments in a specific order [30]. We formalize the protocol with a game in extensive
form TP (cf. Definition 19). The initial state corresponds to the previous balance (with null
utility), the final state to the updated balance (with utility equal to 1). We assign a negative
value to the states in which players lose their cryptoassets or part of them.

» Definition 19. The updating game T'"P is a game in extensive form, with two players

{4, B} and 5 nodes, labeled by a number (1 is the root):

1. A plays. C2b.. provides outcome (0,0); C2ba. leads to node 2.

2. B plays. C2a.. provides outcome (0,0); C2bap provides outcome (1,1); C2a.p leads to
node 3.

3. A plays. BRla.. provides outcome (0,0); C2aap provides outcome (1,1); BRlaa. leads
to node 4.

4. B plays. BR1b.g provides outcome (1,1); BR1b.. leads to node 5.

5. A plays. Claap provides outcome (—1,1); C2a4p provides outcome (1,1).

The protocol recommends to sign all the commitments and it is thus represented by
the strategy profile o*? = ({C2ba., BRla.,C2aap},{C2a.5, BR1b.5}). We analyze the
mechanism (I'*P, ¢*P) under the assumption that it is always possible to publish a transaction
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within A blocks, otherwise it is not possible to validate the breach remedy transactions in
time. The probability that this happens when a Byzantine agent with computational power
« attacks the Bitcoin blockchain is 1 — ®a () (cf. Theorem 12).

» Theorem 20. The mechanism (I'P,c%P) is optimal resilient and weak tmmune with
probability 1 — ®a (), but it is not immune.

3.3.4 Routing module

Lightning Network provides a protocol, called Hash time Locked Contract (HTLC), that
allows to create transactions that can be triggered at will. The protocol for the HTLC works
as follows: (i) user A creates a pair (H, R), where H is public and R is its private key; (ii)
she shares with user B a commitment together with the string H; (iii) once this commitment
is published on the Bitcoin blockchain, user B can receive the transaction only if she can
provide the private key R within A blocks. It is easy to check that R is the private key of
H, but it is almost impossible to retrieve R, given H. In this way, user A can trigger the
transaction whenever she wants by disclosing R to user B. The protocol can be represented
by a mechanism ("¢ g"¢) that has the very same structure of the updating module (cf.
Section 3.3.3) and thus satisfies optimal resilience and weak immunity, but not immunity.
The HTLC is implicated in the protocol allowing users to perform transactions also if they
do not share a common channel. Indeed, it is sufficient that among the two users there is a
path of channels i.e., a sequence of users who two-by-two share a channel. For instance, let us
suppose that users A and C have both opened a separate channel with a third user B. In the
routed payment user B is the intermediate node. The model can be easily generalised to any
number of intermediate nodes. Routing fees are not included, but they would not change the
solution of the game. The protocol for routed payment works as follows: (i) user C creates a
pair of strings (H, R) and then discloses H to user A; (ii) user A creates an HTLC with user
B locked with the public key H then, (iii) user B creates an HTLC with user C locked with
H; (iv) finally, user C discloses R with user B and triggers the transaction, and so does user
B with user A. In this way, user C receives the payment, user A sends it and user B gains
from a channel with A what she loses from the channel with C. In practice, the value of the
two transactions do not coincide, so that the difference consists in the fee to be provided to
user B. We formalize the protocol with a game in extensive form I'"°“¢. The strategy profile
recommended by the protocol is denoted by o™ = ({H4B}, {HEC Y}, {Y,Y}).

» Definition 21. The routing game T'"°% s a game in extensive form, with three players

{A, B,C%} and 5 nodes, labeled by a number (1 is the root):

1. C has two actions available: either N, not sending H to A, which provides outcome
(0,0,0), orY, sending H to A, which leads to node 2.

2. A has two actions available: either HAB | which provides outcome (0,0,0), or H;;‘B, which
leads to node 3.

3. B has two actions available: either HBC | which provides outcome (0,0,0), or ch, which
leads to node 4.

4. C has two actions available: either N, not disclosing R to B, which provides outcome
(0,0,0), orY, disclosing R to B, which leads to node 5.

5. B has two actions available: either N, not disclosing R to A, which provides outcome
(1,-1,1) orY, disclosing R to A, which provides outcome (1,1,1).

» Theorem 22. Under the assumption that in both HTLCs the transactions can be triggered,
(Trout grout) js optimal resilient and weak immune, but it is not immune.
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The HTLCs introduced in the protocol work independently from the routing protocol. We
can model them with two different mechanisms: (I'4Z, ¢48) for HAZ and (I'B¢, 6B for
HEBC. The mechanism ('8, 545) represents the HTLC deployed on the channel A-B, while
the mechanism (T'B¢, 0B¢) refers to the HTLC implemented on the channel B-C. The HTLCs
belong to two different channels, so they are independent one from another. The assumption
from the routing protocol is that in both HTLCs the transactions can be triggered, but this
is true only if every transaction can be published within A blocks. Under this assumption,
the routed payment is represented by three independent protocols (I'"o%, grout) (TAB oAB),
and (T'BY oBY). Therefore, we analyze the properties of its mechanism by defining and
analyzing the composition of the three games (T © T'A8 @ T'BC {grTout oAB oBCY).

K2

» Theorem 23. The mechanism (I7°" @ TAB @ TBC {growt gAB ¢BCYY js optimal resilient

and weak immune with probability 1 — ®a(a) (cf. Theorem 12).

Proof. The operator composition (cf. Definition 3) is invariant with respect the properties
of the mechanisms. Thanks to Theorems 20, 22 we have that (I"ut gmout) (TAB 5A4B) and
(D'BC oBC) are practical hence their composition (I'"°% @ T48 @ TBC {growt oAB 5BCY)
is practical. Analogously, thanks to Theorems 20, 22 we have that every single mechanism
is k-resilient for all k£ and t-weak-immune for all ¢. Theorems 5, 6 allow us to say that the
composition (I OTABQTBC {growt oAB 5BCY) g kyesilient for all k and t-weak-immune
for all ¢, i.e., it is strongly resilient and weak immune. |

Recap. All the results of the Lightning Network are available in Table 1. The Lightning
Network is built on top of Bitcoin blockchain therefore its properties depend highly on Bitcoin
blockchain’s ones. If we exclude the closing protocol, the Lightning Network satisfies optimal
resilience and weak immunity. Hence, we can compose (cf. Definition 3) Lightning Network
protocols’ games with Bitcoin mechanism’s (that provide weaker results, cf. Section 3.2) and
prove that the Lightning Network satisfies the same properties of the Bitcoin mechanism.

3.4 Side-chain

A different solution to overcome the scalability and privacy problems of permissionless
blockchains is offered by Platypus [29], a protocol that allows a group of users to create a
childchain (sidechain) that can handle off-chain transactions without the need of synchrony

among peers. This section analyzes the protocol to create a Platypus chain proposed in [29].

In this section we would like to extend the analysis performed in [29] proving new properties
which fit our framework. The protocol lets the childchain validators broadcast transactions
to the peers until the number of validators who have confirmed the transactions overcome
a defined threshold. The protocol is divided into phases consisting of players acting at the
same time, indeed it is possible to model this protocol with a game in extensive form I'“", in

which players are split into two categories: normal users (set U) and the validators (set V).

Users’ utility is positive if their transactions are successfully published and it is negative if
different transactions are validated instead.

» Definition 24. The creation game is a game I'“" in extensive form, where U UV is the
set of players, with m, = |U UV|. Every phase corresponds to a node of the tree, at which
players play at the same time.
Phase 1; only the player pg is involved. The player py has two actions: either complete
the transaction Y or not N. If she does not, the outcome is 0 for all players.
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Phase 2; every player within normal users play at the same time. Fveryone has available
the same two actions: broadcasting their transaction Y or not N. If the transaction is
not broadcast for player i, her utility is always 0.

Phase 3; the validators can choose within a set of actions a,, with w C U i.e., they can
validate all the transaction for the users within the set u. The cardinality of the set of
their actions is equal to 2IU|. The utility for the validators corresponds to the number of
valid transactions which are broadcast.

Phase 4; the validators can choose within a set of actions in the form (b, sy ), where
t and t' are any subset of transactions broadcast in Phase 3. The action by consists in
broadcasting the transactions belonging to the set t until |2m, /3| + 1 validators receive it,
while sy means to send the transactions in t'.

We define the mechanism (I'",0°"), where 0" € S is the strategy of following the
protocol i.e., for normal users u the strategy is of =Y, while for validators v the strategy
is 08" = (ay», bex, s¢» ), where u* is the set of users who send a message and ¢* is the set of
transactions broadcast in Phase 3. We thus analyze the properties of the mechanism.

my

» Theorem 25. The mechanism (I'°",0°") is optimal resilient and | "3 |-weak-immune, but
not t-immune for any t.

In [29] it is proved that no wrong transaction can be validated if there are at most | "5 |
corrupted players. This property cannot be expressed with the concept of immunity, which is
too strong. Hence, to capture this information we exploit the definition of ¢t-weak-immunity
(cf. Definition 1). Within our model, the upper bound on the number of corrupted players
means that no negative payoff is given to the players under the hypothesis that there are at

most | "5+ | Byzantine nodes i.e., that the mechanism is |

My

3 -weak-immune.

3.5 Cross-chain swap

In this section we analyze the protocol introduced in [27] allowing two users to swap assets
that belong to two different blockchains which do not communicate with each other. In [15]
the authors introduce a theoretical framework proving that the protocol is correct for those
players who are altruistic, no matter what the others do. In the following we prove that
the Cross-chain swap protocol [27] satisfies the (k,t)-weak-robustness. In this protocol users
publish two different transactions on two different blockchains (e.g., Altcoin and Bitcoin)
that can be triggered with the disclosure of a single private key x by means of hashed time
lock contracts (HTLCs, cf. Section 3.3). The transactions have to be published within two
different time intervals, A; and Ay (where A; > 2A,), depending on the corresponding
blockchain. In a 2-player context authors in [27, 15] assume that the transactions can be
published within the time interval [0, min(Aq, As)] = [0, Ag]. Since the two blockchains are
independent we model the protocol with two different mechanisms (Gy,01) and (Ga, 03) (cf.
Definitions 26 and 27), representing the actions that players perform in each blockchain (i.e.,
(G1,01) for the Bitcoin blockchain and (Gz, 02) for the Altcoin blockchain).

» Definition 26. The Bitcoin game is an extensive form game Gy with 2 players {A, B} and

5 nodes (1 is the root):

1. A can either (Y ) create TX1 and TX2, that leads to node 2 or (N ) not create them, with
outcome (0,0).

2. B can either (Y) sign TX2, that leads to node 3, or (N ) refuse to do it, with outcome
(0,0).
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3. A can either (N) do nothing, with thus outcome (0,0), or (Y') publish TX1 on the Bitcoin
blockchain, that leads to node 4.

4. Both A and B have available two actions: either (Y ) publish TX2 before secret x is
revealed or (N ) not publish it. If any of the two users does so, the outcome is (0,0).
Otherwise, A reveals secret x and (N, N) leads to node 5.

5. B can either (Y ) publish secret x on the Bitcoin blockchain or (N ) not publish it. If she
does, the outcome is (1,1). If she does not, the outcome is (1,—1).

The strategy profile that corresponds to following the protocol is 01 = ({Y,Y,N},{Y,N,Y}).

» Definition 27. The Altcoin game is an extensive form game Go with 2 players {A, B} and

5 nodes (1 is the root):

1. B can either (Y ) create TX3 and TX4, or (N) do nothing. The action Y leads to node 2,
while the action N leads to the outcome (0,0).

2. A can either (Y) sign TX4, that leads to node 3, or (N ) refuse to do it, with outcome
(0,0).

3. B can either (N ) do nothing, with thus outcome (0,0), or (Y') publish TX3 on the Altcoin
blockchain, that leads to node 4.

4. Both A and B have available two actions: either (Y ) publish TX4 before secret x is
revealed or (N ) not publish it. If any of the two does so, the outcome is (0,0). Otherwise,
A reveals secret x and (N, N) leads to node 5.

5. A can either (Y ) publish secret x on the Altcoin blockhain or (N) not publish it. If she
does, the outcome is (1,0). If she does not, the outcome is (0,0).

The strategy profile that corresponds to following the protocol is oo = ({Y,N, Y}, {Y,Y,N}).

Since the two blockchains are independent, we consider the composition of the two games
(G1 ® Ga,{01i,02;}) representing the full protocol and analyze it.We can easily see that the
mechanism is not immune, indeed it is sufficient that one player does not create or publish a
transaction to stop the protocol. However, we have the following important result.

» Theorem 28. Under the assumption that any transaction can be published within a time
interval [0, As], the mechanism (Gy ® Ga, {01i,02:}) is optimal resilient and weak immune,
but it is not immune.

4  Conclusions

We proposed the first generic game theoretical framework that models the robustness of
blockchains towards rational and Byzantine behaviors. In this paper we identified the
necessary and sufficient conditions for a protocol to be robust (defined as the conjunction
of two properties: k-resilience and t-weak immunity) and developed a methodology to
characterize the robustness of complex protocols via the composition of simpler robust
building blocks. The effectiveness of our framework was demonstrated by its capability to
capture the robustness of various blockchain protocols such as Bitcoin, Tendermint, lightning

networks (original and alternative closing modules), side-chain and cross-chain protocols.

Our work continues the work of [1] that introduced the notion of robustness defined in terms
of t-immunity and k-resilience. The framework of [1] was never used till our study in the
context of blockchain protocols. Using the framework of [1] we proved that a large class of
blockchain protocols (cf. Table 1) does not satisfy the ¢t-immunity property. It should be
noted that our negative result related to the t-immunity property does not depend on the
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specific choice of a utility function. Therefore, we proposed a relaxation of this property i.e.,
t-weak immunity. We analysed the k-resilience and the t-weak immunity of a large class of
blockchain protocols, providing bounds on respectively the number of rational and Byzantine
processes (cf. results in Table 1).

These results are based on strict hypotheses under which the model we introduced takes
into account all the possible alternatives to the protocol. As future work we plan to relax
these hypotheses and provide more accurate estimation of the robustness indices. Moreover,
we plan to investigate the resilience of other blockchain protocols such as Algorand [10] or
DAG-based blockchains (e.g., Spectre [33], Phantom [34] or IOTA [31]). A further possible
direction of research is an extension of our framework in order to analyse repeated consensus
protocols (e.g., protocols presented in [4]).
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