Brief Announcement: Design and Verification of a
Logless Dynamic Reconfiguration Protocol in
MongoDB Replication

William Schultz =
Northeastern University, Boston, MA, USA

Siyuan Zhou &2
MongoDB, New York, NY, USA

Stavros Tripakis &
Northeastern University, Boston, MA, USA

—— Abstract

We introduce a novel dynamic reconfiguration protocol for the MongoDB replication system that
extends and generalizes the single server reconfiguration protocol of the Raft consensus algorithm.
Our protocol decouples the processing of configuration changes from the main database operation
log, which allows reconfigurations to proceed in cases when the main log is prevented from processing
new operations. Additionally, this decoupling allows for configuration state to be managed by a
logless replicated state machine, storing only the latest version of the configuration and avoiding the
complexities of a log-based protocol. We present a formal specification of the protocol in TLA+,
initial verification results of model checking its safety properties, and an experimental evaluation of
how reconfigurations are able to quickly restore a system to healthy operation when node failures
have stalled the main operation log. This announcement is a short version and the full paper is
available at [16].

2012 ACM Subject Classification Information systems — Parallel and distributed DBMSs; Software
and its engineering — Software verification

Keywords and phrases Reconfiguration, Consensus, State Machine Replication
Digital Object Identifier 10.4230/LIPIcs.DISC.2021.61

Related Version Full Version: https://arxiv.org/abs/2102.11960

1 Introduction

Distributed replication systems based on the replicated state machine model [13] have become
ubiquitous as the foundation of modern, fault-tolerant data storage systems. In order for
these systems to ensure availability in the presence of faults, they must be able to dynamically
replace failed nodes with healthy ones, a process known as dynamic reconfiguration. The
protocols for building distributed replication systems have been well studied and implemented
in a variety of systems [2, 20, 4, 18]. Paxos [5] and, more recently, Raft [11], have served
as the logical basis for building provably correct distributed replication systems. Dynamic
reconfiguration, however, is an additionally challenging and subtle problem [1] that has
not been explored as extensively as the foundational consensus protocols underlying these
systems. The Raft protocol, originally published in 2014, provided a dynamic reconfiguration
algorithm in its initial publication, but did not include a precise discussion of its correctness or
include a formal specification or proof. A critical safety bug [10] in one of its reconfiguration
protocols was found after initial publication, which has since been fixed. The discovery of
bugs like these, however, demonstrates that the design and verification of a safe dynamic
reconfiguration protocol is a non-trivial task.
?William Schultz, S.iyuan Zhou, an(:i Stavros Tripakis;

37 icensed under Creative Commons License CC-BY 4.0
35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No.61; pp.61:1-61:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:schultz.w@northeastern.edu
mailto:siyuan.zhou@mongodb.com
mailto:s.tripakis@northeastern.edu
https://doi.org/10.4230/LIPIcs.DISC.2021.61
https://arxiv.org/abs/2102.11960
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2

Brief Announcement: Logless Dynamic Reconfiguration in MongoDB Replication

Since its inception, MongoDB [9], a general purpose distributed database, included a
replication system [15] with a mechanism for clients to dynamically reconfigure replica
membership. This legacy reconfiguration protocol was, however, unsafe in certain cases.
In recent versions of MongoDB, reconfiguration has become a more common operation,
necessitating the need for a redesigned, safe reconfiguration protocol with provable correctness
guarantees. It was also desirable that this new protocol minimize changes to the existing,
legacy protocol, which did not use a log-based approach to managing configurations. In
this brief announcement we propose MongoRaftReconfig, a redesigned, safe reconfiguration
protocol with provable correctness guarantees that minimizes changes to the existing, legacy
protocol where possible. MongoRaftReconfig provides logless dynamic reconfiguration by
decoupling the processing of configuration changes from the main database operation log,
and improves upon and generalizes the single server reconfiguration protocol of standard
Raft. This announcement is a short version of the full paper available at [16].

2 MongoRaftReconfig: A Logless Dynamic Reconfiguration Protocol

Many consensus based replication protocols [17, 7, 11] utilize the main operation log (re-
ferred to as the oplog, in MongoDB) to manage configuration changes by writing special
reconfiguration log entries. MongoRaftReconfig instead decouples configuration updates from
the main operation log by managing the configuration state of a replica set in a separate
replicated state machine, which we refer to as the config log. The config log is maintained
alongside the oplog, and manages the configuration state used by the overall protocol.
Decoupling these two conceptually distinct logs, the oplog and the config log, enables
certain optimizations and simplifications in MongoRaftReconfig that would not be possible in
a protocol where both logs are interleaved with each other. First, it allows for a simplification
of the config log structure by observing that configuration changes are an “update only”
operation. This obviates the need to store the entire log history, allowing the config log
to operate as a logless replicated state machine, storing only the latest version of the
configuration state. Second, it prevents the dynamics of either log negatively impacting
the other unnecessarily. For example, it is possible to commit database writes in either log
independently, without requiring previous writes in the other log to also become committed.
This can allow the config log to bypass the oplog, allowing for reconfigurations in cases where
a slow or stalled oplog replication channel would otherwise prevent reconfigurations from
proceeding. For a detailed description of the protocol and its behaviors see [16].

3 Formal Specification and Model Checking

To formally describe and model check safety properties of MongoRaftReconfig, we use the
TLA+ language [6]. TLA+ is a formal specification language for describing distributed
and concurrent systems that is based on first order and temporal logic [12]. The full TLA+
specification of MongoRaftReconfig can be found at [14]. Note that the TLA+ language does
not impose an underlying system or communication model (e.g. message passing, shared
memory, etc.), which allows one to write specifications at a wide range of abstraction levels.
Our specifications are written at a deliberately high level of abstraction, ignoring some lower
level details of the protocol and system model. In practice, we have found the abstraction
level of our specifications most useful for understanding and communicating the essential
behaviors and safety characteristics of the protocol, while also serving to make automated
verification feasible.

W. Schultz, S. Zhou, and S. Tripakis

Majority Write Latencies with Raft Reconfiguration

120 e e B T T] Tomee] T] T] T

T B

L Lz " 5. x _— _—

20 I I ! I I ! I I ! I I
0 5 10 15 20 25 30 35 40 45 50 55 60

Latency (ms)
D
o

Majority Write Latencies with Logless Reconfiguration
120 LS T T LS| T | T 1% T El T To’ T

o
(=]
LI I

Latency (ms)
ey
o

_20 1 1 1 1 1 1 1 1 1 1 : 1
0O 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

Figure 1 Latency of majority writes in the face of node degradation and reconfiguration to
recover. Red points indicate writes that timed out. Orange bars indicate intervals of time where
system entered a degraded mode. Vertical blue bars indicate completion of reconfiguration events.

For initial verification, we undertook an automated approach using TLC [19], an explicit
state model checker for TLA+ specifications. We verified finite instances of the protocol to
provide a sound guarantee of protocol correctness for fixed, finite parameters. It has been
observed elsewhere [8] that relatively small, finite instances of distributed protocols are often
sufficient to exhibit behaviors that are generalizable to larger (potentially infinite) instances,
which helps to provide initial confidence in protocol correctness. This verification approach
is, however, incomplete, in the sense that it does not establish correctness of the protocol for
an unbounded number of servers. A goal for future work is to develop a general safety proof
using the TLA+ proof system [3].

4 Experimental Evaluation

To demonstrate the benefits of MongoRaftReconfig, we designed an experiment to measure
how quickly a replica set can reconfigure in new nodes to restore write availability when it
faces periodic phases of degradation. For comparison, we implemented a simulated version
of the Raft reconfiguration algorithm in MongoDB by having reconfigurations write a no-op
oplog entry and requiring it to become committed before the reconfiguration can complete.
Our experiment initiates a 5 node replica set and we periodically simulate a failure of two
nodes, reconfigure them out of the set, and add in two new, healthy nodes. The ability of
MongoRaftReconfig to quickly reconfigure in this scenario is seen in the results of Figure 1.
Full details on the experimental setup are presented in [16].

—— References

1 Marcos Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, and Alexander Shraer.
Reconfiguring Replicated Atomic Storage: A Tutorial. Bulletin of the European Association
for Theoretical Computer Science EATCS, 2010.

2 Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos Made Live: An Engineering
Perspective. In Proceedings of the Twenty-Sizth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’07, pages 398-407, New York, NY, USA, 2007. Association for
Computing Machinery. doi:10.1145/1281100.1281103.

61:3

DISC 2021

https://doi.org/10.1145/1281100.1281103

61:4

Brief Announcement: Logless Dynamic Reconfiguration in MongoDB Replication

10

11

12

13

14

15

16

17

18

19

20

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying safety
properties with the tla+ proof system. In International Joint Conference on Automated
Reasoning, pages 142-148. Springer, 2010.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang,
Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li, Xuelian Wu,
Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin
Tang. TiDB: a Raft-based HTAP database. Proceedings of the VLDB Endowment, 2020.
doi:10.14778/3415478.3415535.

Leslie Lamport. The Part-Time Parliament. ACM Transactions on Computer Systems, 1998.
doi:10.1145/279227.279229.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, June 2002.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Stoppable paxos. TechReport, Microsoft
Research, 2008.

Haojun Ma, Aman Goel, Jean Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem A.
Sakallah. I4: Incremental inference of inductive invariants for verification of distributed
protocols. In SOSP 2019 - Proceedings of the 27th ACM Symposium on Operating Systems
Principles, 2019. doi:10.1145/3341301.3359651.

MongoDB Github Project, 2021. URL: https://github. com/mongodb/mongo.

Diego Ongaro. Bug in single-server membership changes, July 2015. URL: https://groups.
google.com/g/raft-dev/c/t4xj6dIJTP6E/m/d2D9LrWRza8J.

Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm.
In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 305-320, USA, 2014. USENIX Association.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfes 1977), pages 46-57. IEEE, 1977.

Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach:
A Tutorial. ACM Computing Surveys (CSUR), 1990. doi:10.1145/98163.98167.

William Schultz. MongoRaftReconfig TLA+ Specification, 2021. URL: https://github.com/
will62794/logless-reconfig/blob/3d6b378eae7dabe3a35a0b4042bfc55£fd178cb21/specs/
MongoRaftReconfig.tla.

William Schultz, Tess Avitabile, and Alyson Cabral. Tunable consistency in mongodb. Pro-
ceedings of the VLDB Endowment, 12(12):2071-2081, 2019.

William Schultz, Siyuan Zhou, and Stavros Tripakis. Design and verification of a logless
dynamic reconfiguration protocol in mongodb replication. arXiv preprint, 2021. arXiv:
2102.11960.

Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio Junqueira. Dynamic reconfig-
uration of primary/backup clusters. In Proceedings of the 2012 USENIX Annual Technical
Conference, USENIX ATC 2012, 2019.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis, Tobias
Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea, Amruta Ranade,
Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter Mattis. CockroachDB:
The Resilient Geo-Distributed SQL Database. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, pages 1493-1509, New York,
NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3318464.3386134.
Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifications. In
Advanced Research Working Conference on Correct Hardware Design and Verification Methods,
pages 54—66. Springer, 1999.

Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei Zeng, Pingan Yang, and Yunfan
Zhang. PaxosStore: High-availability storage made practical in WeChat. In Proceedings of the
VLDB Endowment, 2017. doi:10.14778/3137765.3137778.

https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/3341301.3359651
https://github.com/mongodb/mongo
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://doi.org/10.1145/98163.98167
https://github.com/will62794/logless-reconfig/blob/3d6b378eae7dabe3a35a0b4042bfc55fd178cb21/specs/MongoRaftReconfig.tla
https://github.com/will62794/logless-reconfig/blob/3d6b378eae7dabe3a35a0b4042bfc55fd178cb21/specs/MongoRaftReconfig.tla
https://github.com/will62794/logless-reconfig/blob/3d6b378eae7dabe3a35a0b4042bfc55fd178cb21/specs/MongoRaftReconfig.tla
http://arxiv.org/abs/2102.11960
http://arxiv.org/abs/2102.11960
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.14778/3137765.3137778

	1 Introduction
	2 MongoRaftReconfig: A Logless Dynamic Reconfiguration Protocol
	3 Formal Specification and Model Checking
	4 Experimental Evaluation

