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Abstract
Transactional data structure libraries (TDSL) combine the ease-of-programming of transactions with
the high performance and scalability of custom-tailored concurrent data structures. They can be
very efficient thanks to their ability to exploit data structure semantics in order to reduce overhead,
aborts, and wasted work compared to general-purpose software transactional memory. However,
TDSLs were not previously used for complex use-cases involving long transactions and a variety of
data structures.

In this paper, we boost the performance and usability of a TDSL, towards allowing it to support
complex applications. A key idea is nesting. Nested transactions create checkpoints within a
longer transaction, so as to limit the scope of abort, without changing the semantics of the original
transaction. We build a Java TDSL with built-in support for nested transactions over a number of
data structures. We conduct a case study of a complex network intrusion detection system that
invests a significant amount of work to process each packet. Our study shows that our library
outperforms publicly available STMs twofold without nesting, and by up to 16x when nesting is
used.
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1 Transactional Libraries

The concept of memory transactions [9] is broadly considered to be a programmer-friendly
paradigm for writing concurrent code [6, 19]. A transaction spans multiple operations, which
appear to execute atomically and in isolation, meaning that either all operations commit and
affect the shared state or the transaction aborts. Either way, no partial effects of on-going
transactions are observed.

Despite their appealing ease-of-programming, software transactional memory (STM)
toolkits [3, 8] are seldom deployed in real systems due to their huge performance overhead. The
source of this overhead is twofold. First, an STM needs to monitor all random memory accesses
made in the course of a transaction (e.g., via instrumentation in VM-based languages [12]),
and second, STMs abort transactions due to conflicts.
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45:2 Using Nesting to Push the Limits of Transactional Data Structure Libraries

Instead, programmers widely use concurrent data structure libraries [20, 14, 5, 2], which
are much faster but guarantee atomicity only at the level of a single operation on a single
data structure.

To mitigate this tradeoff, Spiegelman et al. [21] have proposed transactional data structure
libraries (TDSL). In a nutshell, the idea is to trade generality for performance. A TDSL
restricts transactional access to a pre-defined set of data structures rather than arbitrary
memory locations, which eliminates the need for instrumentation. Thus, a TDSL can exploit
the data structures’ semantics and structure to get efficient transactions bundling a sequence
of data structure operations. It may further manage aborts on a semantic level, e.g., two
concurrent transactions can simultaneously change two different locations in the same list
without aborting. While the original TDSL library [21] was written in C++, we implement
our version in Java.

Quite a few works [13, 23, 15] have used and extended TDSL and similar approaches like
STO [10] and transactional boosting [7]. These efforts have shown good performance for
fairly short transactions on a small number of data structures. Yet, despite their improved
scalability compared to general purpose STMs, TDSLs have also not been applied to long
transactions or complex use-cases.

A key challenge arising in long transactions is the high potential for aborts and the large
penalty that such aborts induce as much work is wasted.

2 Our Contribution

Transactional nesting. In this paper we push the limits of the TDSL concept in an attempt
to make it more broadly applicable. Our main contribution, is facilitating long transactions
via nesting [17]. Nesting allows the programmer to define nested child transactions as
self-contained parts of larger parent transactions. This controls the program flow by creating
checkpoints; upon abort of a nested child transaction, the checkpoint enables retrying only
the child’s part and not the preceding code of the parent. This reduces wasted work, which,
in turn, improves performance. At the same time, nesting does not relax consistency or
isolation, and continues to ensure that the entire parent transaction is executed atomically.
We focus on closed nesting [22], which, in contrast to so-called flat nesting, limits the scope
of aborts, and unlike open nesting [18], is generic and does not require semantic constructs.

The flow of nesting is shown in Algorithm 1. When a child commits, its local state is
migrated to the parent but is not yet reflected in shared memory. If the child aborts, then
the parent transaction is checked for conflicts. And if the parent incurs no conflicts in its
part of the code, then only the child transaction retries. Otherwise, the entire transaction
does. It is important to note that the semantics provided by the parent transaction are not
altered by nesting. Rather, nesting allows programmers to identify parts of the code that are
more likely to cause aborts and encapsulate them in child transactions in order to reduce the
abort rate of the parent.

Yet nesting induces an overhead which is not always offset by its benefits. We investigate
this tradeoff using microbenchmarks. We find that nesting is helpful for highly contended
operations that are likely to succeed if retried. We also find that nested variants of TDSL
improve performance of state-of-the-art STMs with transaction friendly data structures.

NIDS benchmark. We introduce a new benchmark of a network intrusion detection system
(NIDS) [4], which invests a fair amount of work to process each packet. This benchmark
features a pipelined architecture with long transactions, a variety of data structures, and



G. Assa, H. Meir, G. Golan-Gueta, I. Keidar, and A. Spiegelman 45:3

Algorithm 1 Transaction flow with nesting.

1: TXbegin()
2: [Parent code] ▷ On abort – retry parent
3: nTXbegin() ▷ Begin child transaction
4: [Child code] ▷ On abort – retry child or parent
5: nTXend() ▷ On commit – migrate changes to parent
6: [Parent code] ▷ On abort – retry parent
7: TXend() ▷ On commit – apply changes to thread state

multiple points of contention. It follows one of the designs suggested in [4] and executes
significant computational operations within transactions, making it more realistic than
existing intrusion-detection benchmarks (e.g., [11, 16]).

Enriching the library. In order to support complex applications like NIDS, and more
generally, to increase the usability of TDSLs, we enrich our transactional library in with
additional data structures – producer-consumer pool, log, and stack – all of which support
nesting. The TDSL framework allows us to custom-tailor to each data structure its own
concurrency control mechanism. We mix optimism and pessimism (e.g., stack operations
are optimistic as long as a child has popped no more than it pushed, and then they become
pessimistic), and also fine tune the granularity of locks (e.g., one lock for the whole stack
versus one per slot in the producer-consumer pool).

Evaluation. We evaluate our library using our NIDS application, and compare it against
existing general purpose STMs. We find that nesting can improve performance by up to
8x. Moreover, nesting improves scalability, reaching peak performance with as many as 40
threads as opposed to 28 without nesting.
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