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Abstract
Covering arrays have become a key piece in Combinatorial Testing. In particular, we focus on the
efficient construction of Covering Arrays with Constraints of high strength. SAT solving technology
has been proven to be well suited when solving Covering Arrays with Constraints. However, the
size of the SAT reformulations rapidly grows up with higher strengths. To this end, we present a
new incomplete algorithm that mitigates substantially memory blow-ups. The experimental results
confirm the goodness of the approach, opening avenues for new practical applications.
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1 Introduction

Imagine that we want to test a system (a circuit, a program, a cloud application, an industrial
engine, a GUI, etc.) to detect errors, bugs, or faults. The System Under Test (SUT) is
in essence a black box with a set of input parameters P which take values into a finite
domain. These input parameters are assigned to a particular value and then the SUT is run
or executed. We assume the only observable output is whether the system crashed or not.

To validate the SUT is working properly, we can simply iteratively conduct a set of tests
(assignments of values to the input parameters) and check whether the SUT is working as
expected or not. In practice, when the SUT is run, even if we do not explicitly assign a
value to a given input parameter it will take its value by default or it will be automatically
assigned following some criterion.

Notice that the number of settings (possible tests) to the input parameters (the parameter
space) is

∏
p∈P gp ∈ O

(
g|P |) (where gp is the cardinality of the domain of parameter p and

g is the cardinality of the greatest domain) what yields a combinatorial explosion and makes
unrealistic to run the SUT under all the possible tests.

Combinatorial Testing (CT) [26] techniques aim to build test suites of a reasonable size
but yet powerful enough to cover most of the errors, bugs, or faults reported to frequently
arise. The point is that, in general, the errors are caused by the interaction of a relatively
small set of the parameters [22]. Notice that a single test covers

(|P |
t

)
interactions, where t
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12:2 Building High Strength Mixed Covering Arrays with Constraints

(referred to as the strength) is the number of parameters involved in the interaction. Therefore,
every time we evaluate the SUT under a given test we implicitly check or validate

(|P |
t

)
interactions of t parameters (referred to as t-tuples).

A test suite of size N for a SUT of P parameters that covers all the t-tuples is also
known as a Covering Array CA(N ; t, P ) of strength t. The minimum N for which there
exists a CA(N ; t, P ) is referred to as the Covering Array Number CAN(t, P ). Additionally,
notice that any test suite of size < CAN(t, P ) will not cover all t-tuples, but we may be still
interested in covering the maximum number of t-tuples with the number of tests our budget
can afford.

In this paper, we show how to build Mixed Covering Arrays with Constraints (MCACs)
of high strength. The term Mixed refers to the possibility of having parameter domains of
different sizes. The term Constraints refers to the existence of some parameter interactions
that are not allowed in the system. These forbidden interactions are usually implicitly
described by a set of SUT constraints. Therefore, the tests in our test suite must satisfy the
SUT constraints. In particular, the problem of computing an MCAC of minimum length is
NP-hard [24].

There exist several greedy approaches for building MCACs, such as PICT [13] (from
Microsoft), based on the OTAT framework [11], and ACTS [10] (used by more than 4000
corporate users and universities), based on the IPOG algorithm [14]. However, they are not
well suited in terms of handling SUT constraints and will scale poorly as the complexity or
hardness of the SUT constraints grows. This is why, here, we focus on constraint programming
based approaches; particularly, we work with Satisfiability (SAT) based approaches [9].

SAT technology provides a highly competitive generic problem approach for solving
decision and optimization problems. In particular, the decision problem to be solved is
translated to the SAT problem which determines whether there is an assignment to the
Boolean variables in a propositional formula in Conjunctive Normal Form (CNF) (set of
clauses) that satisfies the formula. Additionally, optimization problems can be translated
into the Maximum Satisfiability (MaxSAT) problem which is the optimization version of the
SAT problem.

The CALOT [30] tool for building MCACs is based on an incremental SAT solving
approach which iteratively decreases the upper bound on the size of the test suite, formulating
at every iteration as a SAT problem whether there exists an MCAC of size N , till CAN(t, P )
is reached. The CALOT approach is extended by recent work in [2] where a MaxSAT
formulation based on [4] is proposed allowing the application of the new generation of
complete and incomplete MaxSAT solvers [5]. The initial upper bound for these approaches
is computed through the application of the ACTS tool.

While these approaches may be efficient enough for testing some SUTs, the size of the
SAT or MaxSAT formulas required for building MCACs rapidly grows with the number of
tests and size of SUT constraints but mostly with the strength t taken into consideration.

Regarding the number of tests and size of the SUT constraints, the SAT and MaxSAT
formulations of the mentioned approaches need to incorporate at least N copies of the SUT
constraints where N is the size of the test suite we try to build. In this sense, if the ACTS
tool is not able to provide a good enough upper bound then other strategies need to be
taken into account since the trivial upper bound, as discussed, can be unaffordable in terms
of size. There are approaches like [29] (based on SAT and the domain-dependent PICT
heuristic) and [2] (based on MaxSAT) that mitigate this problem by iteratively constructing
the test suite, i.e. adding just one single test at a time that aims to maximize the number of
interactions covered so far 1. The addition of one single test guarantees we only deal with
one copy of the SUT constraints.

1 [2] can add more than one test at each iteration.
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Regarding the strength t, the size of the SAT/MaxSAT formulas into existing approaches
is proportional to the potential number of allowed interactions, i.e. O

((|P |
t

)
· gt

)
where g is

the cardinality of the greatest domain. Typical applications use values of t = 2 and barely
t = 3. However, the more complex the SUT is, the higher the probability that faulty or buggy
interactions be caused by a larger number of parameters. Therefore, we need to consider
higher values like t = 4 and t = 5, what clearly is a bottleneck for the mentioned SAT or
MaxSAT approaches.

Finally, there are other recent Constraint Programming approaches but they focus on
t = 2 ([17, 18]) or they do not allow SUT constraints ([21]).

In this paper, we show how we can build practical higher strength MCACs through SAT
technology without incurring in memory blow-ups. In particular, we first present a new
incomplete algorithm named (Refined Build One Test – Incremental Test Suite) RBOT-its,
inspired on Algorithm 5 in [29]. RBOT-its builds the MCAC test by test and optimizes
(refines) subsets of the incremental test suite built so far by applying a MaxSAT based
approach. Then, we present another incomplete algorithm named PRBOT-its (Pool-based
Refined Build One Test – Incremental Test Suite) that iteratively builds the MCAC while
simultaneously keeping in a memory pool just a fraction of all the possible t-tuples of the
SUT fulfilling the memory size requirements.

The paper is structured as follows. In Section 2 we introduce some definitions on Covering
Arrays, SAT and MaxSAT. Section 3 shows how the CAN(t, P ) problem can be encoded
to MaxSAT. Section 4 presents the BOT-its algorithm (Build One Test – Iterative Test
Suite), an algorithm that incrementally builds MCACs test by test. Section 5 presents
the RBOT-its algorithm that uses a MaxSAT approach to improve the BOT-its algorithm.
Section 6 describes the PRBOT-its algorithm that shows how to adapt RBOT-its to operate
on low memory requirements. In Section 7 we study how these approaches compare to the
ACTS tool. Finally, in Section 8 we conclude and mention some future work.

2 Preliminaries

We introduce some definitions related to Covering Arrays and SAT technology.

▶ Definition 1. A System Under Test (SUT) model is a tuple ⟨P, φ⟩, where P is a finite
set of variables p of finite domain, called SUT parameters, and φ is a set of constraints on
P , called SUT constraints, that implicitly represents the parameterizations that the system
accepts. We denote by d(p) and gp, respectively, the domain and the cardinality domain of p.
For the sake of clarity, we will assume that the system accepts at least one parameterization.

In the following, we assume S = ⟨P, φ⟩ to be a SUT model. We will refer to P as SP ,
and to φ as Sφ.

▶ Definition 2. An assignment is a set of pairs (p, v) where p is a variable and v is a value
of the domain of p. A test case for S is a full assignment A to the variables in SP such that
A entails Sφ (i.e. A |= Sφ) . A parameter tuple of S is a subset π ⊆ SP . A value tuple of S

is a partial assignment to SP ; in particular, we refer to a value tuple of length t as a t-tuple.

▶ Definition 3. A t-tuple τ is forbidden if τ does not entail Sφ (i.e. τ |= ¬Sφ). Otherwise,
it is allowed. We refer to the set of allowed t-tuples as Ta = {τ | τ ̸|= ¬Sφ}.

▶ Definition 4. A test case υ covers a value tuple τ if both assign the same domain value
to the variables in the value tuple, i.e., υ |= τ . A test suite Υ covers a value tuple τ (i.e.,
τ ⊆ Υ) if there exist a test case υ ∈ Υ s.t. υ |= τ . We refer to υ ̸|= τ (τ ̸⊆ Υ) when a test
case (test suite) does not cover τ .

CP 2021



12:4 Building High Strength Mixed Covering Arrays with Constraints

▶ Definition 5. A Mixed Covering Array with Constraints (MCAC), denoted by CA(N ; t, S),
is a set of N test cases for a SUT model S such that all t-tuples are at least covered by one
test case. The term Mixed reflects that the domains of the parameters in SP are allowed to
have different cardinalities. The term Constraints reflects that Sφ is not empty 2.

▶ Definition 6. The MCAC problem is to find an MCAC of size N .

▶ Definition 7. The Covering Array Number, CAN(t, S), is the minimum N for which there
exists an MCAC CA(N ; t, S). The Covering Array Number problem is to find an MCAC of
size CAN(t, S).

▶ Definition 8. A literal is a propositional variable x or a negated propositional variable ¬x.
A clause is a disjunction of literals. A Conjunctive Normal Form (CNF) is a conjunction of
clauses.

▶ Definition 9. A weighted clause is a pair (c, w), where c is a clause and w, its weight, is a
natural number or infinity. A clause is hard if its weight is infinity (or no weight is given);
otherwise, it is soft. A Weighted Partial MaxSAT instance is a multiset of weighted clauses.

▶ Definition 10. A truth assignment for an instance ϕ is a mapping that assigns to each
propositional variable in ϕ either 0 (False) or 1 (True). A truth assignment is partial if the
mapping is not defined for all the propositional variables in ϕ.

▶ Definition 11. A truth assignment I satisfies a literal x (¬x) if I maps x to 1 (0);
otherwise, it is falsified. A truth assignment I satisfies a clause if I satisfies at least one of
its literals; otherwise, it is violated or falsified. The cost of a clause (c, w) under I is 0 if
I satisfies the clause; otherwise, it is w. Given a partial truth assignment I, a literal or a
clause is undefined if it is neither satisfied nor falsified. A clause c is a unit clause under I

if c is not satisfied by I and contains exactly one undefined literal.

▶ Definition 12. The cost of a formula ϕ under a truth assignment I, denoted by cost(I, ϕ),
is the aggregated cost of all its clauses under I.

▶ Definition 13. The Weighted Partial MaxSAT problem for an instance ϕ is to find an
assignment in which the sum of weights of the falsified soft clauses is minimal, denoted by
cost(ϕ), and all the hard clauses are satisfied. The Partial MaxSAT problem is the Weighted
Partial MaxSAT problem where all weights of soft clauses are equal. The SAT problem is the
Partial MaxSAT problem when there are no soft clauses. An instance of Weighted Partial
MaxSAT, or any of its variants, is unsatisfiable if its optimal cost is ∞. A SAT instance ϕ

is satisfiable if there is a truth assignment I, called model, such that cost(I, ϕ) = 0.

▶ Definition 14. An Exactly-One (EO) constraint is a cardinality constraint of the form∑n
i=1 li = 1 where li are propositional literals.

3 The CAN(t, S) problem as MaxSAT

In this section, we first show a SAT encoding for the MCAC problem inspired on previous
approaches [19, 20, 6, 25, 4, 30, 2]. Then, we present the MaxSAT encoding for the CAN(t, S)
problem presented in [4, 2]. Exactly One cardinality constraints are translated into CNF
through the regular encoding [1, 16].

2 Notice that the CSPLib 045 problem definition of Covering Arrays [28] does not consider SUT Constraints.
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First, we encode through variables xi,p,v that a test case i assigns value v to parameter p.
We restrict each parameter to take one value per test case as follows (where [N ] = {1, . . . , N}):∧

i∈[N ]

∧
p∈SP

∑
v∈d(p)

xi,p,v = 1 (X)

In order to enforce the SUT constraints, we convert φ to SAT3 by substituting each (p, v)
in φ by the corresponding literal on the propositional variable xi,p,v for each test case i.

∧
i∈[N ]

CNF

(
Sφ

{
¬xi,p,v

p ̸= v
,

xi,p,v

p = v

})
(SUTX)

Variables ci
τ represent that t-tuple τ is covered by test case i or by any lower test case

j, where 1 ≤ j ≤ i (equation CCX(a)). To ensure that τ will be covered by some test, we
set cN

τ to be True and c0
τ to be False (equations CCX(b) and CCX(c)). Notice that only

t-tuples that can be covered by a test case are encoded, i.e., τ ∈ Ta.∧
i∈[N ]

∧
τ∈Ta

∧
(p,v)∈τ

(ci
τ → ci−1

τ ∨ xi,p,v) (a) (CCX)

∧
τ∈Ta

cN
τ (b)

∧
τ∈Ta

(cN
τ → ¬c0

τ ) (c)

▶ Proposition 15. Let SatN,t,S
CCX be X ∧ SUTX ∧ SCCX. SatN,t,S

CCX is satisfiable iff a
CA(N ; t, S) exists.

As we can see, sets SUTX and CCX will be responsible for memory blow-ups when
dealing with a large number of tests or allowed t-tuples.

The presented SatN,t,S
CCX encoding requires an upper bound on N and a way to avoid

encoding the forbidden t-tuples. These can be extracted from any suboptimal MCAC solution.
We can take as upper bound N the number of tests of the solution and discard all the missing
t-tuples (as these will be forbidden). After that, row symmetry breaking techniques can
be applied. We can compute which is the parameter tuple of length t with the maximum
number r of t-tuples, and then fix these r t-tuples in the first r test cases. Notice that
these t-tuples are mutually exclusive and must be covered into different test cases. We will
refer to the lower bound as lb = r−1 (i.e. it is not possible to find an MCAC with r−1 tests).

This SatN,t,S
CCX encoding can be extended to a MaxSAT encoding for the CAN(t, S)

problem, as described in [2, 4]. We will use an indicator variable ui that is True iff test case
i is part of the MCAC. The objective function of the optimization problem, which aims to
minimize the number of variables ui set to True, is encoded into Partial MaxSAT by adding
the following set of soft clauses:∧

i∈[lb+2...N ]

(¬ui, 1) (SoftU)

3 We consider that φ is already in CNF format.

CP 2021



12:6 Building High Strength Mixed Covering Arrays with Constraints

Notice that we only need to use N − (lb + 1) indicator variables since we know that the
covering array will have at least lb + 1 tests. To avoid symmetries, it is also enforced that if
test case i + 1 belongs to the MCAC, so does the previous test case i:∧

i∈[lb+2...N−1]

(ui+1 → ui) (BSU)

Finally, we just need to state how variables ui are related to variables ci
τ . This constraint

reflects that if ui is False (i.e., tests ≥ i are not in the solution), then the tuple τ has to be
covered at some test below i:∧

i∈[lb+2...N ]

∧
τ∈Ta

(¬ui → ci−1
τ ) (CCU)

▶ Proposition 16. Let PMSatN,t,S,lb
CCX be SoftU∧BSU∧CCU∧SatN,t,S

CCX . If N ≥ CAN(t, S),
the optimal cost of the Partial MaxSAT instance PMSatN,t,S,lb

CCX is CAN(t, S) − (lb + 1),
otherwise it is ∞.

The main problem with these SAT and MaxSAT encodings is that their size dramatically
grows with the number of tests and t-tuples to cover. This makes the SAT-based solving
approach unpractical in real scenarios. In the next sections, we show how to avoid memory
blow-ups by describing new incomplete approaches.

4 Incremental Test Construction

To reduce the number of tests that we need to encode, the idea is to incrementally build the
test suite, test by test. Therefore, at any iteration, we just encode the SUT constraints once.

Algorithm BOT-its (Build One Test - Iterative Test Suite), which is inspired on Al-
gorithm 5 in [29], builds an MCAC by iteratively calling the BuildOneTest (BOT) algorithm
(an algorithm that greedily builds a new test, see details below). BOT-its keeps a pool p

of the t-tuples yet to cover. Then, it incrementally extends the working test suite Υ by
appending the new test υ computed by the BOT algorithm. The pool p is simplified by
erasing those t-tuples covered by υ. Finally, the algorithm returns when the pool becomes
empty.

Algorithm BOT-its Build One Test – Incremental Test Suite algorithm.

Input : SUT model S, strength t, consistency check conflict budget cb

Output : Test suite Υ
1 Υ← ∅ # Working test suite
2 p← pool with all t-tuples of S

3 sat← incremental SAT solver initialized with X and SUTX constraints
4 while p ̸= ∅ do
5 υ, p← BOT (S, p, sat, cb)
6 Υ← Υ ∪ {υ}
7 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ

8 p← p \ pυ

9 return Υ
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Next, we show the pseudocode for the BuildOneTest (BOT) algorithm, also inspired on
Algorithm 5 in [29]. The BOT algorithm receives the pool p with the t-tuples yet to cover. In
order to build the current test, BOT uses the PICT heuristic [13] to identify the parameter
tuple (to which we refer as the PICT t-tuple) with most t-tuples in the pool. Then, it selects
one to initialize the test under construction (line 1).

Algorithm BuildOneTest (BOT) Inspired on Algorithm 5 in [29].

Input : SUT model S, Tuples pool p, SAT solver sat, consistency check conflict
budget cb

Output : A new test case υ

# All functions can access S, p and sat

1 υ ← choose τ ∈ p as in PICT s.t. consistent(τ,∞) # υ covers at least τ

2 while there exist (p, v) s.t. υ ∪ {(p, v)} covers a tuple in p and
consistent(υ ∪ {(p, v)}, cb) do

3 Choose such best (p, v) # υ ∪ {(p, v)} covers more tuples in p

4 υ ← υ ∪ {(p, v)}
5 if exists τ ∈ p s.t. τ can be covered in υ and consistent(τ, cb) then
6 choose τ ∈ p as in PICT
7 υ ← υ ∪ τ

8 go to line 2
9 υ ← amend(υ)

10 return υ, p

To make sure the PICT selection is consistent with the SUT constraints, BOT runs a
consistency check (of unlimited cb conflicts). In particular, in function consistent in BOT
auxiliary functions, a SAT solver is used to check the validity of the parameters assigned so
far with respect to the SUT constraints. The SAT instance represents the SUT constraints
and the SAT solver is executed using as assumptions the partial assignment of all the fixed
parameters in the current test. If the check fails, an unsatisfiable core is retrieved4, i.e., a
subset of the formula that is already unsatisfiable. In particular, the core contains the set of
assumptions responsible for the unsat answer. Moreover, the t-tuples in the pool subsumed
by the core are removed since these are forbidden tuples (line 4 in function consistent).
Notice that this way a lazy removal of forbidden tuples is implemented.

After the PICT selection, it iteratively selects from the set of unassigned parameters, the
pair parameter-value (p, v) that, in combination with the parameters fixed so far, covers at
least one t-tuple in the pool, preferring the one that covers most (lines 2 - 4). To preemptively
detect if the selected parameter plus the previous partial assignment is inconsistent with the
SUT constraints it calls function consistent but with a limited number of conflicts cb, since
the check can be expensive and we can not afford a full check at this point.

Whenever the above process saturates, i.e. reaches a fixpoint, and there are yet unassigned
parameters, a new t-tuple is selected as in PICT and assigned to the test. Then, the process
starts again (line 8). In this case, we also guarantee the selected tuple is consistent with the
SUT constraints running consistent function with limited conflicts budget cb.

At this point, we have heuristically built a partial test that aims to cover most of the
t-tuples in the pool, but we may not be able to extend it to a full test consistent with the
SUT constraints. Therefore, the partial test may have to be amended (line 9).

4 When cb ̸= ∞ the result of the check might be unknown.

CP 2021
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Algorithm BOT auxiliary functions Auxiliary functions for algorithm BOT.

# All functions can access S, p and sat

1 function consistent(τ, cb)
2 if sat.solve(τ , cb) = True then return True
3 else
4 p← p \ {τ | sat.core() ⊆ τ ∧ τ ∈ p} # p updated in place
5 return False

6 function amend(υ)
7 while not consistent(υ,∞) do
8 (p, v)← most recently fixed (p, v) in υ s.t. (p, v) ∈ sat.core()
9 υ ← υ \ {(p, v)}

10 Fix unfixed parameters in υ according to sat.model()
11 return υ

This amend process (see BOT auxiliary functions) tries to preserve the greatest slice
of the partial test that can be extended to a full test consistent with the SUT constraints
through the call to function consistent with an unlimited budget. In case the partial test is
inconsistent, to amend it, the assumptions in the core are removed in reverse chronological
order (lines 7 - 9 in function amend) till the SAT solver is able to complete the test satisfying
the SUT constraints (line 10).

When the BOT algorithm ends, it returns the new test just built υ and the input pool p

without those forbidden t-tuples that were detected (line 4 in function consistent).
The implementation of Algorithm 5 in [29], on which BOT-its and BOT algorithms are

inspired, is not available after request to the authors for reproducibility purposes. Our BOT
algorithm, apart from implementation details, differs fundamentally on function consistent.
In particular, on how we specifically conduct a consistency check with a limited number of
conflicts.

5 Refining Test Suites

In Section 4 we showed how algorithm BOT-its builds incrementally an MCAC. Notice that
the MCAC might not be optimal (i.e. it may exist a smaller MCAC) since BOT-its is a
greedy algorithm.

Taking as upper bound the size of the suboptimal MCAC provided by the BOT-its
algorithm (see Section 4) we can always try to find an smaller MCAC as described in
Section 3. Notice that depending on the number of parameters, the strength t and the
number of tests, the Partial MaxSAT encoding might be unreasonably large.

To circumvent this issue we essentially compute whether a portion of the MCAC under
construction can be refined to use fewer tests but cover the same t-tuples in the pool p. We
refer to this portion (test suite) as the window to be refined.

In this section we present algorithm RBOT-its, which is an improvement over BOT-its.
Red lines show the extensions.

In particular, we keep an sliding window of tests that starts at w.i and ends in the last
test of Υ. This window also keeps track of the t-tuples (w.p) of the pool p covered by the
window (line 11).
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Algorithm RBOT-its Refined BOT-its algorithm. Differences with BOT-its in red.

Input : SUT model S, strength t, consistency check conflict budget cb

Output : Test suite Υ
1 Υ← ∅ # Working test suite
2 p← pool with all t-tuples of S

3 sat← incremental SAT solver initialized with X and SUTX constraints
4 w.p← ∅ # Window of covered tuples
5 w.i← 0 # Window starting test index
6 while p ̸= ∅ do
7 υ, p← BOT (S, p, sat, cb)
8 Υ← Υ ∪ {υ}
9 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ

10 p← p \ pυ

11 w.p← w.p ∪ pυ

12 while window_is_full(Υ, w) do
13 Υ, p, w ← refine(Υ, p, w)

14 Υ, p, w ← refine(Υ, p, w)
15 return Υ

We keep track of the potential memory size of the Partial MaxSAT required to refine the
window. While we hit the maximum allowed size by our system (i.e. function window_is_full
in line 12 returns true) we execute the refining process (line 13). As we will see below, the
refine process, even reducing the number of tests, it may cause to cover additional t-tuples
that were not previously in the window. The side effect is that the window may remain full
in terms of memory requirements.

Once the algorithm has covered all t-tuples in p, we apply a last refinement to the last
window to ensure that it is refined even if the window is not full (line 14).

Function refine in Refine tries to cover the same tuples covered in the window w.p but
using less tests. First, it encodes as Partial MaxSAT the problem of building a test suite with
the minimum number of tests that covers the t-tuples in the window. This can be achieved
by making use of the Partial MaxSAT encoding for the CAN(t, S) problem described in
Section 3, but taking as Ta the set of t-tuples into the window and as upper bound ub the
window size.

Then, we run a MaxSAT solver and extract the test suite induced by the solution it
reports. If the size of this test suite is smaller than the window size, we use it to replace
the window in Υ (line 5). We also update the t-tuples covered by the window, since we may
cover extra tuples px with the new tests (lines 6 - 8). Otherwise, we reduce the size of the
window by excluding the test w.i and update properly the window (lines 10 - 13).

6 Incremental Pool of t-tuples

There is yet a main practical problem with the BOT-its algorithm which is the high memory
consumption by the pool of t-tuples to be covered. In particular, when t or the number of
parameters is high enough.

In this section we present algorithm PRBOT-its, an extension of RBOT-its (see Section 5)
to avoid memory blow-ups by limiting the number of t-tuples to be considered when building
a test. Red lines show the differences respect to algorithm RBOT-its.

CP 2021
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Algorithm Refine Test suites refinement function.

# refine function can access S, t and b

1 function refine(Υ, p, w)
2 φ← encode(S, Υ≥w.i, w.p)
3 Υr ← solve(φ)
4 if Υr ̸= ∅ and |Υr| < |Υ≥w.i| then
5 Replace Υ≥w.i by Υr in Υ
6 px ← {τ | τ ∈ p ∧Υr |= τ}
7 p← p \ px

8 w.p← w.p ∪ px

9 else
10 υr ← test case with index w.i in Υ
11 Υ← Υ \ {υr}
12 w.p← w.p \ {τ | τ ∈ w.p ∧ υr |= τ}
13 w.i← w.i + 1
14 return Υ, p, w

This algorithm works on a partial pool p of size at most b. The pool is incrementally filled
with new pending t-tuples, to finally traverse all the t-tuples (line 8). Once the pool p is full,
the BOT algorithm is called to build a test that tries to cover as much t-tuples as possible in
p (line 9, see Section 4). Then, the algorithm proceeds as algorithm RBOT-its (lines 10 –
16). The main loop ends when the pool is empty and there are not pending tuples (unseen
tuples) to add to the pool (function unseen_tuples?). Finally, as in algorithm RBOT-its we
perform a last refinement.

BOT algorithm has been also modified in the following way. In particular, within function
consistent (called by BOT algorithm) whenever we discard forbidden tuples, we additionally
call function fill_pool after line 4 in BOT auxiliary functions, as follows:

Υ, p, w, τ ← fill_pool(Υ, p, w, τ)

The goal is to take advantage of the available extra space in the pool thanks to the
lazy detection and removal of forbidden tuples. Consequently, the call to function BOT in
algorithm PRBOT-its (line 9) is extended with the additional entry parameters Υ, w and
output parameters w, τ .

To fill the pool of t-tuples we call function fill_pool in Fill pool. This function iteratively
adds new t-tuples to the pool that are neither in Υ nor in the pool, till p is full or all t-tuples
have been processed (seen) (lines 2 – 4).

New t-tuples are selected taking into account the latest tuple seen τ by calling function
next_tuple (a total order is implicitly assumed, line 3). Notice that whether τ is a forbidden
tuple (not consistent with the SUT constraints) it is handled by the BOT algorithm into the
consistent function as previously described.

If τ was not already covered in Υ it is added to the pool p. Otherwise, if the new tuple is
in particular covered by the current window it is consequently added to the window pool
(line 6). Since the window may get full, as in previous algorithms we refine the window pool
till it is not full anymore (lines 7 – 8).
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Algorithm PRBOT-its Pool-based RBOT-its algorithm. Differences with RBOT-its in red.

Input : SUT model S, strength t, consistency check conflict budget cb, pool
budget b

Output : Test suite Υ
# All functions can access S, t and b

1 Υ← ∅ # Working test suite
2 sat← incremental SAT solver initilized with X and SUTX constraints
3 w.p← ∅ # Window of covered tuples
4 w.i← 0 # Window starting test index
5 p← ∅ # Working pool of tuples to cover
6 τ ← ∅
7 while p ̸= ∅ or unseen_tuples?(S, t, τ) do
8 Υ, p, w, τ ← fill_pool(Υ, p, w, τ)
9 υ, p, w, τ ← BOT (S, p, sat, cb, Υ, w)

10 Υ← Υ ∪ {υ}
11 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ

12 p← p \ pυ

13 w.p← w.p ∪ pυ

14 while window_is_full(Υ, w) do
15 Υ, p, w ← refine(Υ, p, w)

16 Υ, p, w ← refine(Υ, p, w)
17 return Υ

7 Experimental Results

In this section, we report the experimental investigation we conducted to assess the per-
formance of the approaches proposed in the preceding sections. We use a total of 58 SUT
instances, which are extracted from [12], with 5 real-world and 30 artificially generated
covering array problems, [27] with 20 real-world instances, [31] with two industrial instances
and, [29] with another industrial instance.

In Table 1 we show the information about each SUT instance. SP provides the number of
parameters and their domain (e.g. in instance Banking1, 3441 means 4 parameters of domain
3 and 1 of domain 4) and, Sφ the number of SUT constraints and their sizes (e.g. instance
Banking1 has 112 constraints that involve 5 parameters, 5112 in the table).

The environment of execution consists of a computer cluster with machines equipped
with two Intel Xeon Silver 4110 (octa-core processors at 2.1GHz, 11MB cache memory) and
96GB DDR4 main memory. All the experiments were executed with a timeout of 12h and a
limit of 12GB of RAM. We executed all the algorithms with 10 different seeds, except for
the ACTS tool (as it does not expose the seed parameter).

We use Python as a programming language and the Python framework OptiLog [3]
that provides bindings to state-of-the-art SAT solvers. For our experimentation, we use
Glucose 4.1.

CP 2021
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Algorithm Fill pool Fill pool function.

# fill_pool function can access S, t and b

1 function fill_pool(Υ, p, w, τ)
2 while |p| < b and unseen_tuples?(S, t, τ) do
3 τ ← next_tuple(S, t, τ)
4 if τ ̸⊆ Υ then p← p ∪ {τ}
5 elif τ ⊆ Υ≥w.i then
6 w.p← w.p ∪ {τ}
7 while window_is_full(Υ, w) do
8 Υ, p, w ← refine(Υ, p, w)

9 return Υ, p, w, τ

We implemented our own version of BOT-its, as the implementation of Algorithm 5
described in [29] was not available from authors for reproducibility purposes5. We also found
that our implementation is not able to reproduce exactly the results reported in the original
work. In particular, we notice that in our case the sizes of the reported MCACs are just
slightly higher. Moreover, our implementation also seems to be significantly slower6. Notice
the authors used as underlying SAT solver lingeling [7] and we use Glucose 4.1, and this
may explain part of the divergence. However, this also means that if the implementation
of Algorithm 5 from [29] was available we could probably even get better results with our
algorithms RBOT-its and PRBOT-its which extend BOT-its. We set the consistency check
conflict budget cb parameter for all the BOT-its algorithms to 1 (see Section 4).

For the Refine function in algorithms RBOT-its and PRBOT-its we consider the encoding
PMSatN,t,S,lb

CCX described in Section 3. We use a custom implementation of the linear [15, 23]
MaxSAT algorithm that is able to report suboptimal solutions7, using CaDiCaL as the
underlying SAT solver [8]. We set a window size of approximately 500MB, a total time limit
for the MaxSAT solver of 180s, and a timeout of 30s between solutions (see Section 5). Notice
that this setting could be fine-tuned although we did not carry out this analysis. In previous
approaches results are provided up to t = 3, here we carry out our experiments for t = 3,
t = 4, and t = 5 which, as mentioned previously, are also of interest to many applications.

The first question we address is the impact of RBOT-its, the refined version of BOT-its,
in terms of size of the reported test suite and run time for t = 3. Moreover, we compare with
ACTS. We describe the results in Table 1 under columns tests and time, respectively. Since
all approaches are incremental construction methods, we report (under columns “%”) a lower
bound on the percentage of allowed t-tuples covered by the retrieved test suite. When the
percentage is 100 it means it was possible to build an MCAC. On the other hand, instances
that have a “-” in all columns were not able to report any test suite. As we can see, RBOT-its
is able to report better MCAC sizes than ACTS and BOT-its on 42 of the 58 instances. This
confirms the goodness of the refined approach.

The second question we address is about how much memory is consumed by the BOT-its
algorithm. In particular, we estimate the required memory to keep all the t-tuples in memory
at the same time. We consider integers of 32 bits and we exclude the memory resources

5 The tools we implemented are available in http://hardlog.udl.cat/static/doc/prbot-its/html/
index.html as well as detailed installation and execution instructions.

6 In [29] their algorithms are implemented in C programming language
7 Since RBOT-its is incomplete by nature, there is actually no need to use a complete MaxSAT solver.

http://hardlog.udl.cat/static/doc/prbot-its/html/index.html
http://hardlog.udl.cat/static/doc/prbot-its/html/index.html
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Table 1 SUT parameters domains and constraints for each instance (columns SP and Sφ) and
memory consumption for t = 3 (mem). Test suite size, percentage of tuple coverage and time for
t = 3. In bold the method with better results with the lexicographic criteria (coverage percentage,
number of tests, exhausted time). For the coverage percentage enough precision was taken into
account. Resources: 12GB memory and 12h timeout.

t = 3
SP Sφ mem ACTS BOT-its RBOT-its

inst tests % time tests % time tests % time

Cohen et al. [12]

1 28633415562 2203341 20.1MB 293 100% 4s 294.20 100% 12m 294.20 100% 1.3h
2 28633435161 21933 15.6MB 174 100% 3s 176.50 100% 6m 149.10 100% 39m
3 22742 2931 416.0kB 71 100% 1s 72.90 100% 4s 50.50 100% 5m
4 251344251 21532 3.7MB 102 100% 2s 108.10 100% 48s 81.10 100% 7m
5 215537435564 2323641 112.7MB 386 100% 14s 384 100% 1.6h 384 100% 3.3h
6 2734361 22634 8.1MB 119 100% 2s 133.20 100% 2m 98.60 100% 14m
7 22931 21332 399.7kB 35 100% 1s 39 100% 3s 28.40 100% 3m
8 210932425363 2323441 34.5MB 326 100% 5s 306.60 100% 23m 306.20 100% 1.1h
9 25731415161 23037 4.2MB 84 100% 2s 94.30 100% 44s 60 100% 4m
10 213036455264 24037 68.2MB 329 100% 9s 342.60 100% 51m 341.30 100% 2.4h
11 28434425264 22834 20.1MB 318 100% 4s 328.70 100% 13m 328.60 100% 1.4h
12 213634435163 22334 60.5MB 263 100% 7s 269.80 100% 36m 250 100% 1.6h
13 212434415262 22234 43.5MB 200 100% 7s 214.40 100% 19m 183.70 100% 1.0h
14 281354363 21332 16.3MB 244 100% 3s 244.30 100% 7m 216.30 100% 20m
15 25034415261 22032 4.1MB 173 100% 2s 180.10 100% 1m 150.90 100% 5m
16 281334261 23034 11.6MB 117 100% 3s 138.50 100% 3m 96.40 100% 9m
17 212833425163 22534 48.3MB 265 100% 6s 263.50 100% 30m 239.40 100% 1.3h
18 212732445662 2233441 59.9MB 344 100% 8s 327.20 100% 41m 327.20 100% 2.1h
19 217239495364 23835 166.3MB 373 100% 21s 385 100% 2.6h 365.50 100% 6.7h
20 213834455467 24236 94.5MB 463 100% 12s 465.60 100% 1.5h 465.60 100% 4.3h
21 27633425163 24036 13MB 235 100% 3s 235.40 100% 5m 216.50 100% 17m
22 272344162 22032 9.3MB 164 100% 2s 164.70 100% 3m 144 100% 8m
23 2253161 21332 352.7kB 48 100% 1s 55.40 100% 3s 37.30 100% 3m
24 2110325364 22534 34.5MB 341 100% 5s 337.70 100% 25m 337.70 100% 1.6h
25 211836425266 2233341 54.3MB 404 100% 7s 407.70 100% 47m 407.70 100% 2.6h
26 287314354 22834 16.8MB 207 100% 3s 205.10 100% 7m 195.30 100% 47m
27 25532425162 21733 5.1MB 204 100% 2s 210.90 100% 2m 180.50 100% 10m
28 2167316425366 23136 160.7MB 420 100% 21s 421.80 100% 2.6h 421.80 100% 4.6h
29 21343753 21933 52.4MB 154 100% 5s 156.10 100% 20m 125.70 100% 43m
30 2733343 23134 8.5MB 100 100% 2s 93.70 100% 2m 73.80 100% 14m
apache 215838445161 23314251 92.5MB 173 100% 9s 191.60 100% 36m 168.20 100% 1.7h
bugzilla 2493142 2431 2.3MB 68 100% 1s 72.20 100% 22s 49.50 100% 9m
gcc 2189310 23733 127.6MB 108 100% 10s 121 100% 43m 81.80 100% 1.4h
spins 21345 213 156.2kB 98 100% 1s 112.80 100% 2s 105.60 100% 3m
spinv 24232411 24732 4.3MB 286 100% 2s 251.70 100% 2m 238.90 100% 1.2h

Segall et al. [27]

Banking1 3441 5112 3.8kB 58 100% 2s 55.10 100% 0s 45 100% 30s
Banking2 21441 23 51.2kB 39 100% 1s 44.70 100% 0s 30 100% 3m

CommProtocol 21071 210310412524

630730812 26.0kB 49 100% 3s 50.30 100% 0s 41 100% 3m

Concurrency 25 243152 0.9kB 8 100% 1s 8 100% 0s 8 100% 0s
Healthcare1 26325161 23318 31.9kB 105 100% 1s 107.50 100% 0s 96 100% 9s
Healthcare2 253641 2136518 48.2kB 67 100% 1s 68.40 100% 0s 54.80 100% 3m
Healthcare3 21636455161 231 918.8kB 209 100% 1s 205.70 100% 15s 177.10 100% 41m
Healthcare4 21331246526171 222 2.2MB 294 100% 1s 309 100% 39s 274.90 100% 53m
Insurance 26315162111131171311 - 1.3MB 6866 100% 1s 6861.10 100% 3m 6858.40 100% 15m
NetworkMgmt 224153102111 220 189.4kB 1125 100% 1s 1107.70 100% 4s 1100.40 100% 2m
ProcessorComm1 233646 213 172.7kB 163 100% 1s 144.10 100% 2s 131.60 100% 3m
ProcessorComm2 233124852 142121 1015.3kB 161 100% 2s 169.30 100% 11s 145.50 100% 31m
Services 23345282102 338642 365.6kB 963 100% 6s 926.80 100% 13s 926.80 100% 5.7h
Storage1 21314151 495 1.8kB 25 100% 2s 25 100% 0s 25 100% 0s
Storage2 3461 - 5.1kB 74 100% 0s 71.50 100% 0s 54 100% 1s
Storage3 2931536181 238310 184.4kB 239 100% 1s 239.20 100% 3s 222 100% 9m
Storage4 253741526271101131 224 1.0MB 990 100% 1s 970.40 100% 28s 916.40 100% 15m
Storage5 253853628191102111 2151 2.1MB 1879 100% 4s 1936.10 100% 3m 1000.50 96% 12h
SystemMgmt 253451 21334 26.7kB 60 100% 1s 58.10 100% 0s 45 100% 2s
Telecom 2531425161 2113149 43.2kB 126 100% 1s 125.20 100% 0s 120 100% 5s

Yu et al. [31]

RL-A-mod 25344754657481123 11224913345 8.6MB 1132 100% 16s 1079.40 100% 4m 1069.20 100% 7.8h

RL-B-mod 283243536191

101122143201241371
18211273277

417555106462048 16.4MB 14977 100% 4m 13319.40 100% 3.1h 4954 92% 12h

Yamada et al. [29]

Company2 263484 12235389454534

62073481694 247.9kB 424 100% 15s 432.50 100% 7s 427.20 100% 54m
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required by other auxiliary data structures or by the SAT solver called within BOT-its.
Tables 1 and 2 show the result of our analysis under column mem. For t = 4 there are 20 out
of the 58 instances that would consume more than 1GB. For t = 5 the memory consumption
is greatly increased, as 23 of the 58 instances would consume more than 32GB (some of these
instances would need more than 1TB). Therefore, it is obvious we can not aim to run any
approach that explicitly considers all allowed t-tuples or tests at once under low memory
requirements.

The third question we address is whether the Pool-based versions of BOT-its and RBOT-
its are efficient compared to ACTS for t = 4 and t = 5. For both PRBOT-its and PBOT-its
(as PRBOT-its but refine is deactivated) we consider a pool budget of 1GB (1278264 tuples
for t = 4 and 721600 for t = 5). For t = 4 the combination of PBOT-its and PRBOT-its
report better sizes than ACTS and BOT-its in 35 of the 58 instances. Finally, for t = 5 we
found that ACTS and BOT-its can only report test suites for 39 and 18 instances respectively,
while PBOT-its and PRBOT-its can report test suites for all the 57 instances8.

Overall, we found that ACTS reports MCACs in 49 more instances than RBOT-its and
PRBOT-its. However, we may be observing an horizon effect, as RBOT-its and PRBOT-its
with the given resources are able to improve the results of ACTS in 89 out of 107 instances
where both these algorithms and ACTS reach 100% of coverage, where ACTS only obtains
better results in 8 (the remaining 10 are ties).

Regarding run times, ACTS is significantly faster than BOT-its, RBOT-its, PBOT-its and
PRBOT-its. However, ACTS will report the same suboptimal solution with more available
run time. In contrast, RBOT-its, and PRBOT-its can get better solutions if we increase the
timeout for the MaxSAT call related to the refining process.

A more fine grained analysis on the new methods reveals the following insights.
We observe PBOT-its subsumes BOT-its, as it can obtain an MCAC on the same instances

as BOT-its plus 23 and 7 more for t = 4 and t = 5 respectively. Regarding MCAC sizes we
observe similarities with the results reported by BOT-its. Regarding run times we found
that PBOT-its can obtain MCACs slightly faster than BOT-its.

Finally, we also note that with enough run time, RBOT-its and PRBOT-its algorithms
would subsume BOT-its and PBOT-its respectively. In particular, results show that the
refine approach can reduce the sizes on 92 out of the 106 instances where all these algorithms
are able to obtain an MCAC, while for the remaining 14 instances they report the same sizes.
In these particular cases, we observe that refine has not been able to improve the size of the
window within the given time constraints, so these results could be improved by tuning the
time limits, the MaxSAT solver’s parameters or even using a different MaxSAT solver.

To conclude this section, it seems we can confirm the goodness of the PRBOT-its algorithm.
We have shown how the refine method can be used to improve the sizes of the reported
suboptimal MCACs. Additionally, we extended the practical usage of algorithm BOT-its to
strengths higher than t = 3.

8 Conclusions and Future Work

Bugs or failures involving 4 or 5 parameters (even more) do exist and are likely to arise
in complex systems. We have provided an effective approach to compute MCACs of such
strength with low memory requirements. This low memory consumption plus the partitioning
nature of the Pool based approach opens the avenue for more practical parallelized approaches.

8 For instance Storage1 it is not possible to report an MCAC for t = 5 as it only has 4 parameters.
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