Brief Announcement: Ordered Reliable Broadcast
and Fast Ordered Byzantine Consensus for
Cryptocurrency

Pouriya Zarbafian
University of Sydney, Australia

Vincent Gramoli &
University of Sydney, Australia
EPFL, Lausanne, Switzerland

—— Abstract

The problem of transaction reordering in blockchains, also known as the blockchain anomaly [11],
can lead to fairness limitations [8] and front-running activities [6] in cryptocurrency. To cope with
this problem despite f < % byzantine processes, Zhang et al. [12] have introduced the ordering
linearizability property ensuring that if two transactions or commands are perceived by all correct
processes in the same order, then they are executed in this order. They proposed a generic distributed
protocol that first orders commands and then runs a leader-based consensus protocol to agree on
these orders, hence requiring at least 11 message delays. In this paper, we parallelize the ordering
with the execution of the consensus to require only 6 message delays. For the ordering, we introduce
the ordered reliable broadcast primitive suitable for broadcast-based cryptocurrencies (e.g., [3]). For
the agreement, we build upon the DBFT leaderless consensus protocol [4] that was recently formally
verified [1]. The combination is thus suitable to ensure ordering linearizability in consensus-based
cryptocurrencies (e.g., [5]).

2012 ACM Subject Classification Computing methodologies — Distributed algorithms

Keywords and phrases distributed algorithm, consensus, reliable broadcast, byzantine fault tolerance,
linearizability, blockchain

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.63

Ordering Linearizability. Ordering linearizability [12] requires that command ¢; is ordered
before another command ¢ if all the correct processes perceive ¢y before cy. Zhang et al.
have implemented ordering linearizability by exploiting the median value of the timestamps
perceived by 2f + 1 distinct processes as an ordering indicator. We say that such a median
value is correctly bounded as it is both upper bounded and lower bounded by the timestamps
observed by correct processes.

Ordered Reliable Broadcast. To collect timestamps from 2f + 1 distinct processes, we
modify the reliable broadcast protocol [2] in the asynchronous communication model to
obtain a variant that preserves ordering linearizability. In our resulting ordered reliable
broadcast, messages are delivered with an additional set of 2f + 1 signed timestamps. In
order to not introduce any extra message delays, processes piggyback (i) a signed value of
their clock in their ECHO messages, and (i7) a set of 2f + 1 signed timestamps in their READY
messages (this set of 2f + 1 timestamps is collected from the ECHO messages received). As a
result, messages that are delivered from the reliable broadcast come with a set 7" of 2f + 1
signed timestamps; the median timestamp of this set is correctly bounded and can be used
as an ordering indicator that preserves ordering linearizability.
? Pouriya Zarbafian .and Vincent Gr.amoli;

37 icensed under Creative Commons License CC-BY 4.0
35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 63; pp. 63:1-63:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:vincent.gramoli@sydney.edu.au
https://orcid.org/0000-0001-5632-8572
https://doi.org/10.4230/LIPIcs.DISC.2021.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2

Brief Announcement: Fast Ordered Byzantine Consensus

X —_ process time
— ordering time
T T+1 T+2
I N N N N I T I I N N T A I A I I L1 1 1
Acst Acst Agst
A cl-t A c2 -1+l A c3 > 1+l or t+2

Figure 1 Command c1 will be sequenced with the ordering indicator 7, while command ¢2 will
likely be sequenced with the ordering indicator 7 + 1. Because some correct processes may observe
command c3 in 7 + 1 while others in 7 + 2, the ordering indicator computed by correct processes
may vary for c3.

Agreeing on Ordering Indicators. Due to the combined effects of asynchrony and byzantine
processes, the median value delivered by the ordered reliable broadcast is not necessarily
equal at each process. To ensure agreement on the ordering of all commands, we introduce an
ordered variant of DBFT whose reliable broadcast is replaced by the ordered reliable broadcast
and where partial synchrony [7] is assumed. Because all the processes will not receive a
command at the same time, they may observe different timestamps, and no particular
timestamp is more meaningful than the others. To simplify the agreement process, we
introduce an ordering clock with a coarser grain than the process clock. Instead of agreeing
on a timestamp coming from a process clock, processes will agree on an ordering indicator
coming from the ordering clock.

Ordering Clock. Each unit of the ordering clock lasts x units on the process clock. Each
timestamp ¢ coming from a process clock can be mapped to an ordering indicator order(t) = 7
on the ordering clock, with 7y <t < (7 4+ 1)x. When the value of y is greater than the
message propagation time Aggr, any command ¢ is broadcast and received in a period
smaller than y. If ¢ is broadcast at a time 7 on the ordering clock, then either (7) ¢ is sent
and received in the same unit 7, or (i) c is received by other processes during the next unit
7 4 1 (if ¢ was broadcast toward the end of the unit 7). Figure 1 shows examples of how
processes may adopt a value on the ordering clock.

Fast Ordered Byzantine Consensus. The goal of the order agreement algorithm presented
in this section is to decide an ordering indicator from the ordering clock for each command.
It requires that each command is broadcast with a timestamp metadata t whose ordering
indicator 7 = order(t) will be used as a reference order. During synchronous periods, a
command is broadcast and received either during the same unit of ordering time (i.e., at
T+ 0), or during the next one (i.e., at 7 + 1). During asynchronous periods, the command
may be received after a number of ordering units k£ > 1. Deciding a unique ordering indicator
for a command can thus be reduced to deciding on a value k > 0 resulting in an ordering
indicator 7+ k (where 7 is the reference order of the command). To agree on a value of k that
is correctly bounded, processes execute successive rounds of binary consensus, starting with
round 0. If the binary consensus instance of round r outputs 1, then the decided ordering
indicator is 7 + . The protocol is presented in Algorithm 1. After global stabilization time,
and provided that x > Aggr, the decided ordering indicator is either 0 or 1. Thus the
protocol first executes these two instances concurrently (line 2). When both of these instances
have decided, if one of them has output 1, then the ordering indicator is decided (line 4 or 6).
Otherwise, processes will iteratively try to agree on a higher ordering indicator with the loop

P. Zarbafian and V. Gramoli

starting at line 8. During each iteration of the loop, processes first try to output 1 for the
current round number, and then try to backtrack (cf. Backtracking). Whenever an ordering
indicator is decided, either at line 11 or 14, the algorithm terminates.

» Theorem 1 (Ordering Linearizability). The order agreement protocol is a distributed ordering
algorithm that ensures ordering linearizability with respect to the ordering clock. If we define
Ty (resp. Tz) being the set of timestamps perceived by correct processes for command ¢y (resp.
¢a). Then, ¥Vt € Ty,u € Ty, order(t) < order(u) = ¢1 < c2, where ¢; < co indicates that ¢;
executes before co at all correct processes.

Algorithm 1 Order Agreement.

1: order-agreement(c, T):

2: decide-round(c,0,T) — decided-0 || decide-round(c, 1,T) — decided-1 D> execute concurrently
3 if decided-0 then

4. return 0 > decide 0 as ordering indicator
5: else if decided-1 then

6: return 1 > decide 1 as ordering indicator
7 r<4—2 > start with round 2
8 loop:

9: decide—round(c, T, T) — decided-r [> binary consensus to adopt r as ordering indicator
10: if decided-r then
11: return r > ordering indicator r decided
12: decide—backtrack(c, T, T) — backtrack-order > can a lower ordering indicator be decided
13: if backtrack-order 1 then
14: return backtrack-order D> backtrack decided
15: r—r-+1 > increment the round number

Backtracking. A network adversary could prevent correct processes from reaching agreement,
until the round number goes beyond a value that would result in an ordering indicator that
would be correctly bounded. The backtracking mechanism enables processes to decide an
ordering indicator that is lower than the current round number. This is done by a rotating
coordinator that proposes a lower ordering indicator, justified by a set of 2f 4+ 1 signed
timestamps. Processes then execute an instance of binary consensus to decide whether the
value of the coordinator can be adopted. If this binary consensus outputs 1, then the value of
the coordinator is adopted, and the backtrack agreement returns the value of the coordinator
at line 12.

Application to Blockchains. A blockchain [10] is a ledger consisting of a totally ordered
set of transactions organized in a chain of blocks. The Red Belly Blockchain [5] ensures
censorship-resistance, a notion of fairness different from Kelkar et al’s [8] that ensures that
a transaction submitted by a correct process gets eventually executed, however, it does
not impose that two transactions perceived in a specific order by all correct processes are
executed in the same order. In particular, for each block, processes carry an instance of
binary consensus on the transaction proposal of each process, so that the decided block is a
subset of the transactions proposed by all processes. Our order agreement algorithm can be
used to sequence transaction proposals in each block, where instead of executing the decided
transaction proposals in a lexicographical order, proposals are sequenced using a decided
ordering indicator. Concurrently to the binary consensus to decide whether a proposal is
included in a block, we execute the order agreement to decide an ordering indicator for the
proposal. In the fast path, after 6 message delays, both the agreement on the inclusion
of the proposal in the block, and the agreement on its ordering indicator have terminated.
This parallelism is key to speedup the alternatives of executing a pre-protocol before a
consensus [12] or an atomic broadcast [9].

63:3

DISC 2021

63:4

Brief Announcement: Fast Ordered Byzantine Consensus

—— References

1

10

11

12

Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazic, Pierre Tholoniat, and Josef
Widder. Compositional Verification of Byzantine Consensus. Technical Report hal-03158911,
HAL, March 2021. URL: https://hal.archives-ouvertes.fr/hal-03158911/file/paper.
pdf.

Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130-143, 1987.

Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Matteo Monti, Matej
Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, Andrei Tonkikh, and Athanasios
Xygkis. Online payments by merely broadcasting messages. In Proceedings of the 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages
26-38, 2020.

Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: Efficient leaderless
Byzantine consensus and its applications to blockchains. In Proceedings of the IEEE 17th
International Symposium on Network Computing and Applications (NCA), pages 1-8, 2018.
Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red Belly: A secure, fair and scalable
open blockchain. In Proceedings of the 42nd IEEE Symposium on Security and Privacy (SE&P),
pages 466483, 2021.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz
Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In Proceedings of the 2020 IEEE Symposium on
Security and Privacy (S€P), pages 910-927, 2020.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):pp.288-323, 1988.

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for Byzantine
consensus. In Annual International Cryptology Conference (CRYPTO), pages 451-480, 2020.
Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for blockchains.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies (AFT),
pages 25-36, 2020.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https:
//bitcoin.org/bitcoin.pdf.

Christopher Natoli and Vincent Gramoli. The blockchain anomaly. In Proceedings of the
15th IEEE International Symposium on Network Computing and Applications (NCA), pages
310-317, 2016.

Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine ordered
consensus without Byzantine oligarchy. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 633-649, 2020.

https://hal.archives-ouvertes.fr/hal-03158911/file/paper.pdf
https://hal.archives-ouvertes.fr/hal-03158911/file/paper.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

