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Abstract
Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon
atoms) whose carbon atoms form hexagons. These molecules are widely studied both experimentally
and theoretically and can have various physicochemical properties (mechanical resistance, electronic
conductivity, . . . ) from which a lot of concrete applications are derived. These properties can rely
on the existence or absence of fragments of the molecule corresponding to a given pattern (some
patterns impose the nature of certain bonds, which has an impact on the whole electronic structure).
The exhaustive generation of families of benzenoids sharing the absence or presence of given patterns
is an important problem in chemistry, particularly in theoretical chemistry, where various methods
can be used to better understand the link between their shapes and their electronic properties.

In this paper, we show how constraint programming can help chemists to answer different
questions around this problem. To do so, we propose different models including one based on a
variant of the subgraph isomorphism problem and we generate the desired structures using Choco
solver.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons whose carbons are forming cycles
of different sizes. Benzenoids are a subfamily of PAHs for which all the cycles are of size 6.
Benzene, represented in Figure 1(a), is the smallest one. It is made of 6 carbon atoms
and 6 hydrogen atoms. Its carbon atoms form a hexagon (also called benzenic cycle or
benzenic ring) and each of them is linked to a hydrogen atom. Benzenoids can also be seen
as the molecules obtained by aggregating benzenic rings. For example, Figure 1(b) shows
anthracene, which contains three benzenic rings. Atoms establish bonds between themselves
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Figure 1 Examples of benzenoids: benzene (a) and anthracene (b) with their graphical represent-
ation (c) and (d), perylene (e) and a benzenoid containing two instances of the pattern deep bay (in
blue dashed) and two of instances of the pattern zigzag bay (in dotted red) (f).
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Figure 2 Coronene (a), its hexagon graph (b) and the coronenoid of size 3 (c).

which can be single or double depending on the number of electrons involved in the bond.
In a benzenoid, each carbon atom is linked either to two carbon atoms and one hydrogen
atom, or to three carbon atoms. In the following, hydrogen atoms play no role (and their
presence can be inferred if necessary). Also, they can be omitted in the representation. Thus,
a benzenoid can be represented as an undirected graph B = (V, E) in which each vertex of V

corresponds to a carbon atom and each edge of E reflects the existence of a bond between the
two corresponding carbon atoms. Note that the nature of bonds (simple or double) has no
importance for our purpose. This graph is connected, bipartite and planar. Figures 1(c) and
(d) show the graphs corresponding to benzene and anthracene. Moreover, since benzenoids
can be defined as a combination of fused benzenic rings, we consider, for each benzenoid B,
a second graph called the hexagon graph. This graph Bh = (Vh, Eh) is an undirected graph
in which each vertex corresponds to a hexagon (i.e. a benzenic ring) of B and such that two
vertices are connected by an edge if the corresponding hexagons share an edge in the graph
B. Figures 2(a)-(b) show the graph corresponding to coronene and its hexagon graph.

Benzenoids and more generally PAHs are well-studied in various fields (molecular nano-
electronics, organic synthesis, interstellar chemistry, . . . ) because of their energetic stability,
molecular structures or optical spectra. They have a wide variety of physicochemical prop-
erties depending on their size and structure. For example, they can combine a strong
mechanical resistance with high electronic conductivity. These properties can rely on the
existence or absence of fragments of the molecule corresponding to a given pattern. Some
patterns impose the nature of certain bonds, which impacts the whole electronic structure.
For instance, perylene (Figure 1(e)) can be seen as two overlapping triangles of three fused
rings with the consequence that the central bonds are essentially simple.

The controlled synthesis of PAH with tuned edges is very recent. This is a hot topic
as shown by the number of recent publications on the synthesis of such compounds in
high impact factor chemistry journals (e.g. [29, 19, 1, 6, 8, 14, 16, 31, 35]). This has
motivated many theoretical studies to better understand the impact of the edge topology
on their electronic properties. This chemistry leads to enhanced optoelectronic molecular
properties [11, 20, 24, 25, 28, 36] or magnetic properties [23, 38], which are further improved
and combined in mixed edge molecules [17, 26, 27, 37]. As recent examples, it was shown that
the addition of two extra K-regions (or armchair edges, see Figure 5(a)) to hexabenzocoronene
leads to an enhanced optical activity of the molecules with potential applications as organic
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laser materials [11]. Furthermore, PAHs with armchair edges are semiconductors with high
bands gaps whereas zigzag edges (see Figure 5(g)) lead to improved conductivity but are
fairly unstable. Thus chemists intend to design molecules with zigzag patterns at the edges
and stabilize the molecular structure with neighboring cove regions, which also lead to
higher dispersibility in solution and improved optoelectronic properties [26]. Niu et al. [26]
provide several benzenoids that chemists can synthesize and which contain such patterns.
For instance, Figure 1(f) describes one of them which contains two instances of the pattern
cove (depicted in blue dashed and called deep bay in [34]) and two instances of the pattern
zigzag (depicted in dotted red and called zigzag bay in [34]). It is thus important to be able
to exhaustively generate families of benzenoids sharing common given patterns on their edges
for a given number of fused rings.

In the literature, bespoke approaches have been proposed to generate benzenoid structures
satisfying or not some particular properties (e.g. [3]). They turn to be very efficient in practice
but are difficult to adapt to the needs of chemists. Moreover, they only consider properties
on the whole molecule. In [5], we have described a new approach based on constraint
programming (CP) which is more flexible while being competitive. More precisely, we model
the problem as an instance of the Constraint Satisfaction Problem (CSP). Remember that
a CSP instance can be defined as a triplet (X, D, C) where X = {x1, . . . , xn} is the set
of variables, D = {Dx1 , . . . , Dxn} is the set of domains, the domain Dxi being related to
the variable xi, and C = {c1, ..., ce} represents the set of the constraints which define the
interactions between the variables and describe the allowed combinations of values. For sake
of simplicity and expressivity, our model exploits graph variables (notably to represent the
hexagon graph). Graph variables have as domain a set of graphs defined by a lower bound
(a subgraph called GLB) and an upper bound (a super-graph called GUB). In [5], we used
Choco solver [13] since this library supports graph variables and its graph-related constraints
(e.g. the connected constraint [12]) and also the usual global constraints which make the
modeling easier. However, this model only handles global properties. Hence, in this paper,
we describe how to integrate the notion of pattern. Several models being possible, we study
them on the basis of the different questions that arise about patterns before comparing them
experimentally.

This paper is organized as follows. In Section 2, we recall how to generate benzenoid
structures, in particular with the help of CP. Afterward, in Section 3, we formalize the
problem we are interested in and address different questions that may be of interest for
chemists in Sections 4 to 6. Finally, we assess experimentally some models in Section 7,
before concluding in Section 8.

2 Generating Benzenoid Structures

Generating benzenoid structures which have certain structural properties (e.g. having a given
number of hexagons or having a particular structure from a graph viewpoint) is an interesting
and important problem in theoretical chemistry [9, 21, 22, 30]. This problem is a preliminary
step to the study of their chemical properties. It can be formally defined as follows: Given a
set of structural properties P , generate all the benzenoid structures satisfying the properties
of P. These properties may concern the number of carbon or hexagon atoms or particular
shapes (tree, rectangle, presence of “holes”, . . . ).

In the literature, bespoke methods have been proposed (e.g. [3]). If they are often efficient
in practice, they have the disadvantage of being difficult to adapt to the needs of chemists.
In [5], we proposed a CP model of this problem and showed how easy it is to meet the wishes
expressed by the chemists by simply adding variables and constraints. Moreover, beyond its
flexibility, this approach is relatively efficient thanks to Choco solver.

CP 2021
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We now recall the CP model allowing to generate all structures with n hexagons. It relies
on the property that any benzenoid of n hexagons can be embedded in a coronenoid of size
at most k(n) =

⌊
n
2 + 1

⌋
. A coronenoid of size k is a benzene molecule to which k − 1 crowns

of hexagons have been successively added. Coronene (see Figure 2(a)) is the coronenoid
of size 2. Figure 2(c) shows the coronenoid of size 3. We can remark that the number of
hexagons in the ith crown grows with i. Thereafter, we denote B

c(k(n))
h (where c(k(n)) stands

for coronenoid of size k(n)) the hexagon graph of the coronenoid of size k(n), nc its number
of hexagons and mc its number of edges. The hexagons and edges of B

c(k(n))
h are arbitrarily

numbered starting from 1. Figure 2 presents a possible numbering. First, in this model
(denoted M), we consider a graph variable xG to represent the hexagon graph of the desired
structure. Its domain is the set of all subgraphs between the empty graph and B

c(k(n))
h . The

use of a graph variable makes it much easier to express the connectedness of the generated
structures (as described below). We also exploit a set of nc Boolean variables {x1, . . . , xnc}.
The variable xi is set to 1 if the i-th hexagon of B

c(k(n))
h is used in xG, 0 otherwise. Similarly,

we also consider a set of mc Boolean variables yi,j . The variable yi,j is set to 1 if the edge
{i, j} of B

c(k(n))
h is used in xG, 0 otherwise.

Then, the following properties are expressed thanks to constraints:
Link between xG and xi (resp. yi,j): a channeling constraint imposes that xi = 1 ⇐⇒
xG contains the vertex i (resp. yi,j = 1 ⇐⇒ xG contains the edge {i, j}).
xG is an induced subgraph of B

c(k(n))
h : Any value of xG is not necessarily a valid hexagon

graph. To guarantee its validity, it must correspond to a subgraph of B
c(k(n))
h induced by

the vertices belonging to xG. Thus, for each edge {i, j} of B
c(k(n))
h , one adds a constraint

xi = 1 ∧ xj = 1 ⇔ yi,j = 1. In other words, the edge {i, j} exists in xG if and only if the
vertices i and j appear in xG.
The structure has n hexagons:

∑
i∈{1,...,nc}

xi = n.

The hexagon graph is connected: It is achieved by applying the connected graph constraint
on xG [12].
Six hexagons forming a cycle generate a hexagon (and not a hole): For each hexagon
u, let N(u) denotes the set of the neighbors of u in the hexagon graph. Then, for each
vertex u having 6 neighbors, the property is ensured by adding a constraint between xu

and the variables corresponding to its neighbors which imposes:
∑

v∈N(u)
xv = 6 ⇒ xu = 1.

Finally, several constraints are added in order to avoid redundancies. First, xG must have
at least one vertex on the top (resp. left) edge of B

c(k(n))
h in order to discard the symmetries

by translation. This can be achieved by posting a constraint that specifies that the sum
of the Boolean variables xi associated with the top (resp. left) edge of B

c(k(n))
h is strictly

positive. Then, one must ensure that the graph described by xG is the only representative of
its symmetry class. There are up to twelve symmetric solutions: six 60 degree rotational
symmetries combined with a possible axial symmetry. These symmetries are broken by the
constraint lex-lead [10]. For each of the twelve symmetries, one needs to add nc Boolean
variables (one per variable xi) and a total of 3.nc ternary clauses.

This model can easily be implemented with Choco solver. It can also be specialized to
take into account the needs of chemists by adding variables and/or constraints. For example,
generating structures with a tree shape (called catacondensed benzenoids) simply requires
the addition of the tree graph constraint on xG to the general model. Other properties have
been modeled in order to generate structures having a rectangular shape, possessing a hole
or being symmetrical [5].
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3 Considering Patterns

The model M, presented in [5] and recalled in Section 2, allows to express the benzenoid
structure generation problem in all its generality. If several specializations of this model
have been proposed in [5], all of them correspond to structural properties concerning the
whole molecule. These properties could thus be qualified as global. However, in some cases,
it may be useful to reason in terms of local properties that may or may not be satisfied by
some parts (called fragments) of the generated structures. In particular, among these local
properties, it is important to be able to deal with the local properties related to the edge of
the benzenoid structure.

The local properties we consider in this article can be defined by “drawing” a shape
whose basic bricks are hexagons. These hexagons can be of three different natures:

(i) The positive hexagons whose presence is required in the property,
(ii) The negative hexagons whose absence is required in the property,
(iii) The neutral hexagons whose presence or absence has no influence on the property.
If the use of positive hexagons is obvious, one can ask the question of the interest of negative
or neutral hexagons. Negative (respectively neutral) hexagons are useful, for example, to
indicate that there is nothing between two positive hexagons or to model the edge of the
benzenoid (resp. to guarantee a certain gap between two positive hexagons). In order to
represent the desired shapes, we now introduce the notion of extended hexagon graph:

▶ Definition 1 (extended hexagon graph). An extended hexagon graph is a hexagon graph
whose vertices and edges are labeled by the symbols + (for positive), − (for negative) and ◦
(for neutral) such that:

(i) Each vertex is labeled with the nature of the hexagon it represents.
(ii) An edge is labeled − if at least one of its vertices is labeled −. Otherwise, it is labeled ◦

if at least one of its vertices is labeled ◦. Otherwise, it is labeled +.
As for the hexagons (or vertices), the labels associated with the edges qualify the status that
the interaction between two hexagons must have in the local property that we wish to define.
Formally a local property can be defined by a pattern:

▶ Definition 2 (pattern). A pattern P is defined by giving a triplet (P+, P−, P◦) and an
extended hexagon graph Ph such that:

(i) P+, P− and P◦ denote the set of positive, negative and neutral hexagons respectively,
(ii) these three sets are pairwise disjoint and
(iii) Ph is a connected graph on the set of hexagons defined by P+ ∪ P− ∪ P◦.

Its order kP is the maximal length (expressed in terms of the number of edges) of the shortest
paths of Ph separating a negative or neutral hexagon from a positive hexagon.

In other words, a pattern is defined by a collection of positive, negative and neutral
hexagons whose arrangement is described by an extended hexagon graph. As an example,
Figure 3(a) shows the pattern deep bay [34] of order 1 composed of four positive hexagons
and three negative ones. The bonds (i.e. the edges of hexagons) which are at the interface
between the positive hexagons and the negative ones allow us to handle the local property of
the edge of the benzenoid depicted in blue in Figure 1(f). We finally define the notion of
pattern inclusion:

▶ Definition 3. Given a non-negative integer k, let Bk
h be the extended hexagon graph

representing the benzenoid B surrounded by k layers of negative hexagons (i.e., the extended
graph of B augmented by all negative hexagons located within distance k of a hexagon of B).

CP 2021
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Figure 3 The pattern deep bay (a), a benzenoid satisfying this pattern (b) and the “extended”
benzenoid related to its extended hexagon graph B1

h with the pattern in red (c).

A fragment F k of order k of a benzenoid B is a subset of hexagons of Bk
h whose extended

hexagon graph is connected. It satisfies the pattern P if k = kP and if there exists a bijection
that maps a positive or neutral hexagon of P to each positive hexagon of F k and maps a
negative or neutral hexagon of P to each negative hexagon of F k. A benzenoid B contains
(or includes) the pattern P if it has a fragment of order kP satisfying P .

Considering Bh or Bk
h does not change the nature of the benzenoid B. B1

h simply materializes
the vacuum around it, which is necessary for some properties. For example, the benzenoid in
Figure 3(b) (like the one in Figure 1(f)) satisfies the pattern deep bay of Figure 3(a). For
this, we must take into account the absence of hexagon at the edge of the benzenoid to
identify a suitable fragment, which is achieved thanks to its extended hexagon graph Bk

h (see
Figure 3(c)).

In this paper, we aim to generate benzenoid structures satisfying local properties expressed
thanks to the patterns introduced above. These local properties can take different forms. The
simplest one is to include a given pattern. Then, one can also be interested in generalizing the
approach by including several different patterns or a given number of times the same pattern.
On the contrary, one may also wish to exclude a given pattern. The following sections deal
with these different issues. In all cases, the idea is to generate benzenoid structures starting
from the general model M. By so doing, it follows that it is quite possible to consider both
global and local properties.

4 Generating Structures Including a Pattern

Let P be a pattern involving nP hexagons which can be positive, negative or neutral. We
arbitrarily number each hexagon of the pattern P from 1 to nP . The sets P+, P− and P◦
are then defined accordingly. In this section, we wish to model the problem of generating all
benzenoid structures having n hexagons and including the pattern P . We first consider all
the variables and constraints of the general model M to which we will add variables and
constraints to express the fact that the pattern must be present in the generated structures.
At this level, we have several possibilities depending on the point of view we consider. In
the following, we explore three tracks. The first one consists in identifying all the possible
locations of a fragment satisfying the pattern P . The second one considers the existence of a
fragment by reasoning on the neighborhood of each hexagon. Finally, the third one exploits
the proximity of our problem with the subgraph isomorphism problem.

4.1 First Model
We start with the model M and thus with a coronenoid of size k(n). In this first model
(denoted Mi1), we first identify all the possible fragments of the pattern P in this coronenoid.
Their number being in O(|c(k(n))|) = O(n2), this computation can be efficiently performed
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using rotations, axial symmetries and translations. For each of these fragments Fi, we define
the sets Fi+, Fi◦ and Fi− of its positive, neutral and negative hexagons. We associate to
each fragment Fi a Boolean variable ei such that the fragment Fi is present in the structure
under construction if ei is true. This is guaranteed via the constraint ei = 1 ⇒

∧
j∈Fi−

xj =

0 ∧
∧

j∈Fi+

xj = 1. Note that for patterns whose order is strictly positive, it is not necessary

to consider a larger coronenoid. Indeed, the fragment can be placed at the edge of the
coronenoid with negative or neutral hexagons being outside this coronenoid and, therefore,
being considered as absent. In this case, these hexagons will not be represented in Fi−, nor
in Fi, but placed in a set Fi∗. Finally, we set the sum constraint

∑
j ej = 1 to guarantee the

existence of at least one fragment satisfying the pattern P .

4.2 Second Model
In this second model (denoted Mi2), we express the existence of a fragment corresponding
to the pattern P by reasoning on the neighborhood of each hexagon. To do so, starting from
the model M, we add a variable fi per hexagon of the coronenoid of size k(n). Each variable
fi has domain {0, 1, . . . , nP }. The variable fi takes a positive value j if the hexagon i of the
coronenoid of size k(n) participates in the searched fragment as a hexagon occupying the
position j in P , 0 otherwise. Thus, the variable fi specifies whether the hexagon i is involved
in the fragment and if so to which hexagon of the pattern P it corresponds. Then, since the
generation of the benzenoid structures and the search for a fragment are done simultaneously,
we need to ensure their concordance. In particular, we must guarantee that the positive
(resp. negative) hexagons are indeed present (resp. absent) in the generated structure. As a
reminder, this structure is represented by the graph variable xG and by the Boolean variables
xi. Also, for each hexagon i of the coronenoid of size k(n), we set the following constraints:

xi = 1 ⇒ fi ∈ P+ ∪ P◦ ∪ {0} (if the hexagon i is present in xG, it is involved in the
fragment as a positive or neutral hexagons or it does not participate in the fragment),
xi = 0 ⇒ fi ∈ P− ∪ P◦ ∪ {0} (if the hexagon i is absent, it is involved in the fragment as
a negative or neutral hexagons or it does not participate in the fragment),
fi ∈ P+ ⇒ xi = 1 (if the hexagon i participates in the fragment as a positive hexagon, it
is necessarily present),
fi ∈ P− ⇒ xi = 0 (if the hexagon i participates in the fragment as a negative hexagon, it
is necessarily absent).

Next, we need to define the bijection that establishes that the constructed fragment satisfies
the pattern P . In other words, we need to guarantee that exactly nP hexagons of the
structure must correspond to nP hexagons of the pattern P . Also, for each hexagon j of
the pattern, we add the global constraint1 Count({f1, . . . , fnc}, {j}) = 1 if j ∈ P+ (≤ 1
otherwise). The value 0 is obtained in the case where a negative or neutral hexagon is
outside the coronenoid of size k(n). In other words, a part of the pattern overflows from this
coronenoid, but only for negative or neutral hexagons (which would then be absent). By
doing so, we avoid introducing additional variables (and associated constraints) to represent
the kP layers of absent hexagons used in the formal definition of fragment (see Definition 3).

The last step consists in defining the pattern itself. To do this, we consider the neighbor-
hood links between each hexagon of the pattern. A hexagon can have up to six neighboring
hexagons. For a given hexagon h, we consider its potential neighbors v1 to v6 in a clockwise

1 As a reminder, the global constraint Count(Y, V ) ⊙ k is satisfied if the number of variables of Y assigned
with a value in V satisfies the condition with respect to the operator ⊙ and the value k.

CP 2021
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Table 1 The compact table constraint describing the neighborhood for the pattern deep bay.

fi fv1 fv2 fv3 fv4 fv5 fv6 fi fv1 fv2 fv3 fv4 fv5 fv6

0 * * * * * * 3 1 4 6 0 0 0
1 0 2 4 3 0 0
1 2 4 3 0 0 0 4 2 5 7 6 3 1
1 4 3 0 0 0 2
1 3 0 0 0 2 4 5 0 0 0 7 4 2
1 0 0 0 2 4 3
1 0 0 2 4 3 0 6 4 7 0 0 0 3
2 0 0 5 4 1 0

7 5 0 0 0 6 4

direction, starting with the neighbor at the top right. From there, we list the different
configurations taken by the neighbors depending on which the hexagon h participates in
the fragment or not. More precisely, each configuration is a tuple composed of one integer
per neighbor. This integer is a non-zero value j if the neighbor participates in the fragment
as the hexagon j of the pattern P , 0 otherwise. For each position of the hexagon h in
the pattern P , we consider six possible configurations in order to take into account the 60°
rotations of the pattern. This is necessary to generate all the structures because the model
M imposes the existence of hexagon(s) on the top and left edges of the considered coronenoid.
Note that from a given configuration, applying a 60° rotation is equivalent to performing
a circular permutation at the tuple level. For example, in Table 1, we list all the possible
neighborhood configurations when the hexagon is in position 1 in the pattern deep bay, the
numbering of the hexagons being that of Figure 2. For the other positions, we give only
one configuration by lack of space. These configurations will be used to define the relation
associated with compact table constraints [32]. We consider one table constraint per hexagon
h of the coronenoid of size k(n) whose scope involves the variable fh and each variable fi

associated with a neighbor of h in B
c(k(n))
h . For hexagons at the edge of the coronenoid, we

keep only the rows of the table whose neighbors participating in the fragment correspond to
hexagons (whatever their nature) inside the coronenoid or to negative or neutral hexagons
outside the coronenoid. Then, we make a projection of these lines on the present neighbors
and the variable fh.

4.3 Third Model
A fragment of order k of a benzenoid B corresponds to a connected subgraph of Bk

h. Thus,
determining whether there exists a fragment satisfying a pattern P in a benzenoid B is, in
some way, the same as determining whether there exists a subgraph in BkP

h isomorphic to
Ph. However, this is not exactly the usual subgraph isomorphism problem, but one of its
variants taking into account the labeling of vertices and edges. This does not change the
complexity of the decision problem which remains NP-complete. Fortunately, we do not need
to tackle this problem because, in our approach, we will, by construction, directly produce
structures satisfying the pattern.

We now present our model Mi3 . Starting again from the general model M, we add one
variable si per hexagon of the pattern P (whatever its nature). Each variable si has domain
{1, . . . , n′

c} with n′
c the number of hexagons of the coronenoid of size k(n) + kP . We exploit

a coronenoid of size k(n) + kP , instead of k(n), because we need to surround the coronenoid
of size k(n) with kP crowns of absent hexagons. Note that this has no impact on the graph
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variable xG or on the variables xi because we are adding hexagons that are known not to be
present in the structure under consideration. The variable si has value j if the i-th hexagon
of the pattern P is the j-th hexagon of the coronenoid of size k(n) + kP . By convention,
values of j between 1 and nc correspond to hexagons present in the coronenoid of size k(n).
We then add the following constraints to express the notion of isomorphism:

Injectivity: The hexagons participating in the fragment must be pairwise different. This is
imposed thanks to the global constraint alldifferent({s1, . . . , snP

}). This also ensures
that nP hexagons of xG participate in the fragment.
Edge preservation: We must guarantee that two neighboring vertices of Ph correspond
to two neighboring vertices in the hexagon graph of the coronenoid of size k(n). Also,
for each edge {i, i′} of Ph (whatever its nature), we set a table constraint on si and si′

whose relation contains all pairs (j, j′) such that {j, j′} is an edge of the hexagon graph
of the coronenoid of size k(n) + kP .

This part of the model is inspired by the model of the subgraph isomorphism problem
presented in [18]. However, it should be noted that, in our case, the graph in which the
subgraph is searched is not known in advance, as it is the graph we wish to construct. Also, in
our model, we circumvent this difficulty by considering the hexagon graph of the coronenoid
of size k(n) + kP .

Concerning the labeling, by definition, the labeling of the edges follows from that of
the vertices. The labeling of the vertices is directly taken into account by definition of the
variables si. It only remains to express the adequacy between the labeling of the vertices
and the existence of the hexagons thanks to the following constraints:

∀i ∈ P+, ∀j ∈ {1, . . . , nc}, si = j ⇒ xj = 1 (if the positive hexagon i of P corresponds to
the hexagon j in xG, j must be present),
∀i ∈ P+, ∀j ∈ {1, . . . , nc}, xj = 0 ⇒ si ≠ j (if the hexagon j of xG is absent, it cannot
correspond to a positive hexagon i of P ),
∀i ∈ P−, ∀j ∈ {1, . . . , nc}, si = j ⇒ xj = 0 (if the negative hexagon i of P corresponds to
the hexagon j in xG, j must be absent), and
∀i ∈ P−, ∀j ∈ {1, . . . , nc}, xj = 1 ⇒ si ≠ j (if the hexagon j of xG is present, it cannot
correspond to a negative hexagon i of P ).

We now turn to the limitations of reasoning in terms of subgraph isomorphism from the
perspective of chemistry. Figures 4(a)-(b) describe two patterns based on three positive
hexagons and whose hexagon graphs are isomorphic. It turns out that the two corresponding
molecules do not have the same chemical properties. However, if we ask Choco to produce
the structures corresponding to each of these two patterns based on the model Mi3 , we will
obtain the same solutions. Also, to overcome this problem, we add a preprocessing step
before the generation of the instance to solve. This step consists in adding neutral hexagons
so that every edge of the hexagon graph of the pattern appears in at least one triangle (i.e.
a clique of size 3). A triangle in the hexagon graph represents three hexagons which are
pairwise adjacent. It thus characterizes a unique configuration (within one axial symmetry
or 60° rotation). This preprocessing can be implemented by going through the hexagons of
the initial pattern from top to bottom and from left to right. For lack of space, we do not
detail this algorithm. Figures 4(c)-(d) present the patterns thus completed related to the
patterns of Figures 4(a)-(b). Note that it is not always necessary to add neutral hexagons.
For example, the pattern deep bay remains unchanged because each edge of its hexagon
graph is already involved in at least one triangle.
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+ +

+ + + +
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(a) (b) (c) (d)

Figure 4 The limits of reasoning in terms of subgraph isomorphism with two different patterns
(a) and (b) having isomorphic hexagon graphs. The patterns (a) and (b) after preprocessing (c)–(d).

5 Generating Structures Including Several Patterns

In this section, we are interested in generating structures containing several patterns sim-
ultaneously. Let EP = {P 1, . . . , P ℓ} be the set of these patterns. The existence of several
patterns raises the question of how they can interact with each other. We list here three
cases that make sense from a chemical point of view:
(1) Patterns can share hexagons (regardless of their nature),
(2) Patterns can share only absent hexagons (i.e. it is allowed to share the vacuum),
(3) The patterns are pairwise disjoint.
A first naive approach to solve this multi-pattern problem is to solve a collection of single
pattern problems. This would require enumerating all the single patterns that could be
constructed on the basis of the patterns in EP . But, given the combinatorics, this approach
seems to be out of the question. Therefore we propose below to adapt the models we present
in the previous section.

5.1 First Model
As usual, we start with the general model M. Then, we add, for each pattern P j of EP , a
set of variables ej

i equivalent to the variables ei for a single pattern P in the model Mi1 as
well as the associated sum constraint. Of course, this assumes to have computed in advance
all the possible fragments of each pattern of EP . This defines the model M1

m1
.

In order to obtain pairwise disjoint patterns (model M3
m1

), one must add to the model
M1

m1
the mutual exclusion clauses ej

i = 0 ∨ ej′

i′ = 0 for each pair of overlapping fragments
{F j

i , F j′

i′ } (i.e. fragments such that (F j
i+ ∪ F j

i− ∪ F j
i◦ ∪ F j

i∗) ∩ (F j′

i′+ ∪ F j′

i′− ∪ F j′

i′◦ ∪ F j′

i′∗)).
To share only vacuum (model M3

m1
), we add, to the model M1

m1
, constraints of the

form ej
i = 0 ∨ ej′

i′ = 0 as soon as F j
i and F j′

i′ can share a present hexagon (i.e. if (F j
i+ ∩

F j′

i′+) ∪ (F j
i+ ∩ F j′

i′◦) ∪ (F j
i◦ ∩ F j′

i′+) ̸= ∅)). Otherwise, if they share neutral hexagons, these
hexagons must be absent from the structure, which is ensured by posting the constraint
(ej

i = 1 ∧ ej′

i′ = 1) ⇒ xh = 0 for each hexagon h ∈ F j
i′◦ ∩ F j′

i′◦.

5.2 Second Model
We start with the general model M. Then, we add, for each pattern P j of EP , a set of
variables f j

i equivalent to the variables fi for a single pattern P in the model Mi2 as well as
all the associated constraints. However, for each table constraint defining the pattern P j ,
we introduce a Boolean variable tj into its scope. This variable is set to 1 if the associated
configuration is obtained after applying an axial symmetry on P j , 0 otherwise. Thus, the
table will list all valid configurations obtained from the pattern P j or its image by an axial
symmetry. Taking into account axial symmetries in the case of the inclusion of several
patterns is required in order to list all the possibilities of combining the patterns with each
other. Several axes of symmetries are possible. However, it is sufficient to consider only one,
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as the others can be obtained by combining with 60° rotations. The use of the variable tj

within each table constraint defining P j guarantees that globally, one exploits either the
pattern P j if tj is set to 0, or its image by axial symmetry otherwise. This avoids considering
erroneous fragments of which one part would correspond to P j and another to its image
by symmetry. Note that, in the case of a single pattern, the use of this variable tj would
only add equivalent solutions to those already produced. The model we have just described
corresponds to case (1). We denote it M1

m2
.

Then, to deal with the case (2) allowing sharing only absent hexagons, we take the
model M1

m2
and add mutual exclusion constraints for the present hexagons. This amounts

to posting the following constraint for each hexagon h of the coronenoid of size k(n):
xh = 1 ⇒ Count({f1

h , . . . , f ℓ
h}, {1 . . . , nEP

}) ≤ 1 with nEP
= max

P j∈EP

nP j . In other words, if

the hexagon h is present, it can participate in at most one fragment. We denote M2
m2

this
model.

Finally, in order to consider pairwise disjoint patterns (case (3)), we need to consider
hexagons that might be shared outside the coronenoid of size k(n). To do this, we define the
order kEP

of the set EP as the maximum order of a pattern P j of EP . Then, we consider
the model M1

m2
but in a coronenoid of size k(n) + kEP

. In other words, we add to M1
m2

a
variable f j

i per hexagon located outside the coronenoid of size k(n) and per pattern P j . Since
all hexagons are represented explicitly, the table constraints are defined taking into account
these new variables and the Count constraints of M1

m2
for negative or neutral hexagons j′

of the P j pattern are now of the form Count({f j
1 , . . . , f j

n′
c
}, {j′}) = 1. Finally, we add a

mutual exclusion constraint Count({f1
h , . . . , f ℓ

h}, {1 . . . , nEP
}) = 1 for each hexagon h of the

coronenoid of size k(n) + kEP
. We denote M3

m2
this model.

5.3 Third Model
The principle is the same as for the two previous models. For each pattern P j of EP , we add
to the model M a set of variables sj

i equivalent to the variables si used for a single pattern
P in the model Mi3 as well as all the associated constraints. By doing so, we obtain the
model M1

m3
corresponding to case (1). Since the model Mi3 depends on the order of the

considered pattern, the generated structures will have to be embedded in a coronenoid of
size k(n) + kEP

. Of course, as in Mi3 , each pattern must be preprocessed beforehand in
order to remove any ambiguity.

Then, we can extend this model to the model M3
m3

in order to take into account pairwise
disjoint patterns, by adding the mutual exclusion constraint alldifferent({s1

1, . . . , s1
nP 1 } ∪

. . . ∪ {sℓ
1, . . . , sℓ

n
P ℓ

}).
Finally, the model M2

m3
corresponding to case (2) is obtained from the model M1

m3

model, by adding the following constraints:
alldifferent({sj

i |j ∈ {1, . . . , ℓ}, i ∈ P j
+}) which expresses that the positive hexagons in

xG are pairwise disjoint,
∀j, j′ ∈ {1, . . . , ℓ}, j < j′, ∀i ∈ P j

◦ , ∀i′ ∈ P j′

◦ , sj
i = sj′

i′ ⇒ sj
i > nc ∨ Element({xz|z ∈

{1, . . . , nc}}, sj
i ) = 0)2 which expresses the fact that if two neutral hexagons designate

the same hexagon of xG, then the corresponding vertex does not appear in xG.
∀j, j′ ∈ {1, . . . ℓ}, j ̸= j′, ∀i ∈ P j

◦ , ∀i′ ∈ P j′

+ , sj
i ̸= sj′

i′ which prohibits having the same
hexagon of xG for a neutral hexagon and a positive hexagon of two different patterns.

2 As a reminder, the constraint Element(Y, j) ⊙ k is satisfied if the value of the j-th variable of Y satisfies
the condition with respect to the operator ⊙ and the value k.
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6 Others Problems About Patterns

We now turn to some related problems around patterns. First, we deal with the exclusion of
a pattern before showing how to constraint the number of occurrences of a given pattern.

6.1 Generating Structures Excluding a Pattern
We now aim to generate all the structures having n hexagons and not containing a given
pattern P . The reasoning followed for the models Mi2 and Mi3 seems to be unsuitable
because we would have to guarantee that there exists no suitable fi numbering or isomorphic
subgraph. Therefore, we follow here the same reasoning as for the model Mi1 . More precisely,
we start from the model M and add to it a variable ei per possible fragment in a coronenoid
of size k(n). Each variable ei is true if the constraint

∧
j∈Fi−

xj = 0 ∧
∧

j∈Fi+

xj = 1 is satisfied

(i.e. the fragment is present in the structure). Finally, we set a sum constraint
∑

j ej = 0.
This model is denoted M1

e1
. An equivalent formulation consists in representing directly each

fragment Fi as a nogood
∨

j∈Fi−

xj = 1 ∨
∨

j∈Fi+

xj = 0, leading to a model denoted M2
e1

.

6.2 Generating Structures by Constraining the Number of Occurrences
Some constraints on the number of occurrences of a pattern P are easy to model. For
example, to generate benzenoid structures with at least k pairwise disjoint occurrences of
the pattern P , one can use any model among the models M3

m1
, M3

m2
and M3

m3
and a set

EP consisting of k times the pattern P . Others are a bit trickier. In order to make easier
the expression of such constraints, we define a variable ne which represents the number of
occurrences of the pattern P contained in the generated structure and on which we will place
the appropriate constraints according to the needs of the chemists. The variable ne has the
domain {0, . . . , kmax} with kmax the maximum number of occurrences that the structure
can contain. By default, if no information is given as input on kmax, we take kmax =

⌊
n

|P+|

⌋
.

Once again, the approach followed in the model Mi1 seems to be the most appropriate.
Thus, starting from the model Mi1 , we integrate the variable ne. In addition to the variables
ei introduced for each possible fragment, we add a Boolean variable e′

i per fragment. The
variable e′

i is true if the fragment Fi is present in the pattern. This is ensured by adding,
for each fragment Fi the constraint

∧
j∈Fi−

xj = 0 ∧
∧

j∈Fi+

xj = 1 ⇒ e′
i = 1. Then, as some

fragments may share some hexagons, we add mutual exclusion constraints, with, for each
hexagon h, the constraint

∑
i|h∈Fi

e′
i ≥ 1 ⇒

∑
i|h∈Fi

ei = 1 (given that Fi = Fi+ ∪Fi− ∪Fi◦ ∪Fi∗).

Thus, this guarantees that if a hexagon participates simultaneously in several fragments,
only one of these fragments is considered as present. Finally, the constraint

∑
j

ej = ne allows

us to compute the number of occurrences on which we can then easily put any arithmetic
constraint. It is also possible to use this variable to find the structures maximizing the
number of occurrences of the pattern.

7 Experiments

In this section, we assess empirically the different proposed models. To this end, we consider
the eight patterns described in Figures 5(a)-(g) and Figure 3(a) from [34] and vary the
number n of hexagons present in the structures from the number of positive hexagons in
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Figure 5 The patterns used as benchmarks in addition to the pattern deep bay: armchair edge
(a), C3H3 protusion (b), C4H4 protusion (c), shallow armchair bay (d), ultra deep bay (e), zigzag
bay (f), shortened to zigzag in [26], and zigzag edge (g). Two of the four benzenoid structures of
four hexagons containing an instance of the pattern armchair edge (h) and (i). One of the three
benzenoid structures of four hexagons containing no instance of the pattern armchair edge (j).

Table 2 The number of instances which are successfully processed (#I) and the related cumulative
runtime in hours (Time) for each possible variable and value heuristics and for model Mi1 , Mi2

and Mi3 .

Mi1 Mi2 Mi3

inc desc inc desc inc desc

#I Time #I Time #I Time #I Time #I Time #I Time
dom 55 1.44 55 1.42 55 1.51 55 1.49 55 1.54 55 1.52

dom/wdeg 47 23.58 48 17.71 47 22.07 48 16.90 48 20.93 48 17.40
dom/wdegca.cd 50 12.56 55 4.85 50 15.47 50 15.35 49 16.47 50 14.76

CHS 43 27.06 41 28.97 47 23.04 48 20.69 48 20.42 48 17.43

the pattern to 9. This allows us to produce 55 instances (resp. 135) of the problem of
generating structures containing/excluding one pattern (resp. containing two patterns). Our
implementation is based on Choco (v. 4.10.7). We consider four state-of-the-art variable
ordering heuristics namely dom/wdeg [2], dom/wdegca.cd [33], CHS [15] and dom. This
latter chooses as next variable the first variable in the lexicographical ordering having the
smallest domain. Regarding the value ordering heuristic, we use the heuristics inc and desc

which choose respectively the smallest and the largest value first. The experiments are carried
out on DELL PowerEdge R440 servers with an Intel Xeon 4112 2.6 GHz processor and 32 GB
of memory. The runtime for processing an instance is limited to 2 hours. We do not compare
our approach with an existing method because, to our knowledge, no such method has been
proposed yet, probably due to the fact that this line of research has emerged recently.

First, from Table 2, we can observe that, whatever the model (among Mi1 , Mi2 and
Mi3) or the variable heuristic, the best results are generally obtained with the value heuristic
desc. This can be explained by the fact that each model mainly involves Boolean variables.
For instance, assigning 1 to a variable xi amounts to create a hexagon and so allow us to
exploit more quickly most of the constraints of the general model M. Now, regarding the
variable heuristic, the most sophisticated heuristics are not those leading to the best results.
Indeed, whatever the model, the heuristic dom turns to be the more relevant for our problem.
Moreover, as shown in Figure 6(a), dom performs better than dom/wdegca.cd (which is the
best variable heuristic after dom) on all the considered instances. This may seem surprising,
but, if we look closely at the definition of dom, we can note that it corresponds to start the
search with the hexagons located on the top edge of the coronenoid. At the same time, the
more sophisticated heuristics may be penalized by the uniformity of the problem. Finally, for
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Table 3 The number of instances which are successfully processed (#I) and the related cumulative
runtime in hours (Time) for each possible variable and value heuristics and for model M3

m1 , M3
m2

and M3
m3 .

M3
m1 M3

m2 M3
m3

inc desc inc desc inc desc

#I Time #I Time #I Time #I Time #I Time #I Time
dom 135 6.82 135 6.85 129 44.37 135 17.76 135 7.68 135 7.78

dom/wdeg 100 100.16 113 74.69 105 92.48 108 77.77 106 82.99 113 63.06
dom/wdegca.cd 121 51.45 134 25.64 93 101.77 105 81.44 96 102.07 105 79.44

CHS 85 116.19 83 120.62 86 106.24 70 136.93 108 75.84 110 66.61

given value and variable heuristics, we can note that the models often obtain close results. If
we focus our attention on dom and desc (see Figures 6(b)-(d)), Mi1 turns out to perform
slightly better than Mi2 , which itself is better than Mi3 . Maybe, this could be explained by
the fact that all the models are based on the general model M to which some variables and
constraints are added. Indeed, at the end, the models have similar numbers of constraints
while the model Mi1 requires a few more variables than the other models.

If we are now interested in the generation of structures containing two given patterns, we
can note that the observed trends in Table 3 are quite similar to those obtained for a single
pattern. Again, the value heuristic desc leads to the best results. Regarding the variable
heuristic, dom is once more the most relevant and robust one. A slight difference from the
single pattern case is that the efficiency of the other variables heuristic seems to depend on
the model we consider. Beyond, we can observe that the differences between the models,
whatever the variable heuristic, are more pronounced. Globally, the model M3

m1
turns out

to be the best one followed by the model M3
m3

while the model M3
m2

turns out to perform
worst. This is clearly visible on Figures 6(e)-(g) when considering the heuristics dom and
desc. This result seems to be correlated with the number of constraints which is twice as
large for the model M3

m2
than for M3

m1
or M3

m3
.

Regarding the exclusion of a given pattern, the trends we observe for value and variable
heuristics are similar to previous comparisons. By lack of place, we do not provide more
details. If we compare the two models M1

e1
and M2

e1
(see Figure 6(h)), it appears that

the latter is the most efficient. Using the heuristics dom and desc, both achieve the same
exploration of the search space, but the model M2

e1
does not consider additional variables

w.r.t. the general model M. Moreover, it only requires some clauses as additional constraints.
Finally, in Figure 7(b), we compare the average number of solutions (some of them are

depicted in Figures 5(i)–(j) and 7(a)) with the number of benzenoid structures depending on
the considered problem and the number n of hexagons. This figure first allows us to observe
the growth of the number of structures with n. Then, we can also notice that we have to
compute a large number of benzenoid structures. For instance, for the inclusion of a single
pattern, we have to consider about 70% of all the benzenoid structures.

8 Conclusion and Perspectives

We have presented an approach based on CP to generate exhaustively benzenoid structures
satisfying certain constraints around patterns. For this purpose, several models have been
considered and compared. The model based on the identification of all the possible locations of
a fragment turns out to be the most robust. It leads to an efficient solving while being able to
deal with several questions about patterns (inclusion or exclusion, number of occurrences, . . . ).
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Figure 6 Comparison of the variable heuristics dom and dom/wdegca.cd based on the runtime (in
seconds) for Mi1 and the value heuristic desc. Pairwise comparison of models based on the runtime
(in seconds) when using the variable heuristic dom and the value heuristic desc (b)-(h).
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Figure 7 One of the twenty-five benzenoid structures of seven hexagons containing the patterns
armchair edge and deep bay (a). Number of benzenoid structures (all) and average number of
benzenoid structures containing a given pattern (one), two given patterns (two) or excluding a given
pattern (none) (b).

In a way, we have proposed a modeling brick per issue which can be combined each other or
with global properties (e.g. those defined in [5]) depending on the needs of chemists. To our
knowledge, this work provides chemists with the first tool for generating benzenoid structures
satisfying certain conditions on their edge topology. It would be useful in validating their
theoretical models or identifying the most promising benzenoid structures before trying to
synthesize them, what are currently hot topics in chemistry.

As a consequence, a first perspective of this work will be to study its repercussions from
the viewpoint of chemistry (e.g. by generating all the structures containing some given
patterns and applying to them some theoretical chemistry tools [7, 4]). Concerning the
modeling, other forms of interaction between two patterns can be of interest to chemists (e.g.
by sharing a positive hexagon only if the two patterns do not use the same bonds). Finally,
several avenues can be explored to improve the practical efficiency of the approach.
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