
CLR-DRNets: Curriculum Learning with Restarts
to Solve Visual Combinatorial Games
Yiwei Bai #

Cornell University, Ithaca, NY, USA

Di Chen #

Cornell University, Ithaca, NY, USA

Carla P. Gomes #

Cornell University, Ithaca, NY, USA

Abstract
We introduce a curriculum learning framework for challenging tasks that require a combination of
pattern recognition and combinatorial reasoning, such as single-player visual combinatorial games.
Our work harnesses Deep Reasoning Nets (DRNets) [4], a framework that combines deep learning
with constraint reasoning for unsupervised pattern demixing. We propose CLR-DRNets (pronounced
Clear-DRNets), a curriculum-learning-with-restarts framework to boost the performance of DRNets.
CLR-DRNets incrementally increase the difficulty of the training instances and use restarts, a new
model selection method that selects multiple models from the same training trajectory to learn a
set of diverse heuristics and apply them at inference time. An enhanced reasoning module is also
proposed for CLR-DRNets to improve the ability of reasoning and generalize to unseen instances.
We consider Visual Sudoku, i.e., Sudoku with hand-written digits or letters, and Visual Mixed
Sudoku, a substantially more challenging task that requires the demixing and completion of two
overlapping Visual Sudokus. We propose an enhanced reasoning module for the DRNets framework
for encoding these visual games We show how CLR-DRNets considerably outperform DRNets and
other approaches on these visual combinatorial games.
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1 Introduction

Deep learning has surpassed human-level performance on many perception tasks, ranging
from object recognition to language translation. However, these successes heavily rely on
the availability of large datasets and corresponding labels. In contrast, humans often only
have access to a few examples, and therefore they resort to meticulous reasoning about prior
knowledge to compensate for the lack of labeled data and fill in the data information gaps.
Herein we consider unsupervised or weakly supervised single-player visual combinatorial
games. Humans tackle such challenging tasks by combining pattern recognition with reasoning
about prior knowledge (the games’ rules). Visual combinatorial games capture various real-
world applications, particularly scientific data interpretation tasks, which are in general
unsupervised or weakly supervised but for which rich prior knowledge is often available [4].
Consider the case of Visual Sudoku [22], a variant of the standard Sudoku with hand-written
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Figure 1 (a) Visual Sudoku: 0 denotes the empty cell, other digits are hints. Goal: replace
the empty cells with digits from 1 to 9 to obtain a valid Sudoku, i.e., the cells in each row (blue
rectangle), column (green rectangle), and any of the nine marked 3x3 boxes (red square) have to
have all-different digits. (b) The solution to (a). (c) Visual Mixed Sudoku: 0 and O denote empty
cells. The goal is to replace the empty cells (denoted by overlapping 0 and O characters) in the
mixed Sudoku on the right with digits from 1 to 9 and letters from A to I, and obtain two valid
demixed Sudokus. Note overlapping here is the max operator. (d) The solution to (c).

digits (see Fig. 1). We solve Visual Sudokus without any Sudoku labels by combining
our perception skills, for digit recognition, with logical reasoning about Sudoku rules, to
disambiguate noisy digits and fill in the missing digits. The missing digits simulate real-
world settings in which there are missing data. Visual Mixed Sudoku (Fig. 1) is even more
challenging than Visual Sudoku as it requires identifying the missing digits or letters of two
partially filled overlapping Sudokus. Visual Mixed Sudoku involves demixing the partially
filled Sudokus and inferring the missing digits. As we show in the experimental section,
a straightforward approach for Visual Sudoku that first uses a well-trained state-of-the-
art deep-learning digit classifier and passes the digit information as input to a powerful
combinatorial solver, such as a SAT solver, does not lead to satisfactory results. Even
though the classifier has high accuracy (99.4%), it still makes mistakes and therefore, when
there are many hints in the Visual Sudoku, it is likely that the classifier will make a few
mistakes, leading to noisy data that SAT solvers cannot handle. This approach performs
even more poorly for the Visual Mixed Sudoku, given the higher probability of making
digit/letter classification mistakes due to a combination of factors (additional challenging
demixing task, lower accuracy of letter classifiers, and the fact that we double the number of
hints corresponding to the two overlapping Sudokus). Therefore an approach integrating
digit/letter recognition with reasoning about the Sudoku rules in an end-to-end fashion is
required. Deep Reasoning Networks (DRNets) [4] is a framework proposed recently that
seamlessly integrates deep learning with constraint reasoning via an interpretable latent
space, to incorporate prior knowledge (such as Sudoku rules). DRNets were shown to be
effective for unsupervised demixing tasks, such as the demixing of two solved (i.e., all the
digits filled in) overlapping Visual Sudokus. Nevertheless, DRNets have limited reasoning
generalization capabilities, in particular for completion tasks. As we will show, Visual Sudoku
and Visual Mixed Sudoku are substantially challenging for DRNets since that in addition
to the demixing task, they involve the demanding completion task that requires inferring
missing digits. Our contributions: (1) We propose CLR-DRNets (pronounced clear
DRNets), a curriculum learning framework to boost the performance of DRNets. Our
approach is inspired by how humans learn to solve complex problems, starting with easy
instances and gradually increasing the instances’ difficulty. Another intuition behind our
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approach is that the perception task is relatively easier than the reasoning task in many
visual combinatorial games. Therefore, it is crucial to carefully select a sequence of training
examples to balance the reasoning and perception tasks to prevent the model from focusing
only on the perception task. (2) We propose an enhanced reasoning module to improve
the power of reasoning and generalization to unseen data. (3) We propose restarts, a new
model selection strategy for improving the performance at test time. We note that it is
usually hard to solve a complex visual combinatorial problem in a single inference step of a
neural network. Since CLR-DRNets are trained without label supervision, only with prior
knowledge supervision (e.g., domain rules), we can still improve and customize the learned
model with respect to the specific test data by further optimizing the loss function. We also
find that the reasoning module of CLR-DRNets can learn different heuristics during training.
Thus, saving several different models from the training phase and applying each of them
during test time sequentially is really helpful. (4) We propose encodings for (4.1) Visual
Sudoku and (4.2) Visual Mixed Sudoku using the CLR-DRNets framework. and (5)
show how CLR-DRNets substantially outperform DRNets and other approaches
on these visual combinatorial games.

2 Related Work

Combining perception and reasoning. CLR-DRNets leverage Deep Reasoning Networks
(DRNets) [4]. DRNets were shown to be effective for unsupervised demixing tasks. Here we
use the DRNets framework for unsupervised visual combinatorial games, which
are more challenging reasoning tasks than demixing, and therefore we develop a
strengthened reasoning module for DRNets. Furthermore, CLR-DRNets further
boost the power of DRNets with its curriculum-learning-with-restarts approach
and generalize to unseen instances, in contrast to DRNets, designed to solve
instances. For Visual Sudoku, other approaches focus on learning the Sudoku rules from the
labeled data [1, 24, 16, 9]. For example, SATNET [22] introduces a differentiable maximum
satisfiability (MAXSAT) solver that can be incorporated with deep learning models to
capture the reasoning rules efficiently. [3] learns problem related cost functions for Constraint
Networks, which are solved with a specialized constraint solver. [18] integrates the perception
and reasoning through exposing the predicted probability to the constraint solver. However,
except for DRNets and [18], previous approaches require labeled training Sudoku data.

Curriculum learning (CL) for solving hard tasks. CL is widely used in deep reinforcement
learning [19, 7, 21]. For example, Feng et al. [7] let the model firstly learn from the easy
sub-task created from the hard original task. Then gradually increase the hardness of the
sub-task until the agent can solve the original task. Our CL method shares a similar idea but
we do not use it in a RL setting and we do not require that the easy instances are generated
by the hard instances. Some works also employ CL for deep learning [23, 12]. For instance,
Hacohen et al. [12] introduce a CL framework for image classification.

Restarts in deep learning. Restarts are widely used in the CP/SAT community (e.g., [10, 2])
and also in stochastic optimization to solve non-convex problems (e.g., [6, 8]). In the deep
learning training phase, learning rate restart [11] is proven to increase the performance.
DRNets use simple restarts, basically to randomly group different instances into one mini-
batch to compute various gradients, CLR-DRNets in addition leverage different models
acquired from one training trajectory and apply them sequentially to test (unseen) data.
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Figure 2 (a) The digit visual Sudoku instance. (b) The perception model (encoder) of CLR-
DRNets. The top blue rectangle is the latent space capturing the shape information of all possible
digits per cell. The bottom gray rectangle is the initial estimation of input digit visual Sudoku
instance only based on perception. Here we employ the heat map to represent the predicted
confidence of each cell. (c) The enhanced reasoning module of CLR-DRNets (not in the original
DRNets) consists of a modified LSTM model. It takes the initial estimation as the input, constrained
by the relaxed Sudoku rules’ loss function, computing the completion results. (d) The decoder part
leverages a pre-trained cGAN to generate all the possible digit images w.r.t the shape embeddings
of (b) per cell. We can reconstruct each cell guided by the completion results of (c). (The figure
uses 4 × 4 Sudokus for easier visualization. All our experiments are with 9 × 9 Sudokus.)

3 CLR-DRNets

We start by providing a high-level description of DRNets.[4].

DRNets. DRNets perform end-to-end unsupervised deep reasoning using a perception
module (encoder) to produce the initial estimation of the visual inputs, which are constrained
to adhere to prior knowledge via a reasoning module. The reasoning module encodes the
constraint loss function using the initial estimation. A generative decoder uses the initial
estimation of the visual inputs to generate the reconstruction of the input. DRNets solve the
problem by jointly optimizing the reconstruction loss, encouraging the reconstruction to be
similar to the input, and the constraint loss function, to enforce the domain rules.

CLR-DRNets borrow the general framework from DRNets and further strengthen it
with an enhanced reasoning module. We propose a curriculum learning framework to tackle
the difficult visual combinatorial completion tasks, which is beyond the capability of the
original DRNets. Moreover, restarts, a new model selection strategy is proposed to boost the
performance at test time. The enhanced reasoning module in CLR-DRNets is much more
powerful and allows generalization to unseen data, in contrast to DRNets. Adapting from
the DRNets [4] framework, CLR-DRNets formulate the entire process as a data-driven
optimization problem:

min
θp,θr

1
N

N∑
i=1

λpψp(fθp
(xi))︸ ︷︷ ︸

regularize the
initial estimation

+ ψr(fθr
(fθp

(xi)))︸ ︷︷ ︸
regularize the

reasoning output
new in CLR-DRNets

+ λlL(cGAN(fθr
(fθp

(xi))), xi)︸ ︷︷ ︸
regularize both the

initial estimation and the reasoning output
modified from DRNets

(1)

where fθr
and fθp

are the reasoning module and the perception module respectively, cGAN
is a pre-trained conditional generative adversarial network (cGAN)[17], xi is the i-th data
point of the input, ψp, ψr are the penalty functions of continuously relaxed constraints
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related to the perception module and the reasoning module, λp, λl are weight scalars and
L is any distance metric. In equation 1, the term labeled by “regularize both the initial
estimation and the reasoning output” is a modified version of DRNets’ original loss
function and the term labeled by “regularize the reasoning output” is completely new in
CLR-DRNets. These modified terms are associated with CLR-DRNets’ enhanced reasoning
module. Below we describe CLR-DRNets highlighting the main differences with respect to
the general DRNets framework.

CLR-DRNets. We illustrate the CLR-DRNets framework with our proposed models (see
Fig. 2) for the visual Sudoku games (Fig. 1 (a)). Similarly to DRNets, CLR-DRNets employ
two ResNets for the perception module to predict the distribution of all digits in each cell
along with the shape embedding (initial estimation). The constraints for the initial estimation
(ψp) are that the predicted digits probability distribution of each cell should converge to only
one digit.

CLR-DRNets’ enhanced reasoning module is a modified long short term memory (LSTM)
model [14] that can compute all the possible digits’ distribution for each cell, capturing the
Sudoku structure, and with sufficient power to reason about missing digits (more details
below). The constraints for the reasoning module (ψr) are the relaxed Sudoku constraint
losses, which can regularize the reasoning outputs to satisfy the Sudoku rule (more details
below).

The decoder is similar to DRNets’ and consists of a conditional Generative Adversarial
Networks (cGAN) [17] pre-trained on the prototypes, which are images of all possible single
digits. The decoder generates all possible digit images w.r.t the shape embeddings of the
initial estimation. Then per each cell, all possible digit images are remixed based on the
distribution of digits from the reasoning and the perception module. Cells that are predicted
as hints are encouraged to have a reconstructed image similar to the input image, which can
further regularize the initial estimation and the reasoning outputs.

Figure 3 Modified LSTM model. The Sudoku embedding replaces each digit of a Sudoku with
a learnable embedding. The constraint graph is a 81 × 81 matrix capturing Sudoku constraints
between every pair of cells (i.e., there is a constraint between any pair of cells in the same row, same
column, and same block). h31 goes through a fully connected layer to get the final reasoning results.

CLR-DRNets’ enhanced reasoning module. DRNets’ reasoning ability entirely relies on the
continuous relaxation of the combinatorial constraints, i.e., it converts the discrete constraints
into a differentiable loss function and solves the problem by optimizing it. However, this
reasoning method is stateless, i.e., it is difficult to generalize to unseen data. CLR-DRNets’
enhanced reasoning module employs a constraint graph and a modified LSTM (see Fig. 3)
to learn from the training examples and generalize to unseen data. The constraint graph
is a square matrix where each entry represents the constraints between these two elements.

CP 2021
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Algorithm 1 Curriculum Learning framework for solving data-driven optimization
problems.

Input: Training problem instances D, Target problem instances T , CLR-DRNets
model M , Difficulty Gap G, Hard set of constraints ψh.

Select or generate a set of instances of proper difficulty level Dtrain based on ψh;
while Dtrain is not as hard as T do

Train M using Dtrainvia optimizing equation 1 ;
do

Select/generate a harder set of instances D†
train based on Dtrain, ψ

h;
Dtrain ← D†

train;
while D†

train meets G;
end

For example, the constraint graph for a 4 × 4 Sudoku is a 16 × 16 matrix. If entry (x, y)
is one, it means the cell x and cell y are in the same row, column, or block otherwise zero.
Then the input of each LSTM block is the concatenation of the Sudoku embedding and the
multiplication of the hidden state and the constraints graph, where the Sudoku embedding
replaces each digit of a Sudoku with a learnable embedding.

Now we explain how the unsupervised differentiable Sudoku loss function is derived, using
DRNets’ continuous relaxation. The reasoning module computes the digits’ distribution
for each Sudoku’s cells and we denote the distribution of cell (i, j) as Pi,j (row i, column
j). The loss for encoding the Sudoku’s row constraint is: Lr = −

∑9
i=1 H( 1

9
∑9

j=1 Pi,j),
where H is the entropy function. Similarly, we can define the column and block constraint
loss Lc and Lb respectively. Since each cell contains one digit, the semantic constraint loss
for cells is: Lcell =

∑9
i=1

∑9
j=1 H(Pi,j). These loss functions minimize the entropy of each

cell’s digits distribution while maximizing the entropy of the average distribution of digits
in each row, column, and box, forcing the distribution of each cell to converge to one digit
while each row, column and box has different digits. Formally, the unsupervised Sudoku
constraint loss is defined as: LSudoku = λ1(Lc + Lr + Lb) + λ2Lcell, where λ1 and λ2
are weight scalars. Moreover, we show how the reconstruction loss for cell (i, j) is derived.
Denote the embeddings of cell (i, j) as zi,j [t], where t can be any possible object, e.g., t can
be digit 1 to 9 in visual Sudoku games. The predicted digit distribution from the perception
module for the cell (i, j) is P ′(i, j). Note Pi,j is defined above as the digits’ distribution
predicted by the reasoning module. These two distributions are mixed to form the Pmix(i, j)
for reconstruction: Pmix(i, j)[t] = (1− P ′(i, j)[0]) ∗ P ′(i, j)[t] + P ′(i, j)[0] ∗ P (i, j)[t], where
digit 0 represents the missing digits of the Sudoku.The reconstructed input for cell (i, j)
is: Xrecon(i, j) =

∑9
t=1 Pmix(i, j)[t] ∗ cGAN(zi,j [t]). The reconstruction loss is then defined

as Lrecon =
∑9

i=1
∑9

j=1 L(X(i, j), Xrecon(i, j)), where X is the input image and L is any
distance metric. This mixed distribution contributes to the reasoning ability of CLR-DRNets
in which the wrong perception estimation can be corrected by the reasoning outputs while
the initial estimation of images also help the reasoning module make decisions.

Note that we relax the hard discrete constraints into continuous constraint loss functions.
The different difficulty of the relaxed constraint loss functions ψr and ψp is a key challenge
for training, which could cause the optimization to focus on the easy part and converge
to some local minimum quickly. Thus, we proposed the curriculum learning to tackle the
difficulty imbalance among different losses.
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Curriculum learning for CLR-DRNets. We introduce a curriculum learning framework (see
Alg. 1) to manage the difficulty imbalance of the perception and reasoning tasks in the
data-driven optimization problem. Based on the prior knowledge and problem structure, we
can identify a set of constraints ψh that are quite hard to optimize. We can generate/find
some problems that are easier enough in terms of the hard constraints set ψh. For example,
in Visual Sudoku, completing the Sudoku is much harder than classifying digit images, so we
set ψh as the Sudoku rules. Visual Sudoku instances with many hints are easier than those
with fewer hints. A model that perfectly solves the easier instances can be easily trained.
Based on the problem structure, we define a difficulty gap G to guide the generation/selection
of instances that are slightly harder. For example, in Visual Sudoku, the difficulty gap G is
set to be 5 hints: we remove 5 hints to gradually increase the instance difficulty. We then use
these harder instances to continue training our model. This process can be repeated several
times to finally solve the instances of desired difficulty level. More details in the appendix.

CLR-DRNets’ training strategy. The success of CLR-DRNets relies on the seamless co-
operation of the perception module, the reasoning module, and the generative decoder. We
propose two training strategies for achieving this goal, different from DRNets’, since DRNets
do not have parameters for the reasoning module. Both strategies employ a pre-trained
cGAN and a pre-trained classifier. The first strategy is joint training: we train the entire
CLR-DRNets at the same time, i.e., optimizing the loss function (see equation 1) and the
gradients affect both the perception module and the reasoning module. This joint strategy
can handle the case where only noisy, e.g., handwritten, input data are available. However, for
some challenging reasoning problems, the noisy input may harm the ability of the reasoning
module. Thus, we propose a second strategy, separate training: we separately train the
reasoning module with non-noisy input (i.e., input values are known), i.e., optimizing only
the second term of the equation 1. This separate training strategy can tackle more intricate
problems, but it requires the non-noisy input training data (no labels required though).

It is challenging to generalize a single data-driven optimization model to unseen problem
instances, capturing all the logical relations across instances, given the combinatorial search
space. So we introduce restarts to remedy this issue.

Restarts, a new model selection strategy. The reasoning effort required for solving visual
combinatorial games can be huge. A single inference step of the deep learning model is
unlikely to be able to solve all the instances with different levels of difficulty. We derive
our objective function without label supervision, where the only supervision is based
on the prior knowledge, so we can still optimize our CLR-DRNets model for a few steps in
the test phase to further improve the model and customize it with respect to the test data.
Also, we observe that the accuracy metric is increasing smoothly during the training process,
but the set of training instances that can be solved varies quite a bit. Thus, we postulate
that our model is doing local search to solve the problem and the model parameters can
be loosely interpreted as heuristic of the search algorithm. Inspired by the restart scheme
broadly used by the combinatorial optimization community [10, 2], we propose a new model
selection method based on restarts (see Alg. 2). Since we have observed that we can get
very different heuristics during the training process, so the restart scheme starts by collecting
several models with top validation performance to form a model pool M . Then we start from
one model and for each unsolved test case the loss function is optimized until the instance is
solved or for a maximum of restart gap g steps, switching to the next model when all the
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Algorithm 2 Restart scheme for CLR−DRNets.

Input: Test instances T , CLR-DRNets model pools M , Restart Gap g, metric ϕ to
evaluate whether the instance is solved

idx← 0;
while T = ∅ or idx < len(M) do

m←M [idx];
for i← 1 to g do

R← m(T ); R: the solution of T .
S ← ϕ(R); S: correctly solved instances of T .
T ← T\S
update parameter of m w.r.t equation 1;

end
idx← idx+ 1;

end

instances are processed. The scheme is supposed to fine-tune the model for the underlying
test data, so the restart gap g is typically small. Thus the restart procedure takes much
fewer time compared with the training. Note that this scheme does not require labels.

4 Experiments

4.1 Visual-Sudoku
As an example of Visual Sudoku, using digits, see Fig. 1(a). We also considered Visual
Sudoku, using letters. The CLR-DRNets model for the Visual Sudoku is illustrated in
Section 3 and Fig. 2. We prepare two training sets for the digit Visual Sudoku: one contains
only noisy training data (denoted as noisy dataset), i.e., the digits of the Sudoku are images,
another consists of non-noisy training data (denoted as non-noisy dataset), i.e., the value of
digit/letter images are known. Note the training data for CLR-DRNets do not include the
solution of the Sudoku. The noisy dataset consists of seven difficulty levels: 51, 46, 42, 36,
31, 25 and 20 hints. We generate 10, 000 Visual-Sudoku instances for each difficulty level.
For the non-noisy dataset, we generate 100, 000 standard Sudoku instances with a uniform
distribution of 18 hints to 25 hints. There is no difficulty imbalance issue for non-noisy
dataset, so we do not separate the dataset based on its difficulty.

We explain our training and test settings here. For the restarts scheme, the size of the
model pool M is 100, i.e. we select and save the top 100 models in terms of the validation
performance. And the restart gap g is set to 10 steps, i.e., we move to the next model after
optimizing one model 10 steps. The metric ϕ is whether the input Sudoku is solved. Note
that we do not assign partial credits for the Sudoku solution. The loss we optimize in the
training phase and the test phase is LSudoku + λ3Lrecon. The distance metric we used for
Lrecon is L1 loss. We use Adam as the optimizer, and the learning rate is 3e− 4 (including
for restarts (test)). The weight scalars λ1 = 1.0, λ2 = 0.01 (for training and testing) and
λ3 = 0.001.

We compare our model with DRNets [4], SATNET [22], a higher-order constraint optim-
ization based approach [18] (referred to as HOCOP/HOCOP (C) where C refers to do the
model calibration on the validation set) and a Cost Function Network based approach [3]
(referred to as CFN). The learning settings of these methods are different. SATNET and
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CFN both require the solutions (labels) of the data. HOCOP and CLR-DRNets do not
require the solutions, however, HOCOP leverages a high-efficient Sudoku solver and this kind
of solver may not exist for other problems. CLR-DRNets use the fewest supervision
(no solutions (labels)) to learn to solve the problem and generalize to unseen
data. We use two test datasets. The first dataset (denoted as Davg-36hints) is SATNET’s
dataset (CNF and HOCOP also use this dataset) consisting of Sudokus with a mean of
36 hints, and the second dataset (denoted as D17hints) is formed of 1000 Sudoku with 17
hints. The CLR-DRNets model is trained on the noisy dataset (joint training) to solve the
Davg-36hints and on the non-noisy dataset (separate training) to solve the D17hints.

Table 1 The test set Sudoku accuracy on the Digit Visual Sudoku task for different approaches.

Dataset CLR-DRNets DRNets SATNET CFN HOCOP HOCOP (C) ResNet+SAT
Davg-36hints 0.996 0.81 0.632 0.763 0.929 0.996 0.821
D17hints 0.88 0 0 NA NA NA 0.918

CLR-DRNets outperform SATNET, DRNets, HOCOP and CFN on both datasets (see
Table. 1) and CLR-DRNets do not require the labels. ResNet+SAT denotes a sequential
coupling of ResNet with a SAT Solver, i.e., passing the digit classification of the input hand-
written Sudoku, using ResNet, as input to a modern SAT-Solver to get the final results. For
the dataset with an average of 36 hints, CLR-DRNets significantly surpass the performance
of ResNet+SAT since CLR-DRNets can correct some perception mistakes guided by the
Sudoku rules. Note though that CLR-DRNets do not outperform ResNet+SAT on 17 hint
instances, given the high digit accuracy of ResNet for few number of hints, which results
in high probability of perfect recognition of the input Sudoku. Nevertheless, often in many
tasks we may not get an almost-perfect perception model, which is the case of e.g., the letter
Visual Sudoku (the classifier accuracy is only 97.5%). In fact, when tested on the letter
Visual Sudokus (trained using separate training on the non-noisy dataset), CLR-DRNets
consistently outperform ResNet+SAT and DRNets for all the instances (see Fig. 4, left
panel).

Figure 4 Accuracy of CLR DNRNets, DRNets and ResNet+SAT on Letter Visual Sudoku (left)
and Visual Mixed Sudoku (right).
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Figure 5 (a) A visual mixed Sudoku instance. We use a max operator to mix two visual Sudokus.
(b) The perception module (encoder) of CLR-DRNets. The top blue rectangle is the latent space
capturing the shape information of all possible digits and letters per cell. The bottom gray rectangle
is the initial estimation of the input visual mixed Sudoku instance, only based on perception. Here
we employ a heat map to represent the predicted confidence of each cell. (c) The enhanced reasoning
module consists of a modified LSTM model. It takes the initial estimation as the input, constrained
by the relaxed Sudoku rules loss function, computing the completion results. (d) The decoder
leverages two pre-trained cGANs to generate all the possible digit and letter images w.r.t the shape
embeddings of (b) per cell. Then we can reconstruct each cell guided by the completion results of
(c). (We use 4 × 4 Sudokus for easier visualization. All our experiments are with 9 × 9 Sudokus.)

4.2 Visual Mixed Sudoku

The Visual Mixed Sudoku task is computationally more challenging than Visual Sudoku,
requiring a tighter combination between perception and reasoning. We mix (using max
operator) two Visual Sudokus (see Fig. 1(c)) to form a Visual Mixed Sudoku instance,
offsetting the digits and letters to the top left and bottom right direction by two pixels. One
Visual Sudoku consists of digits 0 to 9 (0 denotes the empty cell). The other one is formed of
letters A to J (J denotes the empty cell). All the digit images are sampled from MNIST [15]
and all the letter images are sampled from EMNIST [5]. The sizes of the training set, with
different difficulty, and test set are all 10, 000. We employ the joint training strategy to train
the CLR-DRNets model since the pre-trained classifier can only achieve an accuracy of around
90% (due to the complexity of classifying mixed digits and images). The CLR-DRNets model
for Visual Mixed Sudoku is similar to that for Visual Sudoku and its framework is illustrated
in the Fig. 5. The perception module (see Fig. 2(b)) consists of two ResNet-18 [13] models.
One model is used to generate the shape embeddings for all possible letters and digits per
cell. The other model is employed to generate the initial probability distribution of each cell.
The reasoning module (see Fig. 2(c)) consists of a modified LSTM, the same as for Visual
Sudoku. The initial probability distributions are fed into the modified LSTM to compute
the final probability distribution. The decoder (see Fig. 2(d)) consists of two cGANs (Gd for
digits and Gl for letters). The shape embeddings are fed into two cGANs to generate all the
possible letter and digit images of each cell. We formally define how we reconstruct the input
images. For each cell, denote the shape embedding as zd,0 · · · zd,9 for digits, zl,A · · · zl,J for
letters and denote the final probability distribution as Pd,0 · · ·Pd,9 for digits, Pl,A · · ·Pl,J for
letters. We reconstruct the input image as: max (

∑9
i=0 Pd,iGd(zd,i),

∑J
i=A Pl,iGl(zl,i)). We

use L1 loss as our reconstruction loss (Lrecon).
We explain our training and test settings here. For training, we separately train two

cGANs with part of the MNIST/EMNIST dataset, i.e. the digit and letter images used to
pre-train the cGAN have no intersection with the visual Sudokus’ images. The other parts
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are jointly trained through optimizing the loss function L = LSudoku + λ3Lrecon. To tackle
the different difficulty of the perception and reasoning part, we start with easy Visual Mixed
Sudoku instances, i.e., with 75 (out of 81) hints. And the following curriculum tasks are
designed as 66, 61, 56, 51, 46, 42, 36, 31 and 25 hints. For each difficulty level, we generate
10, 000 Mixed-Visual-Sudoku instances. From 25 hints to 24 hints, we observe a phase
transition property of the combinatorial search problem so we can only train our model using
instances with 25 hints. But surprisingly, the model can still generalize to harder cases (less
than 25 hints). In our experiments, we always mix two Visual Sudokus with the same number
of hints. For the restart scheme, the size of the model pool M is 20. The restart gap is 100.
The metric ϕ is to check the validity of the Sudokus’ solution. The loss function we optimized
for the restart scheme (test) is the same as for training, i.e. LSudoku +λ3Lrecon. Now we have
4 weight scalars for the Sudoku loss equation, denoted as λ1,d, λ2,d, λ1,l and λ2,l, where d
and l refer to digit and letter. We set them as λ1,d = λ1,l = 1.0, λ2,d = 0.01, λ2,l = 0.02. We
up-weight the λ2 for letters Sudoku in that recognizing letters is usually harder than digits.
λ3 is set as 0.005. These parameters are the same for training and testing. The optimizer we
selected is Adam and the learning rate is 3e− 4 in the training and 1e− 4 in the restarting
(test) phase.

CLR-DRNets’ Sudoku accuracy is significantly higher than DRNets’ and also better than
ResNet+SAT (see Fig. 4). De-mixing is very challenging for standard deep learning methods.
DRNets can only solve some easy instances (e.g., 66 hints). When the number of hints
decreases, the difficulty of the reasoning task increases comparatively to the perception task,
making it more challenging (or infeasible) for DRNets to learn the task.

4.3 Ablation Studies
The results above show that CLR-DRNets significantly outperform the baselines, due to (1)
the curriculum learning (see Alg. 1) and (2) the restart scheme (see Alg. 2). We conducted
ablation studies to analyze the contribution of the two factors and the results are showed in
the table 2. In both tasks, curriculum learning contributes the most to the improvement.
Restarts also play an important role, especially for challenging instances (17 hint Visual
Sudoku and 20 hints Visual Mixed Sudoku). We postulate that the 25 hint case is not very
hard, therefore a single model suffices.

Table 2 The test set Sudoku accuracy performance on different tasks, we report the proportion
to the CLR-DRNets’ results. r refers to the restart scheme and c refers to the curriculum learning.

Task CLR-DRNets w/o c w/o r w/o r+c
Visual Sudoku (17-hints) 1.0 0.237 0.450 0.007
Visual Mixed Sudoku (20-hints) 1.0 0.005 0.955 0.004
Visual Mixed Sudoku (25-hints) 1.0 0.009 0.472 0

4.4 Standard 17-hints Sudoku
We also evaluate CLR-DRNets on learning to solve standard Sudokus (i.e., hint values
known), supervised only by the Sudoku rules (no labeled data). We unsupervised train
it on standard Sudoku task by simply optimizing the loss function, LSudoku. The model
architecture is exactly the same as the reasoning module of Visual Sudoku, i.e. a modified
LSTM. We train our model on 100, 000 Sudoku with a uniform distribution of 18 to 25 hints.
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And test on 1, 000 Sudoku with 17 hints. We compared CLR-DRNets against RRN [20],
which is a totally supervised method also leveraging the Sudoku rules to design the model
architecture.

Table 3 Sudoku accuracy for solving 17-hint standard Sudokus.

CLR-DRNets RRN

Sudoku Accuracy 0.912 0.64

From Table 3, we can see that CLR-DRNets outperform RRN largely. Here RRN means
that we train RRN model on our training set (18–25 hints Sudoku). The reason RRN does
not perform as well as their paper is that we never let RRN see the 17 hints Sudoku in the
training phase, so RRN cannot generalize as CLR-DRNets does to the 17-hints case. The
optimizer is Adam with learning rate 1e− 3. We use a learnable embedding for each digit 0
to 9 with dimension 10. The model pool M for restart scheme is 100 and the restart gap g is
10. And the learning rate during the restart scheme is also 1e− 3.

5 Conclusions

We introduce CLR-DRNets, a curriculum-learning-with-restarts framework for DRNets, along
with an enhanced reasoning module. We demonstrate the CLR-DRNets’ effectiveness on
challenging single-player visual combinatorial games, achieving state-of-the-art performance
with weak supervision from prior knowledge (domain rules).
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A Appendix

DRNets’ continuous relaxation for discrete constraints
Here we introduce more formally how DRNets apply continuous relaxation to the discrete
constraints. The basic idea is to employ entropy to model the discrete constraints. For
example, in Sudoku, we require that each row, col, and block, is filled with different digits
(denoted as AllDiff constraints). Then for each cell, we use a probability distribution over all
the possible digits to represent the estimation of one cell. We add all the cells’ probability
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within one row, col or block, consider the best case, the summation vector should be an all-one
vector, which also means it has the highest entropy. Thus, to encourage the model’s output
to satisfy the AllDiff constraints, we maximize the entropy defined above. More formally,
use ei, i = 1 . . . n to represent the discrete variable and pi, i = 1 . . . n for the corresponding
probability distribution. Then to represent ei ̸= ej ∀i ≠ j, we can maximize the function,
H(

∑n
i=1 pi),

where H refers to the entropy. We also want to force the probability distribution to
converge to one point since each distribution actually refers to one single point (denoted
as Cardinality constraint). We can minimize the relaxed loss function to achieve this, i.e.,∑n

i=1 H(pi)
The last discrete constraint we usually use is to select k items from n candidates. This is a

little bit tricky, but we can use a hinge style loss to do that. If we want to select exactly k items
from ei, i = 1 . . . n, we can optimize this relaxed loss function, max(H(

∑n
i=1 pi)− log(k), 0).

The idea here is simple, if the entropy probability distribution summation is log(k), supported
by the Cardinality constraint, we actually selected k items from n candidates.

Once we have these powerful relaxations, we can convert a constrained optimization
problem to an unconstrained optimization problem. Consider we want to optimize the
objective function L under the constraint ϕ. Then we can firstly continuously relax the
constraint ϕ to ψ, and optimize the loss function Lrelax (Lrelax = L + λψ ), which is
approximately equal to solving the original constraint optimization problem.
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