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—— Abstract
Many state-of-the-art methods for combinatorial games rely on Monte Carlo Tree Search (MCTS)

method, coupled with machine learning techniques, and these techniques have also recently been
applied to combinatorial optimization. In this paper, we propose an efficient approach to a Travelling
Salesman Problem with time windows and capacity constraints from the automotive industry. This
approach combines the principles of MCTS to balance exploration and exploitation of the search
space and a backtracking method to explore promising branches, and to collect relevant information
on visited subtrees. This is done simply by replacing the Monte-Carlo rollouts by budget-limited
runs of a DFS method. Moreover, the evaluation of the promise of a node in the Monte-Carlo search
tree is key, and is a major difference with the case of games. For that purpose, we propose to evaluate
a node using the marginal increase of a lower bound of the objective function, weighted with an
exponential decay on the depth, in previous simulations. Finally, since the number of Monte-Carlo
rollouts and hence the confidence on the evaluation is higher towards the root of the search tree, we
propose to adjust the balance exploration/exploitation to the length of the branch. Our experiments
show that this method clearly outperforms the best known approaches for this problem.
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1 Introduction

The assembly floor of our car manufacturer partner contains several machines, each producing
a certain type of components and as many machines consuming those components. The
process of moving components across the workshop, from the point where they are produced
to the point where they are consumed is a major bottleneck for the production rate of the
plant. The resulting transportation problem can be seen as a repetitive single vehicle pickup
and delivery problem with time windows and capacity constraint. The repetitive aspect comes
from the fact that over a weekly schedule, the pickups and deliveries between the same
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pairs of machines is repeated at a given frequency, and for the same reason, both tasks are
constrained in time. Finally, the capacity comes from the specific trolleys used by operators,
which can be stacked in trains of a bounded length.

The method used in the industrial context is a large scale scheduling model solved
using local search solver. A range of approaches relying on reinforcement learning (RL)
were recently proposed in [2]. A simple stochastic branching policy (a linear model over
some problem-specific parameters) is learned via RL, and used either to guide a constraint
programming approach with rapid restarts, a constraint approach with limited discrepancy
search, or a multistart local search method. All three methods vastly outperform the
industrial method both on real and synthetic data sets.

In this paper, we introduce a new approach, combining Monte-Carlo Tree Seach (MCTS)
with budget-limited Depth First Search (DFS). MCTS was initially designed for solving Al
games [6], and, over the last few years, MCTS combined with reinforcement learning and
deep learning has enabled a breakthrough in the resolution of many combinatorial games
(such as Go, with AlphaGo and AlphaGo Zero[22, 23]). Monte-Carlo Tree Search [6] offers a
good generic strategy to tackle combinatorial problems. The expected outcome of a subtree
is evaluated via Monte-Carlo simulation: starting from an open node of the search tree, a
complete solution is built using a randomized heuristic policy. The outcome of the rollout
is back-propagated to that node and all its ancestors down to the root by computing an
average. Then, the next node to expand is selected by traversing the search tree from the
root using multi-armed bandits algorithms (e.g., Upper Confidence bounds applied to Trees,
UCT [11]) until reaching a node that has not been expanded yet. Without requiring built-in
domain knowledge, Monte-Carlo rollouts provide good guidance, and the expansion phase
gives guarantees on the compromise between exploration and exploitation. We show that
in our problem, replacing the Monte-Carlo rollouts by randomized, limited-budget DFS is
effective.

Several hybridizations with combinatorial optimization frameworks have been proposed.
MCTS has been combined with constraint programming (CP) in [13], where the simulation
phase stops at first fail, and the authors do not allow backtracking. Moreover, in order to
allow restarts, instead of keeping an evaluation of every open node, this is done on pairs
variable/value, in a way inspired by the RAVE (Rapid Action Value Estimation) heuristic
used in Go [8]. Finally, took advantage of the fact that Gecode [7] uses copying instead
of trailing, to open every search node visited during a rollout. In the field of Boolean
satisfiability (SAT), MTCS has been combined with SAT solver [17], however, in this case
without including the defining characteristics (clause learning, VSIDS, ect.) of modern
SAT solvers. In [9], the authors propose to hybridize MCTS with local search to solve
the MAX-SAT problem. They use a fixed limited-budget stochastic local search in place
of the rollouts. Finally, in [21], the UCT algorithm has been used in mixed integer linear
programming (MILP), although replacing Monte-Carlo rollouts by a lower bound obtains
with the Linear Programming (LP) relaxation.

We are not aware of MCTS approaches using DFS rollouts. However, this is closely
related to the Hybrid Best First Search (HBFS) algorithm introduced in [1] where limited
DFS is interleaved with BFS, although the choice of leaf to expand is not based on the same
principles. Besides using DFS, we propose two adaptations of MTCS method designed to be
effective on our problem, but directly applicable in any combinatorial problem.

First, since the goal of a Monte-Carlo rollout is to evaluate a single decision, and since
each subsequent heuristic decision reduces the relative impact of that first decision, we argue
that the definition of the overall reward should reflect this form of “diminishing returns”.



V. Antuori, E. Hebrard, M.-J. Huguet, S. Essodaigui, and A. Nguyen

Therefore, we propose to define the outcome of a rollout as the sum of the marginal increments
of the lower bound at each step, weighted by a coefficient in ]0, 1] that exponentially decreases
with the depth. When the coefficient tends towards 1, the outcome tends towards the overall
objective value of the solution, and when it tends towards 0, the short term growth of the
lower bound weigh more and more. Observe that this scheme is generic, it only requires a

lower bound of the objective function which is monotonically non decreasing at each decision.

Second, in the multi-armed bandit algorithm, the tradeoff between exploration and
exploitation is controled by a constant factor ¢ for the exploration term. As the tree becomes
deeper, the number of iterations of the multi-armed bandit along a branch grows. Therefore,
the probability that it will deviate from the best branch so far grows exponentially with
the depth of the branch. To offset this, we apply an exponential decay to the parameter ¢
towards the root, so that the likelihood of deviating at the root decreases rapidly when the
depth of the tree grows.

The paper is organized as follows. First, in Section 2 we describe the problem of routing
vehicle components in car manufacturing workshops and we give a detailed overview of the
standard MCTS algorithm in Section 3. Then, we present the novel aspects of our approach
in Section 4. Finally, we give the specific implementation details for the considered problem
in a MCTS framework in Section 5, and we report the results of extensive experiments on
both industrial and synthetic data in Section 6. These experiments show that our adaptations
of the MCTS method significantly outperforms previous methods, including the local search
approach currently used in the industry.

2  Problem Description

The industrial assembly line consists of a set of m components to be moved across a workshop,
from the point where they are produced to where they are consumed. Each component is
produced and consumed by two unique machines, and it is carried from one to the other
using four dedicated trolleys. Initially, there are two trolleys standing at the production point
and two trolleys at the consumption point. On each side, one of them is full and the other is
empty. However, the empty trolley at the production point is being filled, and the full trolley
at the consumption point is being emptied. The full trolley at the production point must be
brought to the consumption point before the initially full trolley there has been emptied,
and symmetrically, the empty trolley at the consumption point must be brought to the
production point before the initially empty trolley there has been filled. A production cycle
is the time ¢; taken to produce (resp. consume) component i, that is, to fill (resp. empty) a
trolley. The two pickups and the two deliveries (of empty and full trolleys) described above

must then be done whithin this time window. The end of a production cycle marks the start
of the next, hence there are n; = LEJ cycles over a time horizon H for the component i.

The problem is illustrated on a small example in Figure 1. In this example, there are 3
components having their own production and consumption machines, denoted by P; and C;

in Figure 1(a). The lines between the machines represent the routes in the assembly line.

The time cycles of each component and the time horizon (H) are given in Figure 1(b). In
this example, there are 3 time cycles for the yellow component, 4 time cycles for the red
component and 2 for the blue one.

For each component 4, for each of its cycles k, there are two pickups and two deliveries:
the pickup pe¥ and delivery def of the empty trolley from the consumption area to the
production one, and the pickup pfF and delivery dff of the full trolley from production
to consumption. The processing time of an operation o is denoted pt, and the travel time
between operations o and o’ is denoted tt, ..
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Let O be a set of all pickup and delivery operations with |O] = n. The problem is
to compute a sequence w : {1,...,n} — O of the operations O, where w(j) is the j-th
operation in the sequence, and y = w™! its inverse. The sequence w must satisfy the
following constraints:

Routing: For every 1 < j < n, operation w(j) must be given a start time s,,(;) (and
end time e,,(jy = 5,(j) + Plu(s)) taking into account duration and travel time: s,y >
Sw(i=1) T Plu(i—1) T tu(-1)w() (and sua) = 0).

Time windows: An operation o occurring at period k for component i is given a release date
ro = (k—1)¢; and a due date d, = ke¢;, with r, < s, and e, < d,.

Precedences: Pickups must precede their deliveries in the same period.

x(pfF) < x(dff) A x(pef) < x(def) Vi e [1,m] Vk € [1,n] (1)

Train length: The operator may assemble trolleys into a train (trolleys can be extracted
out of the train in any order), so a pickup need not be directly followed by its delivery.
However, the total length of the train of trolleys must never exceed a length Ti.x.

Notice that there are only two possible orderings for the four operations of a production
cycle. Indeed, since the first delivery (which can be either the full or the empty trolley since
they happen in parallel) and the second pickup take place at the same location, doing the
second pickup before the first delivery is dominated: the train will needlessly contain both a
full and an empty trolley for the same component, and this delivery will need to be done
eventually and can only incurs further time loss.

This industrial problem is a repetitive single vehicle pickup and delivery problem with
time windows and capacity constraint. In this problem, the production-consumption cycles of
each component entail a very particular structure: the four operations of each component
must take place in the same time windows and all of these operations are repeated for every
cycle. In addition, all operations are mandatory and there is no objective function for the
industrial application, instead, feasibility is hard. As a result, the efficiency of the Large
Neighborhood Search approaches proposed in [19] for such routing problems, are severely
hampered since they rely on the length of the tour as the objective to evaluate the moves and
the insertion of relaxed requests is often very constrained by the specific precedence structure.
This problem was previously introduced in [2], and both exact and heuristic methods were
proposed to solve it. These approaches rely on a fine tuned heuristic, and it was observed
for some instances that greedy dives of the solvers were able to find a solution. The main
motivation for a MCTS approach comes from this observation as the algorithm strongly rely
on greedy dives, and is entirely guided by them.

(a) Machines and routes in the workshop.  (b) Time cycles for each component.

Figure 1 Illustrative example.
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3 The Monte-Carlo Tree Search Method

In this section, we give some overview of the Monte-Carlo Tree Search method, and we
introduce notations that will be used in the following.

MCTS is a tree search heuristic method based on multi-armed bandit principles to guide
the tree expansion and to ensure a compromise between exploration and exploitation. This
method was widely studied in the context of games but also for solving optimization problems
[21, 20, 16, 14, 15, 5]. For a detailed survey on the MCTS method, the reader may refer
to [4]. In a nutshell, the MCTS method develops a search tree where a node corresponds to a
state of a given problem, with final states being solutions. Each node is associated with a set
of feasible actions leading to child nodes in the tree. The aim is to find a path from the root
node to a final state maximizing a reward. The MCTS method is based on four principles:
1. a reward can be computed at each final state;

2. a simulation process, also called rollout, is used to produce a path from a given node to a
final state (for instance based on random sampling);

3. a backpropagaton method to update node information after each new rollouts;

4. a selection mechanism, usually based on multi-armed bandit [12], for guiding the tree
expansion and insuring a compromise between exploitation (select the most promising
node) and exploration (visit different parts of the tree).

Let A be a set of actions. A state o € A* is a sequence of actions, and |o| denotes its
length. We note ola the state reached when applying action a in state o, A(c) denote the
set of possible actions in state o, and p(o) the parent state of . The MCTS method stores
in memory the tree 7 it has already explored, and for every state o, it stores the triplet:
(N(o),Pr(o),V(c)), where N(o) is the number of time (¢) has been visited, Pr(o) is the
prior probability or prior preferences to choose the state o from its parent state p(c), and
V(o) is the expected value of subtrees rooted at o, and computed by averaging the outcomes
of Monte-Carlo rollouts. Notice that Pr(o) was introduce in the MCTS in [22] but was not
in the original form of MCTS.

The algorithm iterates over the four following phases until some stopping criteria are met.

Selection

The selection phase begins at the root node of T, and finishes when we reach a node that has
not yet been explored. At each node o € T, an action is selected according to the statistics
stored in o:

a* = arg max V(ola)+ cx*U(o|a) (2)
a€A(o)

where V (o|a) is the exploitation term (based on the value of node V(a|a)), U(c|a) is the

exploration term, and c is a parameter which represents the balance between the two terms.

This process continues from the state o|a* until a non-visited node is reached , i.e. a leaf of
the subtree T .

In adversarial games, the value V' of a node is the expected outcome, e.g., 1 for a win and
0 or —1 for a loss. In the context of combinatorial optimisation, however, several definitions
have been used. A first possibility is to simply store the expected objective value, although
this technique entails that rollouts must be complete, even when they are suboptimal early
on. In [16] and [14], the authors consider a solution whose objective value is within a factor
a of the best known solution as a “win” (the effective value is in [0, 1] depending on the
quality of solution) and all other outcomes as loss (0). The parameter a must therefore
be carefully chosen, and the likelihood of a positive reward decreases when the best known
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solution improves. In [13], the MCTS is frequently restarted (and hence the MCTS tree lost),
then the authors store the outcomes of the rollouts on variable/value pair instead. In this
technique the rollouts are depth first search calls stopped on the first fail, and the expected
relative failure depth is stored for each variable/value pair instantiated in the selection phase.
Finally, in [21], instead of a rollout, the lower bound of the LP relaxation is backpropagated
instead.

Observe that it is important to normalize the value V stored on the node, to make the
choice of the balance exploitation/exploration parameter ¢ more robust. A state value o|a
ending on the action a can be normalized in [—1,1] as follows:

V(ola) = {

Where VT = max{V(c|a) | a € A(o),N(cla) > 0} and V= = min{V(cola) | a €
A(o),N(ola) > 0} are, respectively, the maximum and minimum values of any explored

25 Vo VIgld) 1 it N(ola) > 0

0 otherwise

3)

sibling state.
Finally, the exploration term is [22]:

N(p(9))

U(o) = Pr(a)m

(4)
The rationale is to select the action a that maximizes V(o|a) plus a bonus that decreases
with each visit in order to promote exploration. The prior probability Pr(c) biases the initial
exploration by the knowledge we have on the state. The square root term could be replaced
by a logarithmic term which is often used in MCTS, without changing this rationale.

Expansion

Let o be the node returned by the selection procedure, during the ezpansion phase, for all
a € A(0), a child ola is added to o and initialized its visit counter N(o|a) with its expected
objective value V(o|a) set to 0. If no prior probability Pr(o|a) is available for this state, the
uniform distribution 1/|.A(c)| can be used instead.

Simulation

In the simulation phase, the state obtained by the selection phase is extended to a final state
7 via a Monte-Carlo rollout. In the context of combinatorial optimization the final state is a
feasible solution. The rollout is typically done by random sampling of the possible actions
A(o) from state o following a stochastic policy. For instance, one can use the probability
distribution given by Pr(c|a) | a € A(c). Alternatively, this can be done by any randomized
greedy heuristic tailored to the problem at hand [14, 16, 20]. As mention before, hybridization
with existing technologies can take place in this phase, whether it is a linear relaxation [21],
a local search [9] or a call to a CP solver [13].

Backpropagation
Finally for each node o traversed during the selection procedure, we update its statistics
regarding the final state 7 obtained by the simulation phase:
z(t,0) — V(o)
V(o) «+V _—
(o) () + N(o)+1

N(o) + N(o) +1
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with z(7, o) the outcome of the rollout 7 evaluated from node o. The first update rule allows
to maintain the average outcome of the rollouts for each node traversed during the selection
step. It is possible to change the rule to only keep the best outcome find when traversing
the node, instead of the average [21, 20]. The rationale is the same as minimax algorithms
for games, the optimistic view is that eventually search will find the best completion of a
partial solution, and therefore its expected value is closer to the best rollout than to the
average of all rollouts. However, the preferred choice may depend on the standard deviation
of the outcomes of rollouts under a given node, and on the ratio of the whole search tree
that the algorithm will eventually explore. For this reason, for larger problems, and when
the heuristic used during the rollouts is robust, the average may be better.

4 Tailoring Monte-Carlo Tree Search to Combinatorial Optimization

In this section, we introduce three modifications of standard Monte Carlo Tree Search which
we empirically found beneficial in the context of optimization problems. These modifications
are generic, in the sense that they hold outside of our industrial application, as long as we
have a lower bound computation technique for the objective function and a depth first search
procedure for the target problem.

4.1 Evaluation based on the objective function

In game playing, the outcome of a Monte-Carlo rollout may only be known when the game

ends. Typically, the rollout is given a value of 1 for a win, —1 for a loss and 0 for a draw.

Standard adaptations to combinatorial optimization are to normalize the objective value in a
way or another as described in Section 3.

When simulating long branches, however, a “mistake” on a single decision along the
branch can make the final outcome irrelevant. In fact, look-ahead methods often exhibit
diminishing returns. For instance, it was observed in Chess that the rate of wins in self-plays
between an algorithm looking k + 1 plies ahead versus the same algorithm looking & plies
ahead declines as k grows [10]. In the case of a greedy procedure, it is therefore natural to
conjecture that as the length of the branch grows, the correlation between the quality of the
initial decision and the overall outcome decreases.

In combinatorial optimization problems, however, we usually have a lower bound on the
objective that monotonically grows with every decision. Therefore, the evolution of this value
can provide a better insight into the quality of an initial decision. Let LB : A* — R be a
lower bound on sequences of actions, with LB(0) equals to the objective value if o is a final
state. Then, for a given node o we propose to evaluate a state ¢’ reachable from o as the
sum of the marginal increment of the lower bound LB in the path from o to o', weighted by
an exponetially decaying coefficient v. Hence we can define this sum recursively as follows:

LB(o) — LB(p(0)) ifo'=0
z(o’,0) = , (5)
{fy" I=lel(LB(0") — LB(p(0"))) + z(p(c’),0)  otherwise

The evaluation of a final state 7 obtained by a rollout is then simply z(7, o) and represents
an upper bound of the optimal solution.

Algorithm 1 implements backpropagation following the reward defined in Equation 5.

This algorithm takes as an input the sequence (R) of the lower bound increments given by
the rollout, the node selected in the selection phase, and the decay rate.
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Algorithm 1 Backpropagation procedure.

Data: R : sequence of the lower bound increments, o : selected node, v : decay rate

1 // Sum of exponentially decaying marginal increment of the lower bound
IRl

2 val < Y, "R,
i=1

3 // Backpropagation until the root node

4 repeat

5 val < vy xval + LB(o) — LB(p(0))

6 N(o)+ N(o)+1

7

V(o) + V(o) + %‘;)(J)

8 o+ p(o)
9 until o = Nil;

The proposed evaluation method puts more weight on the short-term impact of a decision,
wagering on it being more reliable than long term observations. For v = 1, the score reflects
the objective value LB(7) of the rollout, whereas greater weight is put on short-term impacts
when 7 tends towards 0.

Moreover, the lower bound computations can be used during the expansion phase to
avoid expending into sequences whose objective value cannot be lower than the current upper
bound (best known solution). Thus, a node ¢’ that cannot be expanded further (all potential
children nodes are suboptimal) is removed from the search tree. In that case, the information
is backpropagated along the branch that leads to this node, that is, each node o containing
the deleted node ¢’ in its subtree are updated:

o v V() N(o) = V(') x N(a"))
and
N(o) < N(o) — N(do)

Indeed, all information contained in the deleted node is now irrelevant for the rest of the
search as it is not in the tree anymore. Then previous iterations which have passed throughout
this node should not have an impact on the future search.

Then, for the implementation of the proposed evaluation function, we should store LB(o)
at each node o in addition to the triplet {N(o), Pr(o),V(o)}.

A potential limit with this evaluation method is that it may skew search towards post-
poning actions that greatly increase the lower bound, but must eventually be done. For
instance, consider a Travelling Salesman Problem with an isolated city far away from all
other cities. Rollouts where this city is visited last will be preferred to rollouts where it
is visited early. Lower bounds that take into account the future decisions in a reasonable
way (e.g., minimum spanning tree for the travelling salesman problem, or the prehemptive
relaxation in scheduling) may prevent this phenomenon since the cost of an exceptionally
remote city or of an exceptionally large task would contribute to the lower bound anyways.
The lower bound we used in our industrial problem, however, is extremelly basic and yet
this did not seem to be an issue in our experiments.
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4.2 Dynamic Exploitation vs Exploration Balance

Since the tree grows deeper as search progresses, the likelihood to deviate from the best
branch increases. Therefore, we propose to dynamically adapt the parameter that control
the balance between exploration and exploitation, depending on the depth of the tree, in
order to promote exploitation on deeper nodes. Let td(7) be the depth of the tree T, then
at step ¢ of the selection phase, the exploitation/exploration coefficient will be

ﬁtd(T)—t %c (6)

with 8 < 1 a parameter. This mechanism has a similar effect as committing to a move at the
root node. At the root t = 0 and thus S*“7)~* x ¢ tends towards 0 when td(7) grows, so the
first decision is very unlikely to deviate from the most promising choice once the search tree
has sufficiently grown. Conversely, at a leaf, this term tends towards the original value ¢ and
hence less promising — but less frequently visited — nodes will be selected more often. In the
context of games, when a move is actually made, it makes sense to forget the siblings and
parents of the corresponding state. In optimization, this mechanism has been implemented
in several approaches in order to limit the combinatorial explosion [3, 14]. Since commits
are irreversible, the algorithm is no longer complete, and budget parameters controling such
commits need to be carefully chosen. Instead, the mechanism we propose has a similar effect
but in a “smooth” way: near the root, it is more likely that the best move will be chosen,
however other states can still be reached.

4.3 Depth First Search as a rollout

Finally we propose to use a Depth First Search procedure instead of a randomized greedy
heuristic in the simulation phase. More precisely, in order to intensify the search around
promising areas, a budget is defined after a first greedy “dive” and a budget-limited DFS is
performed. For this purpose, the simulation is split into three steps:

The first step is a greedy randomized procedure from the selected node o until a con-
tradiction is detected. This contradiction can happen because a constraint is violated,
or because the lower bound exceeds the upper bound. At this point, we define a budget
for the DFS by evaluating the current state o’. This budget will be larger if this is a
promising state, and maximal if no contradiction was encountered (and hence a new
upper bound was found). On the other hand, if the state ¢’ is not promising, then the
budget will be smaller or null.

The second step of the simulation is a DF'S, from the state reached by the greedy procedure
o’. This search is only performed on the subtree rooted at the node o selected in the
selection phase. The DFS algorithm must be able to store the best branch discovered,
that is, the best solution or the best partial sequence according to the evaluation we
described previously.

The third step begins when the budget is consumed (or the search is complete for
the subtree rooted at the selected node ¢ in the selection phase). If no solution was
found during the previous step, the greedy randomized procedure is used to extend the
best branch found by the DFS to a complete solution which can be evaluated before
backpropagation.

The evaluation procedures for the states and for the budget will be detailed in Section 5
as their definitions depends on the considered problem.
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5 Adaptation to the industrial Workshop Scheduling Problem

Tree model

In the search tree of the MCTS method, a state o represents a partial sequence of operations
and the set of actions correspond to the set of operations of the routing problem described
in Section 2, i.e., actions are operations .4 = O. In the search tree, a sequence o|a is the
sequence o extended by the action (operation) a. The set of possible actions A(o) from a
sequence o contains every operation a such that the (partial) sequence o|a is feasible with
respect to the constraints.

Objective function

Since our industrial application is a satisfaction problem (the existence of a tour without
delay), we need to generalize it to an optimization problem to apply MCTS as described in
Sections 3 and 4. Therefore, during the simulation phase, we relax the due date constraints
and instead we minimize the maximum tardiness:

L(o) = max(0, max (e, (;) — dg(;
() = max(0, max (es(5) — dr(y))
Since in this case operations can finish later than their due dates, it is necessary to make the
precedence constraints due to production cycles explicit:

max(p(dff ), p(det ")) < min(p(pet). p(pfF)) Vi € [1m] Vk € [2.n,] (7)

Furthermore, during the expansion phase we do not add a child node that would violate
a due date constraint, as our primary goal is to find a solution o without any late job, that
is, such that L(o) = 0.

We use a trivial lower bound, which is at state ¢ the maximum tardiness L(o) of the
associated partial sequence also taking into account tardiness of all pending operations.
Pending operations are all the operations that belong to a production cycle in which at
least one operation is available to extend the current sequence, ignoring the train constraint.
Therefore, Equation (5) is the sum of exponentially decaying marginal increments of the
maximum tardiness with a small look ahead.

Heuristic

For the simulation phase as well as for the probabilities of the expansion phase, we use the

heuristic tuned by reinforcement learning proposed in [2]. This heuristic is stochastic and

provides a probability distribution over the set of available operations for a given state. More
precisely, at a given state o, each operation a € A(c) is evaluated using a fitness function

f(0,a) defined as a linear combination of four criteria: f(o,a) = 8TA(0,a). These criteria

A; correspond to:

1. The emergency of the operation: Ist(a,c) — max(ra, €(|o|) + tto(|o|),a), With Ist(a, o) the
latest starting time of the operation a in order to satisfy the due date constrains with
respect to the operations belonging to ¢ and the precedences constraints;

2. The travel/waiting time of the operation: max(tty(|o|),a: (Ta = €o(|o])));

3. The (negated) length of the trolley;

4. The type of operation, equal to 1 for pickups and 0 for deliveries.
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The parameter 0 is set to the proposed learned values (0.251,0.576,0.148,0.023). Then, a
softmax function is applied to turn the fitness evaluation into a probability distribution for
guiding the choice of the next node in the greedy heuristic:

(1= (5,0))/3

Vo € -A(U) 7T9(0 | U) = Z e(1—f(a,0'))/3 (8)

o' €A(o)

where the parameter § controls the “greedyness” of the heuristic, that is, a “low” value for ¢
encourages to select the best choice with high probability, whereas a more “neutral” value of
0 produces more randomized choices. In the experiments, we will set a value of § = 0.005 in
the simulation phase, and a value of § = 0.1 to initialize the prior probabilities of the new
nodes in the expansion phase.

Simulation

The greedy procedures before and after the DFS simply consist in taking at random the next
operation following the probability distribution defined by equation 8.

For the DFS we define a backtrack budget between 0 and B, depending on when the first
tardiness was detected during the first dive. If the first dive finds an improving solution, then
the budget is maximum (B), in order to find other related improving solutions. Otherwise,
we rely on the rank ¢ where the lower bound became positive to define the budget. Let ¢*
be the highest rank for any previous solution, the backtrack budget is then:

B if ¢ > ¢
B(7E520)% if ¢ > ¢ > ax g ()
0 otherwise

with a < 1, a threshold parameter.

During the DFS, we define a probability distribution over the children using the softmax
function of the greedy heuristic and we limit the breadth of the tree by keeping only
actions with a probability greater than 1076, which typically leaves all but 1 to 3 children
approximately. Then, those children are sorted by their probabilities, and in order to
randomize the DFS, a random child (again, using the same probability distribution) is
swapped with the first one, to be branched on first by the DFS. As instances can be very
large, this is sufficient to keep variety in the solutions, while removing many “bad” decisions.
This is also why we rely on the backtrack count instead of the fail count to define the budget,
as a lot of nodes may have only one child. We add a geometric restart policy in the DFS
step, where the search is reset to the node selected in the selection phase. The growth
factor is reset at each MCTS iteration. At the end, the DFS returns the longest (potentially
partial) sequence for which the lower bound remains null (i.e., for as the largest number of
operations). Then, the greedy procedure is called to extend this sequence to a complete
solution.

6 Experimental Evaluation

We report in this section the results of our experiments. First, we assess the respective
impact of using the new evaluation policy, the dynamic exploration/exploitation balance and
the DFS in the simulation phase. In a second part, we compare our MCTS adaptations to
state-of-the-art methods for this problem.
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6.1 Experimental protocol

We use the same data set as in [2] composed of 120 synthetic instances. The data set is made
of four categories characterized by the number of components (15 in category A, 20 in B, 25
in C and 30 in D). Moreover, all of these categories are associated to three time horizons: a
work shift of an operator (7 hours and 15 minutes), a work day (made up of three shifts)
and a full week (6 days).

The number of components is highly correlated with hardness, and directly related to
the branching factor in the Monte-Carlo search tree. Indeed, each node has at most two
children per component (ie., from 30 children for instances of category A to 60 children for
instances of category D). In addition, the depth of the search tree grows with the number of
operations, that depends both on the time horizon and on the number of components. This
depth varies from 450 for the “shift” schedules, up to 14500 for the “weekly” schedules.

We ran every method 10 times for each of the 120 instances with a timeout of 1h. All
experiments were run on a cluster composed of Xeon E5-2695 v3 @ 2.30GHz processors.
Our methods were implemented using in C++ and compiled with GCC-8.0. The two
methods from [2] were implementd using JAVA and were run in the same conditions, and
Choco-4.10 [18] for CP.

6.2 Impact of the MCTS adaptations

In the first part of the experiments, the goal is to assess the respective impact of the proposed
adaptations for the MCTS method. We evaluated 6 different versions of the MCTS, adding
the adaptations we propose one at a time:
MCTS is the standard MCTS method without any of the proposed adaptation. This
baseline method uses the value of the objective function as the result of the rollouts, and
backpropagates this value through the tree to the root node.
MCTS+DFS is the same algorithm as MCTS except that it uses the DFS in the simulation
phase.
SEDMI is the variant of MCTS that uses the sum of exponentially decaying marginal
increments of the lower bound to evaluate the nodes.
SEDMI+DFS adds the DFS to SEDMI for the simulation phase.
SEDMI+DFS+DC extends SEDMI+DFS with the dynamic exploitation/exploration comprom-
ise.
SEDMI+SAT-DFS+DC is the variant of SEDMI+DFS+DC in which the upper bound on the
objective function is fixed to 1 in the DFS, i.e. the DFS tries to solve the satisfaction
version of the problem instead of trying to improve the global upper bound. However,
the last part of the simulation still provides a complete solution via a greedy procedure,
and hence this method also provides an upper bound.

All parameters for the proposed methods are given in Table 1. We recall that c¢ is the
exploitation/exploration tradeoff parameter. The higher value for this parameter, the more
the MCTS will explore. Then, 3 is the decay rate for the adaptation of ¢, and ~ is the decay
rate of the evaluation function. Finally, o and B are respectively the threshold parameter,
and the maximum backtrack budget for the DFS. All the values for these parameters were
chosen by preliminary experiments, and the chosen combination appears to give relatively
good overall results.

The results are shown in Table 2 and 3, in which we report the number of solved runs,
and the average maximum tardiness. For all the methods we consider that an instance is
solved if and only if the value of the objective function is null i.e. there is no tardiness.
Table 2 shows the performance of the different variants of the MCTS averaged by classes of
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Table 1 Parameters value.

¢ 1
8 0.995
B 0.9977
o 0.9
B 50000
Restart (base) 100
Restart (factor) 1.2
Table 2 Comparison of the MCTS adaptations.
" MCTS MCTS+DFS SEDMI SEDMI+DFS  SEDMI+DFS+DC  SEDMI+SAT-DFS+DC
#S Lm,a;l: #S Lmar #S Lmua: #S Lm(m‘, #S anaw #S LTT’LIL’I‘
shift 100 0 100 0 100 0 100 0 100 0 100 0
A day 90 135 90 133 90 115 90 7 100 0 98 0
week 68 1996 78 1850 70 1800 80 1839 7 1840 80 1858
shift 80 420 79 258 90 372 82 353 81 349 87 439
B day 50 2954 54 2959 60 2522 60 2439 63 2121 70 2134
week 10 21070 29 20771 10 20572 32 20541 31 20355 36 20635
shift 49 1676 48 1708 40 1901 45 1727 40 1824 40 2012
C day 10 9503 11 9248 10 8683 26 8656 36 8747 35 9022
week 0 64442 8 64713 0 64480 9 64584 9 64474 10 64445
shift 40 2154 33 2146 30 2338 33 2018 30 2304 30 2621
D day 0 13659 0 13664 0 12657 0 12723 13 12225 11 12340
week 0 101474 0 101444 0 100533 0 100760 0 100954 0 100840
Average 41 18290 44 18241 42 17998 46 17976 48 17933 50 18029

instances, and by time horizons. In this table, for each method, a line corresponds to 100
runs (10 instances and 10 runs for every time horizon), then the number of solved runs is
a sum over these 100 runs. In Table 3 the same results are presented aggregated by time
horizons, and the number of solved instances is in percentage (over the 400 runs by line and
by method).

In these tables, we can see the benefit of using the DFS in the simulation phase. Using

DFS, as expected, allows the MCTS methods to solve more instances on the week horizon.

In fact, those instances are too large to be solved via rollouts only, and the DFS allows to

intensify the search on the deepest parts of the tree, that are not explored in the MCTS.

Unfortunately, the effect of the DFS is not visible on the shift horizon. We can also see the
benefit of using the sum of exponentially decaying marginal increments as node evaluation
on day and week horizons in terms of objective value. However, this adaptation slightly
degrades the performance on shorter horizon meaning that this time horizon is too short to

Table 3 Results aggregated by time horizon.

I MCTS MCTS+DFS SEDMI SEDMI+DFS ~ SEDMI+DFS+DC  SEDMI+SAT-DFS+DC
#S Lmam #S Lmaz #S Lmaz #S Lmam #S Lm,az #S Lm,az
Shift 0.67 1063 0.65 1028 0.65 1153 0.65 1024 0.63 1119  0.64 1268
Day  0.38 6562 0.39 6501 0.40 5994 0.44 5974 053 5773  0.54 5874
Week  0.20 47245 0.29 47195 0.20 46846 0.30 46931 0.29 46906  0.32 46944
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take advantage of this mechanism. Overall, the combination of both mechanisms outperforms
the two versions with only one of these mechanisms. Finally, the effect of the dynamic
compromise can be seen on the day horizon. This time horizon is small, but not enough for
the MCTS to advance deep enough in the search tree to find solutions. This mechanism
forces the MCTS to explore the tree deeper and faster, and as a results, to improve the
number of solved instances.

6.3 Comparison with previous methods

For the second part of the experiments, we compare the two best MCTS methods, namely
SEDMI+DFS+DC (the method leading to the lowest objective function) and SEDMI+SAT-DFS+DC
(the method with the highest number of solved instances) to the two best methods introduced
in [2], that are both based on the stochastic branching policy described in Section 5:

CP: a constraint programming approach with rapid restarts. This method solves the
satisfaction version of the problem. As a result, it is slightly better for finding solutions
without tardiness.

GRASP: a multi-start local search procedure. This method considers the optimization
problem with relaxed due dates as in the MCTS methods, hence we can compare the
overall tardiness.

Table 4 Comparison with previous methods.

I CP GRASP SEDMI+DFS+DC  SEDMI+SAT-DFS+DC
#S  #S  Lnae #S Laz #S Lmax
shift 90 90 10 100 0 100 0
A day 90 90 193 100 0 98 0
week 80 70 2433 7 1840 80 1858
shift 60 60 467 81 349 87 439
B day 52 46 3218 63 2121 70 2134
week 35 10 26915 31 20355 36 20635
shift 40 40 1941 40 1824 40 2012
C day 10 10 9498 36 8747 35 9022
week 10 0 71104 9 64474 10 64445
shift 19 16 2677 30 2304 30 2621
D day 0 0 13994 13 12225 11 12340
week 0 0 107186 0 100954 0 100840
Average 40.5 36 19969 48 17933 50 18029

The results, given in Table 4, show that overall, the proposed MCTS adaptations
outperform the CP and the local search approaches on both criteria: the number of solved
instances, and the maximum tardiness. More precisely, the dominance is clear for horizons
shift and day in terms of number of instances solved, but we can see that our method does
not outperform the CP model on the week horizon. Finally, between the CP approach and
the SEDMI+SAT-DFS+DC variant, there is a difference of 9.5% of instances solved in favor of
the latter. There is still half of the instances that are not solved to optimality. However, the
instances of the data set were randomly generated without a guarantee of satisfiability, and,
we believe that the majority of unsolved instances are not satisfiable (especially for the week
horizon).
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7 Conclusion

In this paper, we have presented and applied several variants of the Monte Carlo Tree Search
method to solve a repetitive single vehicle pickup and delivery problem with time windows
and capacity constraint, issuing from car manufacturing assembly lines. We defined a way of
evaluating the rollouts based on the growth of the lower bound of the objective function. We
also proposed an adaptation of the balance parameter between exploitation and exploration
in order to be able to solve larger instances. Moreover, we proposed an hybridization of
Monte Carlo Tree Search with Depth First Search used during the simulation phase. The
experimental evaluation demonstrates that these proposals allow us to outperform previous
approaches on the considered problem, and show the benefit of our contributions.

These three proposals, although well suited to a dedicated problem, are generic. The
next step is then to demonstrate the genericity of these Monte Carlo Tree Search variants by
considering their application to other combinatorial optimization problems. We also plan to
integrate our MCTS method in existing constraint programming solvers to take advantage of
their search tree exploration in the Depth Fisrt Search part, further reinforcing the hybrid
nature of the approach. Finally, we would like to explore further the learning aspects of the
method. Indeed, in the simulation phase, we are repeatedly dealing with similar subproblems
in different part of the tree, and the policy used in a subtree could be adjusted after each
iteration in order to have different policies adapted to different parts of the tree search.
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