
Locally Checkable Labelings with Small Messages
Alkida Balliu #

Universität Freiburg, Germany

Keren Censor-Hillel #

Technion, Haifa, Israel

Yannic Maus #

Technion, Haifa, Israel

Dennis Olivetti #

Universität Freiburg, Germany

Jukka Suomela #

Aalto University, Finland

Abstract
A rich line of work has been addressing the computational complexity of locally checkable labelings
(LCLs), illustrating the landscape of possible complexities. In this paper, we study the landscape of
LCL complexities under bandwidth restrictions. Our main results are twofold. First, we show that
on trees, the CONGEST complexity of an LCL problem is asymptotically equal to its complexity in
the LOCAL model. An analog statement for non-LCL problems is known to be false. Second, we
show that for general graphs this equivalence does not hold, by providing an LCL problem for which
we show that it can be solved in O(log n) rounds in the LOCAL model, but requires Ω̃(n1/2) rounds
in the CONGEST model.
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1 Introduction

Two standard models of computing that have been already used for decades to study
distributed graph algorithms are the LOCAL model and the CONGEST model [36]. In the
LOCAL model, each node in the network can send arbitrarily large messages to each neighbor
in each round, while in the CONGEST model the nodes can only send small messages (we
will define the models in Section 2). In general, being able to send arbitrarily large messages
can help a lot: there are graph problems that are trivial to solve in the LOCAL model and
very challenging in the CONGEST model, and this also holds in trees.

Nevertheless, we show that there is a broad family of graph problems – locally checkable
labelings or LCLs in short – in which the two models of computing have exactly the same
expressive power in trees (up to constant factors): if a locally checkable labeling problem Π
can be solved in trees in T (n) communication rounds in the LOCAL model, it can be solved
in O(T (n)) rounds also in the CONGEST model. We also show that this is no longer the
case if we switch from trees to general graphs:
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8:2 Locally Checkable Labelings with Small Messages

LCL problems General problems
(our work) (prior work)

Trees: CONGEST = LOCAL CONGEST ̸= LOCAL
General graphs: CONGEST ̸= LOCAL CONGEST ̸= LOCAL

Locally Checkable Labelings. The study of the distributed computational complexity
of locally checkable labelings (LCLs) in the LOCAL model was initiated by Naor and
Stockmeyer [34] in the 1990s, but this line of research really took off only in the recent
years [3–12,14,15,17,21–23,35].

LCLs are a family of graph problems: an LCL problem Π is defined by listing a finite set
of valid labeled local neighborhoods. This means that Π is defined on graphs of some finite
maximum degree ∆, and the task is to label the vertices and/or edges with labels from some
finite set so that the labeling satisfies some set of local constraints (see Section 2 for the
precise definition).

A simple example of an LCL problem is the task of coloring a graph of maximum degree ∆
with ∆+1 colors (here valid local neighborhoods are all properly colored local neighborhoods).
LCLs are a broad family of problems, and they contain many key problems studied in the
field of distributed graph algorithms, including graph coloring, maximal independent set and
maximal matching.

Classification of LCL problems. One of the key questions related to the LOCAL model
has been this: given an arbitrary LCL problem Π, what can we say about its computational
complexity in the LOCAL model (i.e., how many rounds are needed to solve Π)? It turns
out that we can say quite a lot. There are infinitely many distinct complexity classes, but
there are also some wide gaps between the classes – for example, if Π can be solved with a
deterministic algorithm in o(log n) rounds, it can also be solved in O(log∗ n) rounds [22].

Furthermore, some parts of the classification are decidable: for example, in the case of
rooted trees, we can feed the description of Π to a computer program that can determine the
complexity of Π in the LOCAL model [8]. The left part of Figure 1 gives a glimpse of what is
known about the landscape of possible complexities of LCL problems in the LOCAL model.

However, this entire line of research has been largely confined to the LOCAL model. Little
is known about the general structure of the landscape of LCL problems in the CONGEST
model. In some simple settings (in particular, paths, cycles, and rooted trees) it is known
that the complexity classes are the same between the two models [8, 24], but this has been a
straightforward byproduct of work that has aimed at classifying the problems in the LOCAL
model. What happens in the more general case has been wide open – the most interesting
case for us is LCL problems in (unrooted) trees.

Prior work on LCLs in trees. In the case of trees, LCL problems are known to exhibit
a broad variety of different complexities in the LOCAL model. For example, for every
k = 1, 2, 3, . . . there exists an LCL problem whose complexity in the LOCAL model is exactly
Θ(n1/k) [23]. There are also problems in which randomness helps exponentially: for example,
the sinkless orientation problem belongs to the class of problems that requires Θ(log n)
rounds for deterministic algorithms and only Θ(log log n) rounds for randomized algorithms
in the LOCAL model [17,22]. Until very recently, one open question related to LCLs in trees
remained: whether there are any problems in the region between ω(1) and o(log∗ n); there is
now a (currently unpublished) result [16] that shows that no such problems exist, and this
completed the classification of LCLs in trees in the LOCAL model.
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Figure 1 The landscape of LCL problems in the LOCAL and CONGEST models.

Prior work separating CONGEST and LOCAL. In the LOCAL model, all natural graph
problems can be trivially solved in O(n) rounds and also in O(D) rounds, where D is the
diameter of the input graph: in O(D) rounds all nodes can gather the full information on
the entire input graph.

However, there are many natural problems that do not admit O(D)-round algorithms
in the CONGEST model. Some of the best-known examples include the task of finding
an (approximate) minimum spanning tree, which requires Ω̃(

√
n + D) rounds [26, 37, 38],

and the task of computing the diameter, which requires Ω̃(n) rounds [1, 30]. There are
also natural problems that do not even admit O(n)-round algorithms in the CONGEST
model. For example, finding an exact minimum vertex cover or dominating set requires
Ω̃(n2) rounds [2, 19].

Moreover, separations also hold in some cases where the LOCAL complexity is constant:
One family of such problems is that of detecting subgraphs, for which an extreme example is
that for any k there exists a subgraph of diameter 3 and size O(k), which requires Ω(n2−1/k)
rounds to detect in CONGEST, even when the network diameter is also 3 [29]. Another
example is spanner approximations, for which there is a constant-round O(nϵ)-approximation
algorithm in the LOCAL model [13], but Ω̃(n1/2−ϵ/2) rounds are needed in the CONGEST
model (and even Ω̃(n1−ϵ/2) rounds for deterministic algorithms) [18]. Separations hold also
in trees: all-pairs shortest-paths on a star can be solved in 2 LOCAL rounds, but requires
Ω̃(n) CONGEST rounds [19,33].

While these lower bound results do not have direct implications in the context of LCL
problems, they show that there are many natural settings in which the LOCAL model is
much stronger than the CONGEST model.

1.1 Our Contributions
We show that

LOCAL = CONGEST for LCL problems in trees.

DISC 2021
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Not only do we have the same round complexity classes, but every LCL problem has the same
asymptotic complexity in the two models. In particular, our result implies that all prior
results related to LCLs in trees hold also in the CONGEST model. For example all decidability
results for LCLs in trees in the LOCAL model hold also in the CONGEST model; this includes
the decidable gaps in [23] and [21]. We also show that the equivalence holds not only if we
study the complexity as a function of n, but also for problems with complexity Θ(D).

Given the above equality, one could conjecture that the LOCAL model does not have any
advantage over the CONGEST model for any LCL problem. We show that this is not the
case: as soon as we step outside the family of trees, we can construct an example of an LCL
problem that is solvable in polylog n rounds in the LOCAL model but requires Ω(

√
n) rounds

in the CONGEST model. In summary, we show that

LOCAL ̸= CONGEST for LCL problems in general graphs.

Here “general graphs” refers to general bounded-degree graphs, as each LCL problem comes
with some finite maximum degree ∆. We summarize our main results in Figure 1.

Open questions. The main open question after the present work is how wide the gap
between CONGEST and LOCAL can be made in general graphs. More concretely, it is an
open question whether there exists an LCL problem that is solvable in O(log n) rounds in
the LOCAL model but requires Ω(n) rounds in the CONGEST model.

1.2 Road Map, Key Techniques, and New Ideas
We prove the equivalence of LOCAL and CONGEST in trees in Sections 3–5, and we show
the separation between LOCAL and CONGEST in general graphs in Section 6. We start in
Section 3 with some basic facts in the O(log n) regime that directly follow from prior work.
The key new ideas are in Sections 4–6.

Equivalence in trees: superlogarithmic region (Section 4). The first major challenge is
to prove that any LCL with some sufficiently high complexity T (n) in the LOCAL model in
trees has exactly the same asymptotic complexity Θ(T (n)) also in the CONGEST model. A
natural idea would be to show that a given LOCAL model algorithm A can be simulated
efficiently in the CONGEST model. However, this is not possible in general – the proof has to
rely somehow on the property that A solves an LCL problem.

Instead of a direct simulation approach, we use as a starting point prior gap results related
to LCLs in the LOCAL model. A typical gap result in trees can be phrased as follows, for
some T2 ≪ T1:

Given: a T1(n)-round algorithm A1 that solves some LCL Π in trees in the LOCAL model.
We can construct: a T2(n)-round algorithm A2 that solves it in the LOCAL model.

We amplify the gap results so that we arrive at theorems of the following form – note that
we not only speed up algorithms but also switch to a weaker model:

Given: a T1(n)-round algorithm A1 that solves some LCL Π in trees in the LOCAL model.
We can construct: a T2(n)-round algorithm A′

2 that solves it in the CONGEST model.
At first, the entire approach may seem hopeless: clearly A′

2 has to somehow depend on
A1, but how could a fast CONGEST-model algorithm A′

2 possibly make any use of a slow
LOCAL-model algorithm A1 as a black box? Any attempts of simulating (even a small
number of rounds) of A1 seem to be doomed, as A1 might use large messages.
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We build on the strategy that Chang and Pettie [23] and Chang [21] developed in the
context of the LOCAL model. In their proofs, A2 does not make direct use of A1 as a black
box, but mere existence of A1 guarantees that Π is sufficiently well-behaved in the sense that
long path-like structures can be labeled without long-distance coordination.

This observation served as a starting point in [21,23] for the development of an efficient
LOCAL model algorithm A2 that finds a solution that is possibly different from the solution
produced by A1, but it nevertheless satisfies the constraints of problem Π. However, A2
obtained with this strategy abuses the full power of large messages in the LOCAL model.

Hence while our aim is at understanding the landscape of computational complexity,
we arrive at a concrete algorithm design challenge: we need to design a CONGEST-model
algorithm A′

2 that solves essentially the same task as the LOCAL-model algorithm A2 from
prior work, with the same asymptotic round complexity. We present the new CONGEST-
model algorithm A′

2 in Section 4 (more precisely, we develop a family of such algorithms,
one for each gap in the complexity landscape).

Equivalence in trees: sublogarithmic region (Section 5). The preliminary observations in
Section 3 cover the lowest parts of the complexity spectrum, and Section 4 covers the higher
parts. To complete the proof of the equivalence of CONGEST and LOCAL in trees we still
need to show the following result:

Given: a randomized o(log n)-round algorithm A1 that solves some LCL Π in trees in the
LOCAL model.
We can construct: a randomized O(log log n)-round algorithm A′

2 that solves it in the
CONGEST model.

If we only needed to construct a LOCAL-model algorithm, we could directly apply the strategy
from prior work [20, 23]: replace A1 with a faster algorithm A0 that has got a higher failure
probability, use the Lovász local lemma (LLL) to show that A0 nevertheless succeeds at
least for some assignment of random bits, and then plug in an efficient distributed LLL
algorithm [20] to find such an assignment of random bits.

However, there is one key component missing if we try to do the same in the CONGEST
model: a sufficiently fast LLL algorithm. Hence we again arrive at a concrete algorithm
design challenge: we need to develop an efficient CONGEST-model algorithm that solves
(at least) the specific LLL instances that capture the task of finding a good random bit
assignments for A0.

We present our new algorithm in Section 5. We make use of the shattering framework
of [28], but one of the key new ideas is that we can use the equivalence results for the
superlogarithmic region that we already proved in Section 4 as a tool to design fast CONGEST
model algorithms also in the sublogarithmic region.

Separation in general graphs (Section 6). Our third major contribution is the separation
result between CONGEST and LOCAL for general graphs – and as we are interested in proving
such a separation for LCLs, we need to prove the separation for bounded-degree graphs.

Our separation result is constructive – we show how to design an LCL problem Π with
the following properties:
(a) There is a deterministic algorithm that solves Π in the LOCAL model in O(log n) rounds.
(b) Any algorithm (deterministic or randomized) that solves Π in the CONGEST model

requires Ω(
√

n/ log2 n) rounds.
To define Π, we first construct a graph family G and an LCL problem Πreal such that Πreal

would satisfy properties (a) and (b) if we promised that the input comes from family G. Here
we use a bounded-degree version of the lower-bound construction by [38]: the graph has a

DISC 2021
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small diameter, making all problems easy in LOCAL, but all short paths from one end to
the other pass through the top of the structure, making it hard to pass a large amount of
information across the graph in the CONGEST model.

However, the existence of LCL problems that have a specific complexity given some
arbitrary promise is not yet interesting – in particular, LCLs with an arbitrary promise do
not lead to any meaningful complexity classes or useful structural theorems. Hence the key
challenge is eliminating the promise related to the structure of the input graph. To do that,
we introduce the following LCL problems:

Πproof is a distributed proof for the fact G ∈ G. That is, for every G ∈ G, there exists a
feasible solution X to Πproof , and for every G /∈ G, there is no solution to Πproof . This
problem can be hard to solve.
Πbad is a distributed proof for the fact that a given labeling X is not a valid solution to
Πproof . This problem has to be sufficiently easy to solve in the LOCAL model whenever
X is an invalid solution (and impossible to solve whenever X is a valid solution).

Finally, the LCL problem Π captures the following task:
Given a graph G and a labeling X, solve either Πreal or Πbad.

Now given an arbitrary graph G (that may or may not be from G) and an arbitrary labeling
X (that may or may not be a solution to Πproof), we can solve Π efficiently in the LOCAL
model as follows:

If X is not a valid solution to Πproof , we will detect it and we can solve Πbad.
Otherwise X proves that we must have G ∈ G, and hence we can solve Πreal.

Particular care is needed to ensure to that even for an adversarial G and X, at least one of
Πreal and Πbad is always sufficiently easy to solve in the LOCAL model. A similar high-level
strategy has been used in prior work to e.g. construct LCL problems with a particular
complexity in the LOCAL model, but to our knowledge the specific constructions of G, Πreal,
Πproof , and Πbad are all new – we give the details of the construction in Section 6.

2 Preliminaries & Definitions

Formal LCL definition. An LCL problem Π is a tuple (Σin, Σout, C, r) satisfying the following.
Both Σin and Σout are constant-size sets of labels;
The parameter r is an arbitrary constant, called checkability radius of Π;
C is a finite set of pairs (H = (V H , EH), v), where:

H is a graph, v is a node of H, and the radius of v in H is at most r;
Every pair (v, e) ∈ V H × EH is labeled with a label in Σin and a label in Σout.

Solving a problem Π means that we are given a graph where every node-edge pair is labeled
with a label in Σin, and we need to assign a label in Σout to each node-edge pair, such that
every r-radius ball around each node is isomorphic to a (labeled) graph contained in C. We
may use the term half-edge to refer to a node-edge pair.

LOCAL model. In the LOCAL model [31], we have a connected input graph G with n

nodes, which communicate unbounded-size messages in synchronous rounds according to
the links that connect them, initially known only to their endpoints. A trivial and well-
known observation is that a T -round algorithm can be seen as a mapping from radius-T
neighborhoods to local outputs.
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CONGEST model. The CONGEST model is in all other aspects identical to the LOCAL
model, but we limit the message size: in a network with n nodes, the size of each message is
limited to at most O(log n) bits [36].

Randomized algorithms. We start by formally defining what is a randomized algorithm in
our context. We consider randomized Monte Carlo algorithms, that is, the bound on their
running time holds deterministically, but they are only required to produce a valid solution
with high probability of success.

▶ Definition 1 (Randomized Algorithm). A randomized algorithm A run with parameter n,
written as A(n), (known to all nodes) has runtime tA(n) and is correct with probability 1/n

on any graph with at most n nodes. There are no unique IDs. Further, we assume that there
is a finite upper bound hA(n) ∈ N on the number of random bits that a node uses on a graph
with at most n vertices.

The local failure probability of a randomized algorithm A at a node v when solving an
LCL is the probability that the LCL constraint of v is violated when executing A.

The assumption that the number of random bits used by a node is bounded by some
(arbitrarily fast growing) function h(n) is made in other gap results in the LOCAL model
as well (see e.g. “the necessity of graph shattering” in [22]). Our results do not care about
the growth rate of h(n), e.g., it could be doubly exponential in n or even growing faster. Its
growth rate only increases the leading constant in our runtime.

The assumption that randomized algorithms are not provided with unique IDs is made
to keep our proofs simpler, but it is not a restriction. In fact, any randomized algorithm can,
in 0 rounds, generate an ID assignment, where IDs are unique with high probability. Hence,
any algorithm that requires unique IDs can be converted into an algorithm that does not
require them, by first generating them and then executing the original algorithm. The ID
generation phase may fail, and the algorithm may not even be able to detect it and try to
recover from it, but this failure probability can be made arbitrarily small, by making the ID
space large enough. Hence, we observe the following.

▶ Observation 2. Let c ≥ 1 be a constant. For any randomized Monte Carlo algorithm with
failure probability at most 1/nc on any graph with at most n nodes that relies on IDs from
an ID space of size nc+2 there is a randomized Monte Carlo algorithm with failure probability
2/nc that does not use unique IDs.

Deterministic algorithms. Differently from randomized algorithms, deterministic ones are
not allowed to use randomness, and nodes are instead equipped with unique identifiers.

▶ Definition 3 (Deterministic Algorithm). A deterministic algorithm A run with parameter n,
written as A(n), (known to all nodes) has runtime tA(n) and is always correct on any graph
with at most n nodes. We assume that vertices are equipped with unique IDs from a space of
size S. We require that a single ID can be sent in a CONGEST message. If the parameter S
is omitted, then it is assumed to be nc, for some constant c ≥ 1.

3 Warm-Up: The O(log n) Region

As a warm-up, we consider the regime of sublogarithmic complexities. In this region, we can
use simple observations to show that gaps known for LCL complexities in the LOCAL model
directly extend to the CONGEST model as well. Note that the results in this sections are
immediate corollaries of previous work. In the following, we assume that the size of the ID
space S is polynomial in n.

DISC 2021
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We start by noticing that a constant time (possibly randomized) algorithm for the LOCAL
model implies a constant time deterministic algorithm for the CONGEST model as well.

▶ Theorem 4 (follows from [23, 34]). Let Π be an LCL problem. Assume that there is
a randomized algorithm for the LOCAL model that solves Π in O(1) rounds with failure
probability at most 1/n. Then, there is a deterministic algorithm for the CONGEST model
that solves Π in O(1) rounds.

Proof. It is known that, the existence of a randomized O(1)-round algorithm solving Π in
the LOCAL model with failure probability at most 1/n implies the existence of a deterministic
algorithm solving Π in the LOCAL model in O(1) rounds [23,34].

Also, it is known that any algorithm A running in T rounds in the LOCAL model can be
normalized, obtaining a new algorithm A′ that works as follows: first gather the T -radius
ball neighborhood, and then, without additional communication, produce an output. Since
∆ = O(1), algorithm A′ can be simulated in the CONGEST model. ◀

We can use Theorem 4 to show that, if we have algorithms that lie inside know complexity
gaps of the LOCAL model, we can obtain fast algorithms that work in the CONGEST model
as well.

▶ Corollary 5. Let Π be an LCL problem. Assume that there is a randomized algorithm
for the LOCAL model that solves Π in o(log log∗ n) rounds with failure probability at most
1/n. Then, there is a deterministic algorithm for the CONGEST model that solves Π in O(1)
rounds.

Proof. In the LOCAL model, it is known that an o(log log∗ n)-round randomized algorithm
implies an O(1)-round deterministic algorithm [23,34]. Then, by applying Theorem 4 the
claim follows. ◀

While Corollary 5 holds for any graph topology, in trees, paths and cycles we obtain a
better result.

▶ Corollary 6. Let Π be an LCL problem on trees, paths, or cycles. Assume that there is a
randomized algorithm for the LOCAL model that solves Π in o(log∗ n) rounds with failure
probability at most 1/n. Then, there is a deterministic algorithm for the CONGEST model
that solves Π in O(1) rounds.

Proof. In the LOCAL model, it is known that, on trees, paths, or cycles, an o(log∗ n)-round
randomized algorithm implies an O(1)-round deterministic algorithm [16, 34]. Then, by
applying Theorem 4 the claim follows. ◀

We now show that similar results hold even in the case where the obtained algorithm
does not run in constant time.

▶ Theorem 7 (follows from [22, 32]). Let Π be an LCL problem. Assume that there is a
deterministic algorithm for the LOCAL model that solves Π in o(log n) rounds, or a randomized
algorithm for the LOCAL model that solves Π in o(log log n) rounds with failure probability at
most 1/n. Then, there is a deterministic algorithm for the CONGEST model that solves Π in
O(log∗ n) rounds.

Proof. It is known that for solving LCLs in the LOCAL model, any deterministic o(log n)-round
algorithm or randomized o(log log n)-round algorithm can be converted into a deterministic
O(log∗ n)-round algorithm [22]. We exploit the fact that the speedup result of [22] produces
algorithms that are structured in a normal form. In particular, all problems solvable in
O(log∗ n) can also be solved as follows:
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1. Find a distance-k O(∆2k)-coloring, for some constant k.
2. Run a deterministic k rounds algorithm.
The first step can be implemented in the CONGEST model by using e.g. Linial’s coloring
algorithm [32]. Then, similarly as discussed in the proof of Theorem 4, any T rounds
algorithm can be normalized into an algorithm that first gathers a T -radius neighborhood
and then produces an output without additional communication. Hence, also the second
step can be implemented in the CONGEST model in O(k) = O(1) rounds. ◀

We use this result to show stronger results for paths and cycles.

▶ Corollary 8. Let Π be an LCL problem on paths or cycles. Assume that there is a randomized
algorithm for the LOCAL model that solves Π in o(n) rounds with failure probability at most
1/n. Then, there is a deterministic algorithm for the CONGEST model that solves Π in
O(log∗ n) rounds.

Proof. In the LOCAL model, it is known that, on paths and cycles, an o(n)-round randomized
algorithm implies an O(log∗ n)-round deterministic algorithm [22]. The claim follows by
applying Theorem 7. ◀

4 Trees: The Ω(log n) Region

In this section we prove that in the regime of complexities that are at least logarithmic,
the asymptotic complexity to solve any LCL on trees is the same in the LOCAL and in the
CONGEST model, when expressed as a function of n. Combined with the results proved
in Section 3 and Section 5, which hold in the sublogarithmic region, we obtain that the
asymptotic complexity of any LCL on trees is identical in LOCAL and CONGEST.

Polynomial and subpolynomial gaps on trees. Informally, the following theorem states
that there are no LCLs on trees with complexity between ω(log n) and no(1), and for any
constant integer k ≥ 1, between ω(n1/(k+1)) and o(n1/k), in both the CONGEST and LOCAL
models, and that the complexity of any problem is the same in both models.

▶ Theorem 9 (superlogarithmic gaps). Let T slow = {no(1)} ∪ {o(n1/k) | k ∈ N+}. For k ≥ 1,
let f(o(n1/k)) := O(n1/(k+1)). Also, let f(no(1)) := O(log n).

Let T ∈ T slow. Let Π be any LCL problem on trees that can be solved with a T -round
randomized LOCAL algorithm that succeeds with probability at least 1 − 1/n on graphs of
at most n nodes. The problem Π can be solved with a deterministic f(T )-round CONGEST
algorithm.

Given the description of Π it is decidable whether there is an f(T )-round deterministic
CONGEST algorithm, and if it is the case then it can be obtained from the description of Π.

▶ Remark 10. The deterministic complexity in Theorem 9 suppresses an O(log∗ |S|) depen-
dency on the size |S| of the ID space. Also, there is an absolute constant lΠ = O(1) such that
the CONGEST algorithm works even if, instead of unique IDs, a distance-lΠ input coloring
from a color space of size |S| is provided.

Note that gap theorems do not hold if one has promises on the input of the LCL. For
example, consider a path, where some nodes are marked and others are unmarked, and the
problem requires to 2-color unmarked nodes. If we have the promise that there is at least
one marked node every

√
n steps, then we obtain a problem with complexity Θ(

√
n), that

does not exist on paths for LCLs without promises on inputs.
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Since Theorem 9 shows how to construct CONGEST algorithms starting from LOCAL ones,
the existence of CONGEST problems with complexity Θ(n1/k) follows implicitly from the
existence of these complexities in the LOCAL model. In particular, Chang and Pettie devised
a series of problems that they name 2 1

2 -coloring [23]. These problems are parameterized by
an integer constant k > 1 and have complexity Θ(n1/k) on trees.

Diameter time algorithms. Additionally, we prove that a randomized diameter time LOCAL
algorithm is asymptotically not more powerful than a deterministic diameter time CONGEST
algorithm, when solving LCLs on trees. This result can be seen as an orthogonal result to
the remaining results that we prove for LCLs on trees, because the runtime is not expressed
as a function of n, but as a function of a different parameter, that is, the diameter of the
graph. While the result might be of independent interest, it mainly deals as a warm-up to
explain the proof of the technically more involved Theorem 9.

▶ Theorem 11 (diameter algorithms). Let Π be an LCL problem on trees that can be solved with
a randomized LOCAL algorithm running in O(D) rounds that succeeds with high probability,
where D is the diameter of the tree. The problem Π can be solved with a deterministic
CONGEST algorithm running in O(D) rounds. The CONGEST algorithm does not require
unique IDs but a means to break symmetry between adjacent nodes, that can be given by
unique IDs, an arbitrary input coloring, or an arbitrary orientation of the edges.

Any solvable LCL problem on trees can trivially be solved in the LOCAL model in O(D)
rounds by gathering the whole tree topology at a leader node, who then locally computes
a solution and distributes it to all nodes. Using pipelining, the same algorithm can be
simulated in the CONGEST model in O(D + n) = O(n) rounds, but this running time can
still be much larger than the O(D) running time obtainable in the LOCAL model. On a high
level, we show that for LCLs on trees, it is not required to gather the whole topology at a
single node and brute force a solution – gathering the whole information at a single node has
an Ω(n) lower bound even if the diameter is small.

Black-white formalism. In order to keep our proofs simple, we consider a simplified variant
of LCLs, called LCLs in the black-white formalism. The main purpose of this formalism is to
reduce the radius required to verify if a solution is correct. We will later show that, on trees,
the black-white formalism is in some sense equivalent to the standard LCL definition.

A problem Π is a tuple (Σin, Σout, CW , CB) satisfying the following.
Both Σin and Σout are constant-size sets of labels;
CB and CW are sets of multisets of pairs of labels, where each pair (i, o) satisfies i ∈ Σin
and o ∈ Σout.

Solving a problem Π means that we are given a bipartite two-colored graph where every edge
is labeled with a label in Σin, and we need to assign a label in Σout to each edge, such that
for every black (resp. white) node, the multiset of pairs of input and output labels assigned
to the incident edges is in CB (resp. CW ).

Node-edge formalism. The black-white formalism allows us to define problems also on
graphs that are not bipartite and two-colored, as follows. Given a graph G, we define a
bipartite graph H, where white nodes correspond to nodes of G, and black nodes correspond
to edges of G. A labeling of edges of H corresponds to a labeling of node-edge pairs of
G. The constraints CW of white nodes of H correspond to node constraints of G, and the
constraints CB of black nodes of H corresponds to edge constraints of G.
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Equivalence on trees. Clearly, any problem that can be defined with the node-edge
formalism can be also expressed as a standard LCL. Claim 12 states that the node-edge
formalism and the standard LCL formalism are in some sense equivalent, if we restrict to
trees.

▷ Claim 12. For any LCL problem Π with checkability radius r we can define an equivalent
node-edge checkable problem Π′. In other words, given a solution for Π′, we can find, in O(r)
rounds, a solution for Π, and vice versa.

By Claim 12, on trees, all LCLs can be converted into an equivalent node-edge checkable
LCL, and note that the node-edge formalism is a special case of the black-white formalism
where black nodes have degree 2. To make our proofs easier to read, in the rest of the section
we prove our results in the black-white formalism (where the degree of black nodes is 2), but
via Claim 12 all results also hold for the standard definition of LCLs. We start by proving
Theorem 11.

Proof of Theorem 11. Recall that in the black and white formalism nodes are properly
2-colored, input and output labels are on edges (that is, there is only one label for each
edge, and not one for each node-edge pair), and the correctness of a solution can be checked
independently by black and white nodes by just inspecting the labeling of their incident
edges. Assume we are given a tree. We apply the following algorithm, that is split into 3
phases.
1. Rooting the tree. By iteratively “removing” nodes with degree one from the tree, nodes

can produce an orientation that roots the tree in O(D) CONGEST rounds. This operation
can be performed even if, instead of IDs, nodes are provided with an arbitrary edge
orientation. In the same number of rounds, nodes can know their distance from the
(computed) root in the tree. We say that nodes with the same distance to the root are in
the same layer, where leaves are in layer 1, and the root is in layer L = O(D).

2. Propagate label-sets up. We process nodes layer by layer, starting from layer 1, that is,
from the leaves. Each leaf u of the tree tells its parent v which labels for the edge {u, v}
would make them happy. The set of these labels is what we call a label-set. A leaf u is
happy with a label if the label satisfies u’s LCL constraints in Π. Then, in round i, each
node v in layer i receives from all children the sets of labels that make them happy, and
tells to its parent w which labels for the edge {v, w} would make it happy, that is, it
also sends a label-set. Here v is happy with a label for the edge {v, w} if it can label all
the edges {{v, u} | u is a child of v} to its children such that all of its children are happy.
In other words, it must hold that for any element in the label-set sent by v to w, there
must exist a choice in the sets previously sent by the children of v to v, such that the
constraints of Π are satisfied at v. In O(D) rounds, this propagation of sets of label-sets
reaches the root of the tree.

3. Propagate final labels down. We will later prove that, if Π is solvable, then the root can
pick labels that satisfy its own LCL constraints and makes all of its children happy. Then,
layer by layer, in O(D) iterations, the vertices pick labels for all of their edges to their
children such that their own LCL constraints are satisfied and all their children are happy.
More formally, from phase 2 we know that, for any choice made by the parent, there
always exists a choice in the label-sets previously sent by the children, such that the LCL
constraints are satisfied on the node.

This algorithm can be implemented in O(D) rounds in CONGEST as the label-sets that are
propagated in the second phase are subsets of the constant size alphabet Σ. In the third
phase, each vertex only has to send one final label per outgoing edge to its children.
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Let Lv,u be the label-set received by node v from its child u. We now prove that, if Π is
solvable, then there is a choice of labels, in the label-sets received by the root, that makes the
root happy. Since Π is solvable, then there exists an assignment ϕ of labels to the edges of
the tree such that the constraints of Π are satisfied on all nodes. We prove, by induction on
the layer number j, that every edge {u, v} such that u is in layer j and v is the parent of u,
satisfies that ϕ({u, v}) ∈ Lv,u. For j = 1 the claim trivially holds, since leaves send to their
parent the set of all labels that make them happy. For j > 1, consider some node v in layer j.
Let u1, . . . , ud be its children. By the induction hypothesis it holds that ϕ({v, ui}) ∈ Lv,ui .
Let p be the parent of v (if it exists). Since ϕ is a valid labeling, and since it is true that
if the parent labels the edge {v, p} with label ϕ({v, p}) then v can pick something from its
sets Lv,ui and be happy, then the algorithm puts ϕ({v, p}) into the set Lp,v. Hence, every
set Lr,ui

received by the root r contains the label ϕ({r, ui}), implying that there is a valid
choice for the root. ◀

While this process is extremely simple, its runtime of O(D) rounds is rather slow. In order
to obtain the O(n1/k) and O(log n) CONGEST algorithms required for proving Theorem 9,
we need a more sophisticated approach. As done by prior work in [21,23], we decompose the
tree into fewer layers, and show that, the mere existence of a fast algorithm for the problem
implies that, similar to the algorithm of Theorem 11, it is sufficient to propagate constant
sized label-sets between the layers; thus we obtain a complexity that only depends on the
number of layers and their diameter. We proceed as follows.

5 Trees: o(log n) Randomized Implies O(log log n)

In this section we show that, on trees, any randomized algorithm solving an LCL problem Π in
o(log n) rounds can be transformed into a randomized algorithm that solves Π in O(log log n)
rounds. This implies that in the CONGEST model there is no LCL problem in trees with a
randomized complexity that lies between ω(log log n) and o(log n). Moreover, we show that
it is not necessary to start from an algorithm for the CONGEST model, but that a LOCAL
model one is sufficient. More formally, we will prove the following theorem.

▶ Theorem 13 (sublogarithmic gap). Let c ≥ 1 be a constant. Given any LCL problem Π, if
there exists a randomized algorithm for the LOCAL model that solves Π on trees in o(log n)
rounds with failure probability at most 1/n, then there exists a randomized algorithm for the
CONGEST model that solves Π on trees in O(log log n) rounds with failure probability at most
1/nc.

In Section 5 we present the high level idea of the proof of Theorem 13. The proof itself is
split into three subsections, for which a road map appears at the end of Section 5.

Proof Idea for Theorem 13
In the LOCAL model it is known that, on trees, there are no LCL problems with randomized
complexity between ω(log log n) and o(log n) [20, 23]. At a high level, we follow a similar
approach in our proof. However, while some parts of the proof directly work in the CONGEST
model, there are some challenges that need to be tackled in order to obtain an algorithm
that runs in O(log log n) that is actually bandwidth efficient. We now provide the high level
idea of our approach.

The standard approach: expressing the problem as an LLL instance. As in the LOCAL
model case, the high level idea is to prove that if a randomized algorithm for an LCL problem
Π runs in o(log n) rounds, then we can make it run faster at the cost of increasing its failure
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probability. In this way, we can obtain a constant time algorithm A0 at the cost of a very
large failure probability. This partially gives what we want: we need a fast algorithm with
small failure probability, and now we have a very fast algorithm with large failure probability.
One way to fix the failure probability issue is to derandomize the algorithm A0, that is,
to find a random bit assignment satisfying that if we run the algorithm with this specific
assignment of random bits then the algorithm does not fail. Ironically, we use a randomized
algorithm to find such a random bit assignment.

▶ Lemma 14 (informal version). For any problem Π solvable in o(log n) rounds with a
randomized LOCAL algorithm having failure probability at most 1/n, there exists a constant
time LOCAL algorithm A0 that solves Π with constant local failure probability p.

It turns out that the problem itself of finding a good assignment of random bits such that
the constant time algorithm A0 does not fail can be formulated as a Lovász Local Lemma
(LLL) instance. In an LLL instance there are random variables and a set of bad events that
depend on these variables. The famous Lovász Local Lemma [27] states that if the probability
of each bad event is upper bounded by p, each bad event only shares variables with d other
events and the LLL criterion epd < 1 holds, then there exists an assignment to the variables
that avoids all bad events (a more formal treatment of the Lovász Local Lemma is contained
in the full version). In our setting, the random variables are given by the random bits used
by the vertices and each vertex v has a bad event Ev that holds if the random bits are such
that v’s constraints in Π are violated if A0 is executed with these random bits. We show
that a large polynomial LLL criterion – think of p(ed)30 < 1 – holds. Thus, the Lovász Local
Lemma implies that there exist good random bits such the LCL constraints of Π are satisfied
for all nodes when using these bits in A0. In the LOCAL model it is known how to solve
an LLL problem with such a strong LLL criterion efficiently. We show that the same holds
in the CONGEST model, i.e., O(log log n) CONGEST rounds are sufficient to find a good
assignment of random bits. We point out that we do not give a general LLL algorithm in the
CONGEST model but an algorithm that is tailored for the specific instances that we obtain.
The constant time algorithm A0 executed with these random bits does not fail at any node.

We summarize the high level approach as follows: Given an LCL problem Π defined
on trees and an o(log n)-rounds randomized algorithm A for Π, we obtain a constant time
algorithm A0 for Π and a new problem Π′ of finding good random bits for A0. Problem
Π′ is defined on the same graph as problem Π. The algorithm A0 and the problem Π′ only
depend on Π and A. We show that Π′ is also an LCL problem. In problem Π′ each node of
the tree needs to output a bit string such that if the constant time algorithm A0 is run with
the computed random bits, the problem Π is solved. We will show that Π′ can be solved in
O(log log n) rounds, and note that once Π′ is solved, one can run A(n0) for t0 = tA0 = O(1)
rounds to solve Π.

▶ Lemma 15 (informal version). The problem Π′, that is, the problem of finding a good
assignment of random bits that allows us to solve Π in constant time, can be solved in
O(log log n) rounds in the CONGEST model.

Problem Π′ is defined on the same tree as Π but problem Π′ has checking radius r + t0.
Thus, the dependency graph of the LLL instance is a power graph of the tree, or in other
words the LLL instance is tree structured. Hence, in the LOCAL model, Π′ can be solved in
O(log log n) rounds by using a O(log log n) randomized LOCAL algorithm for tree structured
LLL instances [20]. We cannot do the same here, as it is not immediate whether this
algorithm works in the CONGEST model (it is only clear that its shattering phase works in
CONGEST).
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The shattering framework. Our main contribution is showing how to solve Π′ in O(log log n)
rounds in a bandwidth-efficient manner. To design an O(log log n)-round algorithm for Π′, we
apply the shattering framework for LLL of [28], that works as follows. After a precomputation
phase of O(log∗ n) rounds, the shattering process uses poly ∆ = O(1) rounds (the exponent
depends on t0 and the checking radius of the LCL) to determine the random bits of some of
the nodes. The crucial property is that all nodes with unset random bits form small connected
components of size N = poly(∆) · log n = O(log n); in fact, even all nodes that are close to
nodes with unset random bits form small connected components C1, . . . , Ck. Furthermore,
each connected component can be solved (independently) with an LLL procedure as well,
with a slightly tighter polynomial criterion (e.g., p(ed)15 < 1). Note that, in order to solve
these smaller instances, we need to use a deterministic algorithm.This is because, if we
try to recursively apply a randomized LLL algorithm on the smaller instances (e.g. by
using the randomized LOCAL algorithm of [25]) we get that each component can be solved
independently in O(log N) rounds, but with failure probability 1/ poly N ≫ 1/n.

Our main contribution: solving the small instances in a bandwidth efficient manner. Since
it seems that we cannot directly use an LLL algorithm to solve the small remaining instances
C1, . . . , Ck, we follow a different route. We devise a deterministic CONGEST algorithm that
we can apply on each of the components in parallel: In Theorem 9 we prove that, on trees,
any randomized algorithm running in no(1) rounds (subpolynomial in the number of nodes)
in the LOCAL model can be converted into a deterministic algorithm running in O(log n)
in the CONGEST model. We use this result here, to show that, the mere existence of the
randomized LOCAL algorithm of [25], that fails with probability at most 1/ poly N and runs
in O(log N) rounds in the LOCAL model, which fits the runtime requirement of Theorem 9,
implies that Π′ can be solved in O(log N) = O(log log n) CONGEST rounds deterministically
on the components induced by unset bits. To apply Theorem 9 that only holds for LCL
problems, we express the problem of completing the partial random bit assignment as a
problem Π′′, that intuitively is almost the same problem as Π′, but allows some nodes to
already receive bit strings as their input. We show that Π′′ is a proper LCL.

Formally, there are several technicalities that we need to take care of. In particular, we do
not want to provide any promises on the inputs of Π′′, as Theorem 9 does not hold for LCLs
with promises on the input. For example, we cannot guarantee in the LCL definition that the
provided input, that is, the partial assignment of random bits, can actually be completed
into a full assignment that is good for solving Π. On the other hand, if we just defined Π′′

as the problem of completing a partial given bit string assignment, it might be unsolvable
for some given inputs, and this would imply that an no(1) time algorithm for this problem
cannot exist to begin with, thus there would be no way to use Theorem 9.

In order to solve this issue, we define Π′′ such that it can be solved fast even if the input is
not nice (for some technical definition of nice). In particular, we make sure, in the definition
of Π′′, that if the input is nice then the only way to solve Π′′ is to actually complete the
partial assignment, while if the input is not nice, and only in this case, nodes are allowed to
output wildcards ⋆; the constraints of nodes that see wildcards in their checkability radius are
automatically satisfied. This way the problem is always solvable. For an efficient algorithm,
we make sure that nodes can verify in constant time if a given input assignment is nice or
not. We also show that inputs produced for Π′′ in the shattering framework are always nice.
The definition of Π′′ and the provided partial assignment allows us to split the instance of
Π′ into many independent instances of Π′′ of size N = O(log n). By applying Theorem 9
we get that [25] implies the existence of a deterministic CONGEST algorithm B for Π′′ with
complexity O(log N) = O(log log n).
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▶ Lemma 16 (informal version). There is a deterministic CONGEST algorithm to solve Π′′

on any tree with at most N nodes in O(log N) rounds, regardless of the predetermined input.

We apply algorithm B on each of the components C1, . . . , Ck in parallel, and the solution
of Π′′ on each small components together with the random bit strings from the shattering
phase yield a solution for Π′. This can then be transformed into a solution for Π on the
whole tree by running the constant time algorithm A0 with the computed random bits, which
completes our task and proves Theorem 13.

6 Separation for General Graphs

In this section we define an LCL problem Π on general bounded-degree graphs, and show
that, while Π can be solved deterministically in O(log n) rounds in the LOCAL model, any
randomized CONGEST algorithm requires Ω(

√
n/ log2 n) rounds. On a high level, the section

is structured as follows. We start by formally defining a family G of graphs of interest, and
then we present a set Cproof of local constraints, satisfying that a graph G is in G if and
only if it can be labeled with labels from a constant-size set, such that all nodes satisfy the
constraints in Cproof . We then define our LCL Π in the following way:

there is a problem Πreal such that, on any correctly labeled graph G ∈ G, nodes must
solve Πreal;
on any labeled graph G /∈ G, nodes can either output a locally checkable proof that shows
that there exists a node in G that does not satisfy some constraint in Cproof (by solving
some LCL problem that we call Πbad), or solve Πreal (if possible).

Finally, we show lower and upper bounds for Π in the CONGEST and LOCAL model
respectively. The challenging part is to express all these requirements as a proper LCL, while
preventing nodes from “cheating”, that is, on all graphs G ∈ G, it must not be possible for
nodes to provide a locally checkable proof showing that G is not in G, while for any graph
G ̸∈ G it should be possible to produce such a proof within the required running time.

Informally, the graphs contained in the family G of graphs look like the following: we
start from a 2-dimensional grid; we build a binary tree-like structure on top of each column
i, and let ri be the root of the tree-like structure in top of column i; we use another grid to
connect all left-most nodes of these trees; finally, we build on top of these ri nodes another
binary tree-like structure, where ri nodes are its leaves. Note that the graphs in G are
the bounded-degree variant of the lower bound family of graphs of Das Sarma et al. [38],
where we also add some edges that are necessary in order to make the construction locally
checkable.

More formally, we prove the following theorem.

▶ Theorem 17. There exists an LCL problem Π that can be solved in O(log n) deterministic
rounds in the LOCAL model, that requires Ω(

√
n/ log2 n) rounds in the CONGEST model,

even for randomized algorithms.
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