
An Interval Constraint Programming Approach for
Quasi Capture Tube Validation
Abderahmane Bedouhene # Ñ

LIGM, Ecole des Ponts ParisTech, Université Gustave Eiffel, CNRS, Marne-la-Vallée, France

Bertrand Neveu #

LIGM, Ecole des Ponts ParisTech, Université Gustave Eiffel, CNRS, Marne-la-Vallée, France

Gilles Trombettoni #

LIRMM, Université de Montpellier, CNRS, France

Luc Jaulin #

Lab-STICC, ENSTA-Bretagne, Brest, France

Stéphane Le Menec #

MBDA, Le Plessis Robinson, France

Abstract

Proving that the state of a controlled nonlinear system always stays inside a time moving bubble
(or capture tube) amounts to proving the inconsistency of a set of nonlinear inequalities in the
time-state space. In practice however, even with a good intuition, it is difficult for a human to find
such a capture tube except for simple examples. In 2014, Jaulin et al. established properties that
support a new interval approach for validating a quasi capture tube, i.e. a candidate tube (with
a simple form) from which the mobile system can escape, but into which it enters again before a
given time. A quasi capture tube is easy to find in practice for a controlled system. Merging the
trajectories originated from the candidate tube yields the smallest capture tube enclosing it.

This paper proposes an interval constraint programming solver dedicated to the quasi capture
tube validation. The problem is viewed as a differential CSP where the functional variables correspond
to the state variables of the system and the constraints define system trajectories that escape from
the candidate tube “for ever”. The solver performs a branch and contract procedure for computing
the trajectories that escape from the candidate tube. If no solution is found, the quasi capture
tube is validated and, as a side effect, a corrected smallest capture tube enclosing the quasi one is
computed. The approach is experimentally validated on several examples having 2 to 5 degrees of
freedom.

2012 ACM Subject Classification Applied computing → Operations research; Mathematics of
computing → Ordinary differential equations; Mathematics of computing → Differential algebraic
equations; Mathematics of computing → Interval arithmetic; Theory of computation → Constraint
and logic programming

Keywords and phrases Constraint satisfaction problem, Interval analysis, Dynamical systems,
Contractor

Digital Object Identifier 10.4230/LIPIcs.CP.2021.18

Funding This work was supported by the French Agence Nationale de la Recherche (ANR) [grant
number ANR-16-CE33-0024].

Acknowledgements We also thank our colleagues, Alexandre Goldsztejn and Alessandro Colotti, for
the exchange of ideas and their kind help on the experiments.

© Abderahmane Bedouhene, Bertrand Neveu, Gilles Trombettoni, Luc Jaulin, and Stéphane Le Menec;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abderahmane.bedouhene@enpc.fr
http://imagine.enpc.fr/~bedouhea/
mailto:bertrand.neveu@enpc.fr
mailto:gilles.trombettoni@lirmm.fr
mailto:luc.jaulin@ensta-bretagne.fr
mailto:stephane.le-menec@mbda-systems.com
https://doi.org/10.4230/LIPIcs.CP.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Interval CP for Quasi Capture Tube Validation

1 Introduction

Many mobile robots such as wheeled robots, boats, or planes are described by differential
equations. For this type of robots, it is difficult to prove some properties such as the avoidance
of collisions with some moving obstacles. This is even more difficult when the initial condition
is not known exactly or when some uncertainties occur.

A Graal would be to compute a capture tube (or equivalently a positive invariant tube
[24]), i.e. a time moving “bubble” (a set-valued function associating to each time t a subset of
Rn) from which a feasible trajectory cannot escape. The definitions and properties of capture
tubes have been studied by several authors [2, 4], but the algorithms for their computation are
almost absent except in the linear case [33, 25, 11]. In the nonlinear case, approaches based
on interval analysis [19, 31] or Lipschitz assumptions [32] have also been investigated, but the
performances are poor if no propagation techniques are used. When time is discrete, efficient
algorithms are given in [35], but they cannot be extended to robotics systems described by
differential equations.

Instead, a satisfactory alternative is to present a candidate tube to a tool that could
validate whether it is a capture tube or not. This validation problem can generally be
transformed into proving the inconsistency of a constraint system by combining guaranteed
integration and Lyapunov theory [26, 36]. Unfortunately, when the system dynamics is
complex, even with a good intuition, it is difficult for a human to present a significant capture
tube because of its irregular form.

Jaulin et al. proposed in [13] an original approach based on interval analysis. The idea is
to validate a quasi capture tube, also called periodic invariant set [17], i.e. a candidate tube
(with a simple form) from which the mobile system can escape, but into which it can enter
again before a given time. Merging these trajectories with the candidate tube computes the
smallest capture tube enclosing the quasi capture one. Jaulin et al. established properties
that support this new approach, but the algorithms were not described and were validated
only on a simple pendulum example with two degrees of freedom. Their approach worked in
two steps, where the first one focused on the crossout constraints (see Section 3) while the
second step managed the other constraints.

The contribution presented in this paper is built upon those properties. Compared to
Jaulin et al. approach, the solver follows a pure CSP approach expressing the quasi capture
tube validation problem, where the domains are tubes defined recently in the Tubex-Codac
library [28, 30]. After the background in Section 2, we formally define in Section 3 the quasi
capture tube validation problem and its expression as a CSP. We then propose a Branch and
Contract solver dedicated to this problem in Section 4 and show in Section 5 how it scales
up on several problems from 2 to 5 state dimensions.

2 Background

We first provide some background about intervals, inclusion functions and contraction. We
then briefly present how intervals can be used to handle dynamical systems.

2.1 Intervals
Contrary to numerical analysis methods that work with single values, interval methods can
manage sets of values enclosed in intervals. Interval methods are known to be particularly
useful for handling nonlinear constraint systems.



A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:3

▶ Definition 1 (Interval, box, box size/diameter). An interval [xi] = [xi, xi] defines the set
of reals xi such that xi ≤ xi ≤ xi. IR denotes the set of all intervals. A box [x] denotes a
Cartesian product of intervals [x] = [x1]× ...× [xn]. The size, width or diameter of a box
[x] is given by Diam([x]) ≡ maxi(Diam([xi])) where Diam([xi]) ≡ xi − xi. The midpoint
mid([xi]) of [xi] is xi+xi

2 .

Interval arithmetic [22] has been defined to extend to IR the usual mathematical operators
over R. For instance, the interval sum is defined by [x1] + [x2] = [x1 + x2, x1 + x2]. When a
function f is a composition of elementary functions, an inclusion function [f ] of f must be
defined to ensure a conservative image computation. There are several inclusion functions.
The natural inclusion function of a real function f corresponds to the mapping of f to intervals
using interval arithmetic. For instance, the natural inclusion function [f ]N of f(x) = x(x+ 1)
in the domain [x] = [0, 1] computes [f ]N ([0, 1]) = [0, 1] · [1, 2] = [0, 2]. Another inclusion
function is based on an interval Taylor form [12].

Interval arithmetics can be used for solving the numerical CSP (NCSP), i.e. finding
solutions to an NCSP network P = (x, [x], c), where x is an n-set of variables taking their
real values in the domain [x] and c is an m-set of numerical constraints using operators
like +, −, ×, ab, exp, log, sin, etc. NCSP solvers, like Gloptlab [10] or Ibex [6] to name
a few, follow a Branch and Contract method to solve an NCSP. The branching operation
subdivides the search space by recursively bisecting variable intervals into two subintervals
and exploring both sub-boxes independently. The combinatorial nature of this tree search is
not always observed thanks to the contraction (filtering) operations applied at each node
of the search tree. Informally, a contraction applied to an NCSP instance can reduce the
variables domains without losing any solution.

A contractor used in this paper is the well-known HC4-revise [3, 21], also called forward-
backward. This contractor handles a single numerical constraint and obtains a (generally non
optimal [7]) contracted box including all the solutions of that constraint.

To contract a box w.r.t. an NCSP instance, the HC4 algorithm performs a (generalized)
AC3-like propagation loop applying iteratively the HC4-Revise procedure on each constraint
individually until a quasi fixpoint is obtained in terms of contraction.

CID-consistency [34] is a stronger consistency enforced on an NCSP. The CID algorithm
calls its VarCID procedure on all the NCSP variables for enforcing the CID-consistency.
VarCID splits a variable interval in k subintervals, and runs a contractor, such as HC4, on the
corresponding sub-boxes. The smallest box including the k sub-boxes contracted is finally
returned. The 3BCID contractor used in this paper uses a variant of the VarCID procedure.

2.2 Dynamical CSP and tubes
Intervals can also be used to handle dynamical systems that handle functional variables, also
called trajectories.

A trajectory, denoted x(·) = (x1(·), .., xn(·)), is a function from [t0, tf ] ⊂ R to Rn. The
input (argument) of x(·) is named time in this article (and denoted · or t) while the output
(image) is called state.

Interval methods can compute trajectories as solutions of a differential CSP instance.

▶ Definition 2 (Differential CSP). A differential CSP network is defined by (x(·), [x](·), c),
where x(·) is a trajectory variable of domain [x](·) and c denotes the set of differential
constraints between variables x(·).

Solving a differential CSP instance consists in finding the set of trajectories in [x](·)
satisfying c.

CP 2021



18:4 Interval CP for Quasi Capture Tube Validation

Domains of a differential CSP network are tubes, set-valued functions associating to each
time t a subset of Rn, on which we apply contraction and bisection operations.

▶ Definition 3 (Tube [15]). A tube [x](·) : [t0, tf ]→ P(Rn) is an interval of two trajectories
[x(·),x(·)] such that ∀t ∈ [t0, tf ], x(t) ⩽ x(t). We also consider empty tubes that depict an
absence of solutions.
A trajectory x(·) belongs to the tube [x] (·) if ∀t ∈ [t0, tf ], x (t) ∈ [x] (t).

Fig. 1 illustrates a one-dimensional tube ([t0, tf ]→ P(R)) enclosing a trajectory x(·).

δ

·

[x ]( ·)

tf

t1 t3
t0

x ( ·)t0

output gate of [[ x ]](2)

slice [[x ]](2)

Figure 1 A one-dimensional tube [x](·) Courtesy of S. Rohou). In grey enclosing a random
trajectory x(·) depicted in plain line (orange). [x](·) is an interval of two functions [x(·), x(·)]. The
tube is numerically represented by a set of δ-width slices illustrated by blue boxes.

A tube is represented numerically by a set of boxes corresponding to temporal slices.
More precisely, an n-dimensional tube [x](·) with a sampling time δ > 0 is implemented as a
box-valued function which is constant for all t inside intervals [kδ, kδ + δ], k ∈ N. The box
[kδ, kδ + δ]× [x] (tk), with tk ∈ [kδ, kδ + δ], is called the kth slice of the tube [x](·) and is
denoted by [[x]](k). This implementation takes rigorously into account floating-point precision
when building a tube: computations involving [x](·) will be based on its slices, thus giving a
reliable outer approximation of the solution set. The slices may be of same width as depicted
in Fig. 1, but the tube can also be implemented with a customized temporal slicing. Finally,
we endow the definition of a slice [[x]](k) with the slice (box) envelope (blue painted in Fig. 1)
and two input/output gates [x](tk) and [x](tk+1) (black painted) that are intervals of IRn

through which trajectories are entering/leaving the slice.
Once a tube is defined, it can be handled in the same way as an interval. We can for

instance use arithmetic operations as well as function evaluations. If f is an elementary
function such as sin, cos or exp, we define f ([x](·)) as the smallest tube containing all feasible
values: f ([x](·)) =

[
{f (x(·)) | x(·) ∈ [x](·)}

]
.

The Branch & Contract algorithm presented in this paper makes choice points on
tubes [28], defined as follows and illustrated by Fig. 2.

▶ Definition 4 (Tube bisection). Let [x](·) be a tube of a trajectory x(·) defined over [t0, tf ].
Let tk be an instant in [t0, tf ], i a dimension in {1..n}, and [xi] the interval value of [xi](·)
at tk. Let mid(xi) be xi+xi

2 .
The tube bisection (tk, i) of [x](·) produces two tubes [xL](·) and [xR](·) equal to [x](·) except
at time tk, where [xL

i ] = [xi,mid(xi)] and [xR
i ] = [mid(xi), xi].

In practice, a bisection (tk, i) is applied only to a gate of the tube. For the particular problem
handled in this paper, tk will always be t0.



A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:5

tk

[x](·)

[xL](·)

[xR](·)

·

·

·

Figure 2 Illustration of a tube bisection at time tk (courtesy of S. Rohou). A gate is created
at tk and the two sub-tubes [xL](·) and [xR](·) differ only by their new created sub-gate (in bold).
Two (among an infinity) possible trajectories of the initial tube are separated by the bisection, one
belonging to [xL](·), the other belonging to [xR](·).

There exist several types of differential constraints. The problem presented in Section 3
contains only well-known ordinary differential equations (ODEs).

▶ Definition 5 (Ordinary differential equation – ODE). Consider x(·) : [t0, tf ] → Rn, its
derivative ẋ(·) : [t0, tf ]→ Rn, and an evolution function f : Rn → Rn, possibly non-linear.
An ODE is defined by: ẋ(t) = f

(
x(t), t

)
This means that for all times t in the temporal domain [t0, tf ] the derivative of the

function x depends only on the state x at time t and on the time t. An ODE can be used to
define a well-known IVP differential system or an extension.

▶ Definition 6 (IVP, interval IVP). The initial value problem (IVP) is defined by an ODE
ẋ(·) = f

(
x(·)

)
and an initial condition x(t0) = x0, where x0 is a constant in Rn.

In an interval IVP, the initial condition is bounded by a box, i.e. x(t0) ∈ [x0].

The IVP is studied for hundreds years and can be solved by numerous numerical methods,
e.g. the Euler method [5]. The interval IVP can be solved by interval analysis tools,
such as VNODE [23], CAPD [14], COSY [27] and DynIbex [8]. These solvers are also called
Guaranteed Integration (GI) solvers. GI solvers use different algorithms to rigorously integrate
the initial information over time. In particular, the CAPD tool used in our solver combines
a high-order interval Taylor form to integrate the state from an instant to a next one, and a
step limiting the wrapping effect implied by interval calculation: it encloses the solution at
gates by an envelope sharper than a box, such as rotated boxes [20].

3 Quasi Tube Capture Validation as a CSP

In automatic control, validation of stability properties of dynamical systems is an important
and difficult problem [16]. A tube G(t) is positive invariant (or a capture tube) for a dynamic
system x(.) if all the possible trajectories of x(.) remain in G(t) for ever, i.e. for every time
in the temporal domain defined.

CP 2021



18:6 Interval CP for Quasi Capture Tube Validation

▶ Definition 7 (Capture tube1). Let Sf be a dynamic system defined by an ODE ẋ(t) =
f

(
x(t), t

)
. Let G(t) be a tube defined by an inequality {x(t) | g(x(t), t) ≤ 0}, where g :

Rn × R→ R is a differentiable function w.r.t. x and t.
Then:

G(t) is said to be a capture tube for Sf if: x(ti) ∈ G(ti), τ > 0 =⇒ x(ti + τ) ∈ G(ti + τ)

Conditions can be checked to validate whether a given tube is a capture tube or not.

▶ Theorem 1 (Cross-out conditions [13]). Let Sf be a dynamic system defined by ẋ(t) =
f

(
x(t), t

)
, and a tube G(t) = {x(t) | g(x(t), t) ≤ 0}. Consider the constraint system:{

(i) ∂g(x,t)
∂x .f(x, t) + ∂g(x,t)

∂t ≥ 0
(ii) g(x, t) = 0

(1)

If (1) is inconsistent (i.e., ∀x,∀t ≥ 0, (1) has no solution), then G(t) is a capture tube.

The constraint system (1) describes the subset of Sf trajectories that escape from G(t).
If this subset is empty, it means that G(t) is a capture tube.

In [13], Jaulin et al. highlighted that it is not easy for the user to define “by hand” a
relevant capture tube of irregular form and propose rather to ask for a so-called quasi capture
tube of simple form. Informally, some trajectories can escape from a quasi capture tube, but
can enter into it again later, i.e. before a given horizon tf . Such a trajectory satisfies the
following constraints:

ẋ(t) = f(x(t), t) (x(t) is a trajectory of S)
∃t0 ∈ [t0], x(t0) satisfies (1) (x(t) exits from G(t) at t0 ∈ [t0])
∃tin ∈ ]t0, tf ] s.t. x(tin) ∈ G(tin) (x(t) goes back inside G(t) at tin)

Instead of using these constraints directly, the idea of this paper is to propose a CSP
expressing the “negation” of the quasi capture problem, and to detail a Branch & Contract
method to solve it.

▶ Definition 8 (CSP defining the quasi capture validation problem). Let Sf be a dynamic
system defined by ẋ(t) = f

(
x(t), t

)
, and a candidate tube G(t) = {x(t) | g(x(t), t) ≤ 0}.

The constraint network N = (x(.), [x(.)], c) defines the quasi capture validation problem,
where x(.) describes the system living in the domain/tube [x(.)], and c includes the three
following (vectorial) constraints:

ẋ(t) = f(x(t), t) (differential constraint)
∃t0, x(t0) satisfies (1) (cross out constraint)
∀t ∈ ]t0, tf ] g(x(t), t) > 0 (escape constraint)

The constraints model the fact that the system can escape from G(t) “for ever”, i.e.
cannot go back in G(t) before tf . If N is inconsistent, then it proves that G(t) is a quasi
capture tube.

Furthermore, consider the trajectories that satisfy the cross out constraint but violate
the escape constraint. It is straightforward to check that if the CSP has no solution, adding
these trajectories to the candidate (quasi capture) tube builds a capture tube [13].

1 For the sake of clarity, and because our application problems fall in this case, we restrict ourselves to
the case where G(t) is defined by only one inequality. The corresponding cross out constraint system is
slightly more complicated otherwise [13], but the solver presented in the next section also works on it.



A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:7

4 Branch and Contract Algorithm

In this section, we describe a branch and contract algorithm for solving the differential CSP
defined above. More precisely, Algorithm 1 computes a set OutList of tubes including all
the system trajectories that escape from the candidate tube G(t) “for ever”, i.e. at a time
greater than t0 and remaining outside G(t) until tf .

4.1 Main algorithm
The initial domain initTube is [t0, tf ]× [x], where [x] is a big or infinite box initializing the
state variables. The other input parameters are the candidate capture tube G(t), a precision
parameter on the time (timestep) and vectorial parameters ϵstart and ϵmin, that specify the
diameters of all variables at the initial gate. They are detailed further.

Algorithm 1 Branch and contract.

1 Input (G(t), initTube, t0, tf , timestep, ϵstart, ϵmin)
2 Output (OutList : list of solution tubes ; UndeterminedList : list of “small” tubes

still undetermined)
3 tubes ← {initTube}
4 while (tubes ̸= ∅) do
5 tube ← Pop(tubes)
6 (ContractionResult, tube) ← Contraction(tube, S, G(t), t0, tf , timestep, ϵstart)
7 if (ContractionResult = out) then
8 OutList ← OutList ∪ {tube}
9 else if (ContractionResult = undetermined) then

10 if Diam(tube(t0)) ≤ ϵmin then
11 UndeterminedList ← UndeterminedList ∪ {tube}
12 else
13 (tubeleft, tuberight) ← Bisect(tube, bisectionStrategy)
14 tubes← {tubeleft} ∪ {tuberight} ∪ tubes
15 end
16 else
17 /* ContractionResult = in: Nothing to do : tube is discarded because its

trajectories all enter inside G(t) at an instant in [t0, tf ] */
18 end
19 end

Algorithm 1 follows a tree search that combinatorially subdivides the initial domain
initTube into smaller tubes, in depth-first order. At each node of the search tree handling
a tube, a contraction is achieved using the three types of constraints detailed above. The
function Contraction (Line 6) returns a contracted tube and a status ContractionResult
associated to it. tube can become empty (and ContractionResult = in) if Contraction could
prove that the tube in entirely inside G(t) at an instant between t0 and tf (see Lines 16–18).
A second case occurs when tube has been detected outside G(t) after a time and until tf
(Line 7). It is not useful to subdivide tube further because all the trajectories inside tube are
solutions. Therefore tube is stored in OutList. The last case corresponds to an internal node
of the search tree and occurs when the contraction cannot decide one of the cases “in” or
“out” above (Line 9). If tube is sufficiently large (Line 12), the branching operation bisects

CP 2021



18:8 Interval CP for Quasi Capture Tube Validation

tube in two sub-tubes tubeleft and tuberight and pushed them in front of tubes (depth first
order). The tube bisection is performed at the first gate (at t0) because one has the most
information at this time (cross out conditions hold). Note it is sufficient to perform all the
bisections at the same time because with an ODE an “instanciation” at one time allows one
to deduce the trajectory perfectly.

No more bisection is achieved if the tube size has reached a given precision ϵmin, and
tube is stored in a list of “undetermined” tubes (Line 11). Algorithm 1 stops when tubes is
empty. If OutList and UndeterminedList are empty, then G(t) is a quasi invariant tube for
the system S.

We detail in Algorithm 2 the different contractors applied to the current tube. tube is
first contracted by the cross out constraints (Line 3). CrossoutContraction contracts tube
at time t0 according to the cross out constraints. It calls the state-of-the-art contractors
HC4 [3] and 3BCID [18, 34] on the cross out constraint subsystem (see Section 5 describing
the experiments).

With the call to ODEEvalContraction (Line 6), we then proceed with the contraction
of the differential (ODE) constraint and the escape constraint. Note that this contraction
procedure is run only under a given level of the search tree, where, for each dimension,
the tube diameter at t0 is lower than the user parameter ϵstart. Indeed, this differential
contraction during the time window [t0, tf ] is costly and needs a relatively small input box
(initial condition) to efficiently contract tube, with the help of guaranteed integration.

Algorithm 2 Function Contraction called by Algorithm 1.

1 Function Contraction(S, G(t), tube, t0, tf , timestep, ϵstart)
2 tube ← CrossOutContraction(tube, S, G(t))
3 if (tube = ∅) then
4 ContractionResult ← in
5 else if (Diam(tube(t0)) < ϵstart) then
6 ContractionResult ← ODEEvalContraction(S, tube, G(t), t0, tf , timestep)
7 else
8 ContractionResult ← undetermined
9 end

10 return (ContractionResult, tube)
11 end

4.2 Differential contraction
White box differential contractors, e.g. the ctcDeriv and ctcEval contractors available in
the Tubex/Codac free library [29], could be used to contract tube w.r.t. the ODE and
escape constraints.

Instead, for performance reasons, we preferred to exploit a state-of-the-art guaranteed
integration (GI) tool, like VNODE-LP [23] or CAPD [14], to benefit from its optimized
internal representations. The corresponding method is described in Algorithm 3.

The ODEEvalContraction function contracts tube by integrating the ODE from t0 to
tf using the CAPD GI solver. The function GI_Simulation (Line 5) calls the GI solver
with the interval initial value tube(ti), the tube gate at time ti. The GI generally needs to
construct several gates before reaching tf , and GI_Simulation allows one to incrementally
build the next slice between ti and a computed time ti+1. By doing this integration, the



A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:9

Algorithm 3 Function ODEEvalContraction called by Algorithm 2.

1 Function ODEEvalContraction(S, tube, G(t), t0, tf , timestep)
2 ti ← t0
3 tout ←∞
4 repeat
5 (slice, ti+1) ← GI_Simulation(S, tube(ti), ti, tf )
6 (ContractionResult, tout) ← GI_Eval (slice, G(t), timestep, ti, ti+1, tout)
7 tube[ti, ti+1] ← tube[ti, ti+1] ∩ slice
8 ti ← ti+1

9 until (ti = tf ) or (ContractionResult = in)
10 if ContractionResult = in or tout ̸=∞ then
11 return ContractionResult

12 else
13 return undetermined
14 end
15 end

GI solver builds an associated high-order Taylor polynomial that can be evaluated rapidly
at any gate or subslice inside [ti, ti+1]. This is the task achieved by GI_Eval. Without
detailing, GI_Eval splits [ti, ti+1] into contiguous subslices of (time) size timestep and tests
whether tube during the studied subslice satisfies the escape (from G(t)) constraint or not.
In the latter case, the integration is interrupted (Algorithm 3 stops) and ContractionResult
is set to in. The whole tube is rejected. If a subslice satisfies the escape constraint, tout is
used to memorize the first instant where it occurs. If tout = ∞, then tout is set to ti. If
a subsequent subslice evaluation does not return out, then tout is set back to ∞. Indeed,
recall that a solution tube must satisfy the escape constraint in all times from tout to tf .
When tf is reached, only two cases are still possible. Either tube has escaped from G(t) at
tout until tf (a solution), or tube has intersected G(t) at some instants, including tf . In that
case, we cannot conclude and the result of the contraction will be undetermined. Figure (3)
summarizes the different cases described above.

1

2

tf t0

  t0     t0

tin

   tf   tf

tf

A B

DC

 t0

3

Figure 3 Different tubes built by the solver. Three particular trajectories (1), (2) and (3) are
highlighted in the figure. A: First slice satisfying the cross out constraints corresponding to the
three trajectories leaving the tube G(t). B: A tube enclosing (1) is integrated and is getting inside
G(t). C: A tube enclosing (2) is escaping from G(t). D: An undetermined tube enclosing (3): the
algorithm cannot conclude.

CP 2021



18:10 Interval CP for Quasi Capture Tube Validation

Another possible case not described in the pseudo-code is when GI_Simulation fails to
compute a part of the simulation. This result is equivalent to the undetermined result since
the algorithm is not able to conclude if the tube goes inside G(t) or not. The choice of ϵstart

has a significant impact on the frequency of this “pathological” case (see experiments).

4.3 Discussion

Algorithm 1 provides two main answers. The favorable case is when the solver returns
no solution: OutList and Underdeterminedlist are empty. The algorithm is correct and
guarantees that G(t) is a quasi capture tube. Furthermore, as a side effect, by merging with
G(t) all the in tubes rejected by the algorithm, we can build the smallest (i.e., inclusion-wise
minimal) capture tube including the quasi capture tube. The second case occurs when the
solver computes a non empty OutList or Underdeterminedlist. This corresponds generally
to the computation of a non quasi capture tube but, theoretically, it is possible that a
trajectory could enter inside G(t) after tf , before tout (OutList ̸= emptyset), or during the
undetermined temporal slices. In this sense, the solver is not complete while these numerical
issues occur rarely provided tf is large enough (according to the command of the system),
and the precision size ϵmin is sufficiently small.

5 Experiments

The current section presents some results provided by an implementation of Algorithm 1 that
significantly improves a first code called Bubbibex and written to validate the pendulum
problem [1]. This new Bubbibex is implemented in C++. It uses the Ibex library [6] with the
HC4 [3] and 3BCID [18, 34] contractors for propagating the cross out conditions constraints.
It also uses the CAPD/DynSys library for the differential contractor based on guaranteed
integration [14] and the Tubex/CODAC library for tube structure [29].

Experiments have been carried out using an Intel(R) Xeon(R) CPU E3-1225 V2 at
3.20GHz. In each experiment, see Table [1], we highlight the results obtained by the solver
when we tried different values for one so-called observed parameter (ϵstart or bubble radius
or etc.).

These responses include the running time of each experiment (CPU-Time) in second, and
the number of computed tubes corresponding to the leaves of the search tree: “In” for tubes
getting inside G(t),“Und” for undetermined tubes and “Out” for tubes staying out of G(t)
at tf . These numbers are reported in the tables presenting the results of each experiment.

The simulation time of each experiment is at most tf = 100 with timestep = 0.01. The
bisection strategy used is the Maximum Diam Ratio, selecting the variable [xi] with the
greatest ratio Diam([xi])/ϵi.

▶ Remark 2. Rewriting a non autonomous ODE as an autonomous ODE adds the temporal
variable “t” to the state variables, increasing the dimension of the problem by 1. As a result,
the dimension of the vectorial parameters ϵstart and ϵmin might increase if the domain of
the temporal variable “t” defined by [t0] is not a degenerate interval (i.e. [t0 < t0]).

5.1 Pendulum

P :
{
ẋ = y

ẏ = −sin(x)− ρ.y (2)



A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:11

Table 1 Characteristics of the different experiments.

Problem Type State variables Bubble
Pendulum Non Linear 2 Static
2D Linear system Linear 2 Dynamic
Tracking Linear 2 and 3 Static and Dynamic
Pursuit game Non Linear 3 and 5 Dynamic

Let P be a dynamical system describing the motion of a pendulum, where x is the angular
position, y is the angular velocity and ρ = 0.15 the constant friction coefficient of the
pendulum. We want to find a quasi capture tube for the system P .

Table 2 Parameters of the pendulum experiment.

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10] x2 + y2 − r2

0 ≤ 0 1 ϵstart

When ϵstart={1,1} (Line 1 of Table 3), the differential contractor is not able to successfully
contract the tube. This is due to a large initial condition that prevents the guaranteed
integration from computing a solution and leads the solver to bisect the initial gate of the
tube before reaching the right precision. Having a good intuition on the parameter ϵstart

(Line 2 of Table 3) can improve the efficiency of the method. The CSP has no solution, the
studied bubble is a quasi capture tube.

Table 3 Results for pendulum system.

ϵstart ϵmin In Und Out CPU
{1,1} {0.1,0.1} 6 0 0 72.2

{0.5,0.5} {0.1, 0.1} 6 0 0 0.00734

5.2 2D linear system

R :
{
ẋ = u1
ẏ = u2

(3)

Let R be a robot described by the linear dynamical system (3) such that (x, y) is the position
and u1 = −x+ t, u2 = −y the controllers.

We want the robot to stay inside a dynamic bubble.
For bubbles with radius r0 ≥ 1.2, the solver is able to verify that they are capture tubes

(the cross-out constraint contracts to an empty domain).
Table 5 depicts the results obtained with bubbles having a constant radius r0 = 1.1,

r0 = 1 or r0 = 0.9 or a time dependent radius r0 = 1√
5 (1 + t). For instance, for [t0] = 0, we

can prove that, for r0 = 0.9, the bubble is not a quasi capture tube, but we are not able to
conclude for r0 = 1, even for a small ϵmin. It is therefore not necessary for r0 = 1 and for
r0 = 0.9 to perform the experiment for [t0] = [0, 100] since the bubble cannot be proved to
be a quasi capture tube. On the other hand, the bubble with a radius r0 = 1.1, and the
bubble with an increasing radius r0 = 1√

5 (1 + t) are quasi capture tubes for all t0 in [0, 100].

CP 2021



18:12 Interval CP for Quasi Capture Tube Validation

Table 4 Parameters of the 2D linear system experiment.

First gate Bubble Observed parameter
x, y ∈ [−100, 100] (x− t)2 + (y)2 − r2

0 ≤ 0 r0

Table 5 Results for r0 = 1.1, r0 = 1, r0 = 0.9 and r0 = 1√
5 (1 + t).

r0 [t0] ϵstart ϵmin In Und Out CPU
1.1 [0, 100] {1,1,0.1} {0.1,0.1,0.01} 2048 0 0 2.6
1 0 {1,1} {0.1,0.1} 0 2 0 0.08
1 0 {1,1} {1e-8,1e-8} 0 10 0 0.91

0.9 0 {1,1} {0.1,0.1} 0 0 2 0.05
(1+t)√

5 [0, 100] {1,1,0.1} {0.1,0.1,0.01} 7 0 0 0.04

5.3 Linear tracking system
Consider the following linear dynamical system:

ẋ(t) = A(x(t)− T (t)) (4)

with x(t) the tracking system and T (t) the target.
We want to study the stability of the system (4) by finding a quasi capture tube. We will

study two cases for the system (4), one with a static bubble centered at the origin, and the
other one with a dynamic bubble centered at the target.

2D and 3D tracking systems
Consider the 2D linear system:

n = 2 : A =
[

1 3
−3 −2

]
, T (t) =

[
cos(t)
sin(2t)

]
(5)

and the 3D linear system:

n = 3, A =

 1 3 0
−3 −2 −1
0 1 −3

 , T (t) =

 cos(t)
cos(t) sin(2t)
− sin(t) sin(2t)

 (6)

Table 6 Parameters of the linear tracking system experiment.

First gate Bubble r0 Observed parameter
x1, x2 ∈ [−10, 10] x2

1 + x2
2 − r2

0 ≤ 0 2 Dim/Bubble
x1, x2 ∈ [−10, 10] (x1 − T1(t))2 + (x2 − T2(t))2 − r2

0 ≤ 0 2 Dim/Bubble
x1, x2, x3 ∈ [−10, 10] x2

1 + x2
2 + x2

3 − r2
0 ≤ 0 2 Dim/Bubble

x1, x2, x3 ∈ [−10, 10] (x1 − T1(t))2 + (x2 − T2(t))2 + (x3 − T3(t))2 − r2
0 ≤ 0 2 Dim/Bubble

Both targets, in the 2D and 3D linear systems, have a periodic pattern movement and their
period is 2π. We can then restrict the study of the stability of both systems to t0 ∈ [0, 2π]
by setting the time domain of the initial gate to [t0] = [0, 2π].
From Table 7 we can conclude that both bubbles are quasi capture tubes for the system (4).
Fig. 4 illustrates the 3D tracking system.



A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:13

Table 7 Results for both systems (2D and 3D) and both bubbles (static and dynamic).

Dim Bubble ϵstart ϵmin In Und Out CPU
2D Static {1,1,0.05} {0.1,0.1,0.01} 370 0 0 1.20
2D Dynamic {1,1,0.05} {0.1,0.1,0.01} 1021 0 0 1.65
3D Static {1,1,1,0.05} {0.1,0.1,0.1,0.01} 3290 0 0 7.10
3D Dynamic {1,1,1,0.05} {0.1,0.1,0.1,0.01} 4040 0 0 11.94

First gate

First gate

First gate
In

In

In

First gates of the cross out condition

Tube

Tube

Tube

A

C D

B

1

2
3

Figure 4 Sample of tubes of the 3D linear tracking system leaving the static bubble. The figure
illustrates the bubble and the tubes in the state dimensions. A: First gates satisfying the cross out
constraints appear in white on the spherical bubble of radius r0 = 2. The periodic target, with an
“∞” trajectory, appears in the center of the bubble. Its color is going from red at t = 0 to white at
t = 2π. B and C: Tubes (in red) getting almost immediately inside the sphere. D: Tube going far
away from the sphere and finally landing after one first unsuccessful landing trial.

5.4 Pursuit evasion game
A “pursuit evasion” game is a situation where a pursuer (P ) wants to catch an evader (E)
trying to escape from him. In the following experiment, we will present two problems based
the “pursuit evasion” game, one in the plane, and the other one in the 3D-space. The evader
(E) will be at the center of a dynamic bubble, and we want the pursuer to stay inside the
bubble in order to catch the evader. In other words, we want the bubble to be a capture
tube, or at least, a quasi capture tube.

Pursuit game on the plane
Consider the following pursuer P and evader E:

P :


ẋ = u1.cos(θ)
ẏ = u1.sin(θ)
θ̇ = u2

E :
{
xd = v.t

yd = sin(ρt) (7)

where x and y are the position and θ the heading of P .
The velocity of the pursuer and its heading are respectively controlled by u1 = ||n|| and

u2 = −K.sin(θ − θd) such that θd = atan2(n) and n is defined as follows:

n =
[
nx

ny

]
= 1
dt

[
xd − x
yd − y

]
+

[
ẋd

ẏd

]

CP 2021



18:14 Interval CP for Quasi Capture Tube Validation

Table 8 Parameters of the pursuit game on the plane experiment.

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10], θ ∈ [0, 2π] (x− xd)2 + (y − yd)2 − r2

0 = 0 1 ϵh

We add the following constraint on the heading of the pursuer:

h(x, y, θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵh ≤ 0

Constants: K = 1, v = 7, ρ = 1, dt = 1

Pursuit Evasion game in the 3D-space
Let the pursuer P and the evader E:

P :


ẋ = u1.cos(θ).cos(ψ)
ẏ = u1.cos(θ).sin(ψ)
ż = u1.sin(θ)
ψ̇ = u2
θ̇ = u3

E :


xd = v.w.t

yd = v.w.sin(w.t)
zd = −v.w.cos(w.t)

(8)

where x, y and z are the position, ψ is the circular rotation speed and θ is the vertical
rotation speed of P. The controls u1 = ||n||, u2 = K(ψ − ψd) and u3 = K(θ − θd). Without
going into details, θd and ψd are defined with analytical expressions.

n =

 nx

ny

nz

 = 1
dt

 xd − x
yd − y
zd − z

 +

 ẋd

ẏd

żd


We have added the following constraints on the circular and vertical rotations of the pursuer:

h1(ψ, t) = (cos(ψ)− cos(ψd))2 + (sin(ψ)− sin(ψd))2 − ϵh ≤ 0

h2(θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵh ≤ 0

Constants: v = 2, w = 1, K = 10, dt = 1.

Table 9 Parameters of the pursuit game in the 3D-space experiment.

First gate Tube candidate r0 Observed parameter
x, y, z ∈ [−10, 10], θ, ψ ∈ [0, 2π] (x− xd)2 + (y − yd)2 + (z − zd)2 − r2

0 = 0 1 ϵh

Pursuit evasion game results
Here again, both evaders follow a periodic pattern of period 2π, so the study is restricted to
a time domain t0 ∈ [0, 2π].

When the problem scales up (in the number of the state variables, number of nonlinearities,
system stiffness, etc.), the solver faces some difficulties. We can see in Tables 10 and 11 how
varies the number of tubes computed by the solver for validating a quasi capture tube (the
reader can compare with the previous experiments). The number of tubes required can be
drastically lowered by using small values for parameter ϵh that restrict the initial heading
(resp. circular and vertical rotations) of the pursuer (see Fig. 5).



A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:15

Table 10 Results of the pursuit game on the plane show that, with a small parameter ϵh, we can
validate the quasi capture tube on the whole period of the evader.

[t0] ϵh ϵstart ϵmin In Und Out CPU
0 0.02 {0.1, 0.1, 0.1} {0.01, 0.01, 0.005} 129 0 0 1.74

[0, 2π] 0.02 {0.1, 0.1, 0.1, 0.05} {0.01, 0.01, 0.005, 0.005} 16672 0 0 585
0 0.2 {0.1,0.1,0.1} {0.01, 0.01, 0.005} 437 0 0 8.01

[0, 2π] 0.2 {0.1, 0.1, 0.1, 0.05} {0.01, 0.01, 0.005, 0.005} 105735 0 0 6561

Table 11 Results of the pursuit game in 3D-space: even for small parameter value ϵh, studying
one tenth of the period for [t0] requires a huge CPU time. On the other hand, the quasi capture
tube is then validated.

[t0] ϵh ϵstart ϵmin In Und Out CPU
0 0.1 {0.1,0.1,0.1,0.05,0.05} {0.01,0.01,0.01,0.005,0.005} 21414 0 0 590
0 0.08 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 8128 0 0 236
0 0.0625 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 1852 0 0 62.4
0 0.05 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 176 0 0 11.1

[0, π
5 ] 0.05 {0.1, 0.1, 0.1, 0.05, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005, 0.005} 241103 0 0 109

A B

C D

First gates of the cross out condition

Evader 
trajectory

Evader position at [t0]

Figure 5 Pursuit evasion game in 3D-space: Illustration of the bubble and the evader trajectory
(in red) in the state dimensions. First gates satisfying the cross out constraints at [t0] = 0 appear in
white on the spherical bubble of radius r0 = 1, centered on the position of the evader at [t0] = 0. We
can notice how the number of gates varies for different values for ϵh. A: ϵh = 0.05. B: ϵh = 0.0625.
C: ϵh = 0.08. D: ϵh = 0.1

6 Conclusion

We have proposed a Branch and Contract solver dedicated to the quasi capture tube validation,
a problem for which the algorithms are almost absent. The solver is sufficiently generic to
handle different problems. The performance of the solver is based on filtering/contraction
algorithms and on the use of the guaranteed integration solver CAPD for the integration of
differential equations. We have validated the solver in different application examples scaling
from 2 to 5 state dimensions. To simplify the problem, the solver can accept additional
constraints on the command parameters. We have tried to propagate domain reductions
backward (from the escape constraint deductions to t0) with no success. Nevertheless, there
is still improvement space for future work. We could improve the shape of the capture

CP 2021



18:16 Interval CP for Quasi Capture Tube Validation

tube candidate using Lyapunov approaches or parametric barrier functions [9]. We could
also improve our algorithm for computing in an auto-adaptive manner the ϵstart parameter
deciding the tube size under which it is relevant to run the guaranteed integration solver.
Finally, we could improve our software using a multi threading approach.

References
1 A. Akkouche, J.-B. Bénéfice, Q. Bréfort, B. Desrochers F. Carbonera, T. Issautier,

M. Laranjeira-Moreira, V. Le Doze, D. Monnet, and A. Oubelhaj. BUBBIBEX with IBEX.
Engineering internship report, ENSTA Bretagne, 2014. URL: https://www.ensta-bretagne.
fr/jaulin/archirob.html#bm_2013_14.

2 J.-P. Aubin. Viability Kernels and Capture Basins of Sets Under Differential Inclusions. SIAM
Journal on Control and Optimization, 40(3):853–881, 2001. doi:10.1137/S036301290036968X.

3 F. Benhamou, F. Goualard, L. Granvilliers, and J.F. Puget. Revising Hull and Box Consistency.
In D. De Schreye, editor, Logic Programming: The 1999 International Conference, Las Cruces,
New Mexico, USA, November 29 - December 4, 1999, pages 230–244. MIT Press, 1999.

4 F. Blanchini and S. Miani. Set Theoretic Methods in Control. Birkhauser, 2008.
5 J.C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2004. URL:

https://books.google.fr/books?id=okzpIwEX8aEC.
6 G. Chabert. IBEX – an Interval-Based EXplorer, 2020. URL: http://www.ibex-lib.org/.
7 H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consistencies. Reliable Computing,

5(3):213–228, 1999.
8 Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated Explicit and Implicit

Runge–Kutta Methods. Reliable Computing, 22(1):79–103, July 2016.
9 A. Djaballah, A. Chapoutot, M. Kieffer, and O. Bouissou. Construction of Parametric Barrier

Functions for Dynamical Systems using Interval Analysis. Automatica, 78:287–296, 2017.
doi:10.1016/j.automatica.2016.12.013.

10 F. Domes. GLOPTLAB: a Configurable Framework for the Rigorous Global Solution of
Quadratic Constraint Satisfaction Problems. Optimization Methods & Software, 24:727–747,
October 2009. doi:10.1080/10556780902917701.

11 A. Girard, C. Le Guernic, and O. Maler. Efficient Computation of Reachable Sets of Linear
Time-invariant Systems with Inputs. Hybrid Systems: Computation and Control, 3927:257–271,
2006.

12 E. R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, New York, NY,
1992.

13 L. Jaulin, D. Lopez, V. Le Doze, S. Le Menec, J. Ninin, G. Chabert, M. S. Ibnseddik, and
A. Stancu. Computing Capture Tubes. In Marco Nehmeier, Jürgen Wolff von Gudenberg, and
Warwick Tucker, editors, Scientific Computing, Computer Arithmetic, and Validated Numerics,
pages 209–224, Cham, 2016. Springer International Publishing.

14 T. Kapela, M. Mrozek, D. Wilczak, and P. Zgliczynski. CAPD: : Dynsys: a flexible C++
toolbox for rigorous numerical analysis of dynamical systems. CoRR, abs/2010.07097, 2020.
arXiv:2010.07097.

15 F. Le Bars, J. Sliwka, L. Jaulin, and O. Reynet. Set-membership State Estimation with
Fleeting Data. Automatica, 48(2):381–387, 2012. doi:10.1016/j.automatica.2011.11.004.

16 S. Le Menec. Linear Differential Game with Two Pursuers and One Evader. Advances in
Dynamic Games, 11:209—226, 2011.

17 Y. I. Lee and B. Kouvaritakis. Constrained Robust Model Predictive Control Based on Periodic
Invariance. Automatica, 42:2175–2181, 2006.

18 O. Lhomme. Consistency Techniques for Numeric CSPs. In R. Bajcsy, editor, Proceedings of
the 13th International Joint Conference on Artificial Intelligence. Chambéry, France, August
28 - September 3, 1993, pages 232–238. Morgan Kaufmann, 1993. URL: http://ijcai.org/
Proceedings/93-1/Papers/033.pdf.

https://www.ensta-bretagne.fr/jaulin/archirob.html#bm_2013_14
https://www.ensta-bretagne.fr/jaulin/archirob.html#bm_2013_14
https://doi.org/10.1137/S036301290036968X
https://books.google.fr/books?id=okzpIwEX8aEC
http://www.ibex-lib.org/
https://doi.org/10.1016/j.automatica.2016.12.013
https://doi.org/10.1080/10556780902917701
http://arxiv.org/abs/2010.07097
https://doi.org/10.1016/j.automatica.2011.11.004
http://ijcai.org/Proceedings/93-1/Papers/033.pdf
http://ijcai.org/Proceedings/93-1/Papers/033.pdf


A. Bedouhene, B. Neveu, G. Trombettoni, L. Jaulin, and S. Le Menec 18:17

19 M. Lhommeau, L Jaulin, and L. Hardouin. Inner and Outer Approximation of Capture Basins
using Interval Analysis. ICINCO 2007, 2007.

20 R. Lohner. Enclosing the Solutions of Ordinary Initial and Boundary Value Problems. In
E. Kaucher, U. Kulisch, and Ch. Ullrich, editors, Computer Arithmetic: Scientific Computation
and Programming Languages, pages 255–286. BG Teubner, Stuttgart, Germany, 1987.

21 F. Messine. Méthodes d’Optimisation Globale basées sur l’Analyse d’Intervalle pour la Résolu-
tion des Problèmes avec Contraintes. PhD thesis, LIMA-IRIT-ENSEEIHT-INPT, Toulouse,
1997.

22 R. E. Moore. Interval Analysis, volume 4. Prentice-Hall Englewood Cliffs, 1966.
23 N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An Effective High-Order Interval Method

for Validating Existence and Uniqueness of the Solution of an IVP for an ODE. Reliable
Computing, 7(6):449–465, 2001. doi:10.1023/A:1014798618404.

24 S. Olaru, J.A. De Dona, M.M. Seron, and F. Stoican. Positive Invariant Sets for Fault Tolerant
Multisensor Control Schemes. International Journal of Control, 83(12):2622–2640, 2010.

25 S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. Invariant approximations
of the minimal robust positively invariant set. IEEE Trans. Autom. Control, 50(3):406–410,
2005.

26 S. Ratschan and Z. She. Providing a Basin of Attraction to a Target Region of Polynomial
Systems by Computation of Lyapunov-like Functions. SIAM J. Control and Optimization,
48(7):4377—4394, 2010.

27 N. Revol, K. Makino, and M. Berz. Taylor Models and Floating-point Arithmetic: proof that
arithmetic operations are validated in COSY. Journal of Logic and Algebraic Programming,
64:135–154, 2005.

28 S. Rohou, A. Bedouhene, G. Chabert, A. Goldsztejn, L. Jaulin, B. Neveu, V. Reyes, and
G. Trombettoni. Towards a Generic Interval Solver for Differential-Algebraic CSP. In Proc.
CP, Constraint Programming, Springer, LNCS 12333, pages 864–879. Springer, 2020.

29 S. Rohou et al. The Tubex Library – Constraint-programming for robotics, 2021. URL:
http://simon-rohou.fr/research/tubex-lib/.

30 Simon Rohou, Luc Jaulin, Lyudmila Mihaylova, Fabrice Le Bars, and Sandor M. Veres.
Guaranteed Computation of Robot Trajectories. Robotics and Autonomous Systems, 93:76–84,
2017. doi:10.1016/j.robot.2017.03.020.

31 S. Romig, L. Jaulin, and A. Rauh. Using Interval Analysis to Compute the Invariant Set of a
Nonlinear Closed-Loop Control System. Algorithms, 12(262), 2019.

32 P. Saint-Pierre. Hybrid Kernels and Capture Basins for Impulse Constrained Systems. In C.J.
Tomlin and M.R. Greenstreet, editors, in Hybrid Systems: Computation and Control, volume
2289, pages 378–392. Springer-Verlag, 2002.

33 F. Tahir and M. Jaimoukha. Low-Complexity Polytopic Invariant Sets for Linear Systems
Subject to Norm-Bounded Uncertainty. IEEE Trans. Autom. Control, 60:1416–1421, 2015.

34 G. Trombettoni and G. Chabert. Constructive Interval Disjunction. In Proc. CP, Constraint
Programming, LNCS 4741, pages 635–650. Springer, 2007.

35 J. Wan, J. Vehi, and N. Luo. A Numerical Approach to Design Control Invariant Sets for
Constrained Nonlinear Discrete-time Systems with Guaranteed Optimality. Journal of Global
Optimization, 44:395–407, 2009.

36 J. A. Yorke. Invariance for Ordinary Differential Equations. Mathematical System Theory,
1(4):353–372, 1967.

CP 2021

https://doi.org/10.1023/A:1014798618404
http://simon-rohou.fr/research/tubex-lib/
https://doi.org/10.1016/j.robot.2017.03.020

	1 Introduction
	2 Background
	2.1 Intervals
	2.2 Dynamical CSP and tubes

	3 Quasi Tube Capture Validation as a CSP
	4 Branch and Contract Algorithm
	4.1 Main algorithm
	4.2 Differential contraction
	4.3 Discussion

	5 Experiments
	5.1 Pendulum 
	5.2 2D linear system 
	5.3 Linear tracking system
	5.4 Pursuit evasion game

	6 Conclusion

