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—— Abstract

We introduce a novel dynamic reconfiguration protocol for the MongoDB replication system that
extends and generalizes the single server reconfiguration protocol of the Raft consensus algorithm.
Our protocol decouples the processing of configuration changes from the main database operation
log, which allows reconfigurations to proceed in cases when the main log is prevented from processing
new operations. Additionally, this decoupling allows for configuration state to be managed by a
logless replicated state machine, storing only the latest version of the configuration and avoiding the
complexities of a log-based protocol. We present a formal specification of the protocol in TLA+,
initial verification results of model checking its safety properties, and an experimental evaluation of
how reconfigurations are able to quickly restore a system to healthy operation when node failures
have stalled the main operation log. This announcement is a short version and the full paper is
available at [16].
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1 Introduction

Distributed replication systems based on the replicated state machine model [13] have become
ubiquitous as the foundation of modern, fault-tolerant data storage systems. In order for
these systems to ensure availability in the presence of faults, they must be able to dynamically
replace failed nodes with healthy ones, a process known as dynamic reconfiguration. The
protocols for building distributed replication systems have been well studied and implemented
in a variety of systems [2, 20, 4, 18]. Paxos [5] and, more recently, Raft [11], have served
as the logical basis for building provably correct distributed replication systems. Dynamic
reconfiguration, however, is an additionally challenging and subtle problem [1] that has
not been explored as extensively as the foundational consensus protocols underlying these
systems. The Raft protocol, originally published in 2014, provided a dynamic reconfiguration
algorithm in its initial publication, but did not include a precise discussion of its correctness or
include a formal specification or proof. A critical safety bug [10] in one of its reconfiguration
protocols was found after initial publication, which has since been fixed. The discovery of
bugs like these, however, demonstrates that the design and verification of a safe dynamic
reconfiguration protocol is a non-trivial task.
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Brief Announcement: Logless Dynamic Reconfiguration in MongoDB Replication

Since its inception, MongoDB [9], a general purpose distributed database, included a
replication system [15] with a mechanism for clients to dynamically reconfigure replica
membership. This legacy reconfiguration protocol was, however, unsafe in certain cases.
In recent versions of MongoDB, reconfiguration has become a more common operation,
necessitating the need for a redesigned, safe reconfiguration protocol with provable correctness
guarantees. It was also desirable that this new protocol minimize changes to the existing,
legacy protocol, which did not use a log-based approach to managing configurations. In
this brief announcement we propose MongoRaftReconfig, a redesigned, safe reconfiguration
protocol with provable correctness guarantees that minimizes changes to the existing, legacy
protocol where possible. MongoRaftReconfig provides logless dynamic reconfiguration by
decoupling the processing of configuration changes from the main database operation log,
and improves upon and generalizes the single server reconfiguration protocol of standard
Raft. This announcement is a short version of the full paper available at [16].

2  MongoRaftReconfig: A Logless Dynamic Reconfiguration Protocol

Many consensus based replication protocols [17, 7, 11] utilize the main operation log (re-
ferred to as the oplog, in MongoDB) to manage configuration changes by writing special
reconfiguration log entries. MongoRaftReconfig instead decouples configuration updates from
the main operation log by managing the configuration state of a replica set in a separate
replicated state machine, which we refer to as the config log. The config log is maintained
alongside the oplog, and manages the configuration state used by the overall protocol.
Decoupling these two conceptually distinct logs, the oplog and the config log, enables
certain optimizations and simplifications in MongoRaftReconfig that would not be possible in
a protocol where both logs are interleaved with each other. First, it allows for a simplification
of the config log structure by observing that configuration changes are an “update only”
operation. This obviates the need to store the entire log history, allowing the config log
to operate as a logless replicated state machine, storing only the latest version of the
configuration state. Second, it prevents the dynamics of either log negatively impacting
the other unnecessarily. For example, it is possible to commit database writes in either log
independently, without requiring previous writes in the other log to also become committed.
This can allow the config log to bypass the oplog, allowing for reconfigurations in cases where
a slow or stalled oplog replication channel would otherwise prevent reconfigurations from
proceeding. For a detailed description of the protocol and its behaviors see [16].

3 Formal Specification and Model Checking

To formally describe and model check safety properties of MongoRaftReconfig, we use the
TLA+ language [6]. TLA+ is a formal specification language for describing distributed
and concurrent systems that is based on first order and temporal logic [12]. The full TLA+
specification of MongoRaftReconfig can be found at [14]. Note that the TLA+ language does
not impose an underlying system or communication model (e.g. message passing, shared
memory, etc.), which allows one to write specifications at a wide range of abstraction levels.
Our specifications are written at a deliberately high level of abstraction, ignoring some lower
level details of the protocol and system model. In practice, we have found the abstraction
level of our specifications most useful for understanding and communicating the essential
behaviors and safety characteristics of the protocol, while also serving to make automated
verification feasible.
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Figure 1 Latency of majority writes in the face of node degradation and reconfiguration to
recover. Red points indicate writes that timed out. Orange bars indicate intervals of time where
system entered a degraded mode. Vertical blue bars indicate completion of reconfiguration events.

For initial verification, we undertook an automated approach using TLC [19], an explicit
state model checker for TLA+ specifications. We verified finite instances of the protocol to
provide a sound guarantee of protocol correctness for fixed, finite parameters. It has been
observed elsewhere [8] that relatively small, finite instances of distributed protocols are often
sufficient to exhibit behaviors that are generalizable to larger (potentially infinite) instances,
which helps to provide initial confidence in protocol correctness. This verification approach
is, however, incomplete, in the sense that it does not establish correctness of the protocol for
an unbounded number of servers. A goal for future work is to develop a general safety proof
using the TLA+ proof system [3].

4 Experimental Evaluation

To demonstrate the benefits of MongoRaftReconfig, we designed an experiment to measure
how quickly a replica set can reconfigure in new nodes to restore write availability when it
faces periodic phases of degradation. For comparison, we implemented a simulated version
of the Raft reconfiguration algorithm in MongoDB by having reconfigurations write a no-op
oplog entry and requiring it to become committed before the reconfiguration can complete.
Our experiment initiates a 5 node replica set and we periodically simulate a failure of two
nodes, reconfigure them out of the set, and add in two new, healthy nodes. The ability of
MongoRaftReconfig to quickly reconfigure in this scenario is seen in the results of Figure 1.
Full details on the experimental setup are presented in [16].
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