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Abstract
The video games industry generates billions of dollars in sales every year. Video games can offer
increasingly complex gaming experiences, with gigantic (but consistent) open worlds, thanks to
larger and larger teams of developers and artists. In this paper, we propose a constraint-based
approach for procedural dungeon generation in an open world/universe context, in order to provide
players with consistent, open worlds with an excellent quality of storytelling. Thanks to a global
description capturing all the possible rooms and situations of a given dungeon, our approach allows
enumerating variations of this global pattern, which can then be presented to the player for more
diversity. We formalise this problem in constraint programming by exploiting a graph abstraction of
the dungeon pattern structure. Every path of the graph represents a possible variation matching a
given set of constraints. We introduce a new propagator extending the “connected” graph constraint,
which allows considering directed graphs with cycles. We show that thanks to this model and the
proposed new propagator, it is possible to handle scenarios at the forefront of the game industry
(AAA+ games). We demonstrate that our approach outperforms non-specialised solutions consisting
of filtering only the relevant solutions a posteriori. We then conclude and offer several exciting
perspectives raised by this approach to the Dungeon Variations Problem.
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1 Introduction

The video game industry is an important economic sector, generating billions of dollars each
year, at the forefront of innovation. Since the appearance of the first games in the 1970s,
the landscape of this industry has changed dramatically. Video games are now produced by
large teams of artists and developers, offering photo-realistic graphics, exciting and complex
scenarios, with a constantly improved degree of simulation.

One of the biggest challenges of the gaming industry is to be able to build open worlds,
in which users must feel free and where a huge number of actions are possible for them.
Generating such a world without the final intervention of a Level Designer (LD) to validate
the level is still a dream: a single inconsistent game level can quickly shatter the reputation
of a game, possibly costing millions of dollars. The role of LD is to ensure the consistency
of all playable levels, and the interest of every level w.r.t the overall scenario. The formal
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27:2 The Dungeon Variations Problem Using CP

Figure 1 A source dungeon. Figure 2 Some variations of the source dun-
geon (Figure 1). In green, the rooms and corridors
preserved in the variations.

verification of generated levels will probably play an important role in the future of the
gaming industry, but, for now, it is still impossible. Instead of formally verify the properties of
the generated levels a posteriori, we propose, in this article, to enforce the desired properties
of generated levels by construction. This work is developed in collaboration with an AAA+
video game studio.

Intuitively, in the proposed approach, an LD produces what we call a source dungeon,
which contains a set of rooms connected by corridors. Each room has its properties and areas
identified for possible situations (fights, treasures, ...). The Dungeon Variations Problem is
the problem of generating an appropriate variation of the source dungeon by disabling a
subset of initial rooms and corridors so that the remaining set of rooms matches a given set
of constraints (e.g. at least one entrance, at least a given number of monsters on any path).
The consistency of a source dungeon can also be validated by generating a variation taking
into account all rooms as well as corridors.

While this approach does not yet fully address the global problem of procedural content
generation [19], it opens up a challenging new field for constraint programming. Additionally,
it allows level designers to check the consistency and quality of dungeon variations before
delivering the game. We formally specify the Dungeon Variations Problem in Section 2 and
describe it as a constraint programming problem using the graph constraint connected in
Section 3. We then introduce, in Section 4, a new propagator extending this constraint
(connected+) which takes into account directed graphs with cycles. In the experimental part
(Section 5), we show that this propagator offers a spectacular improvement over a more naive
filtering approach. Before concluding, we propose a list of interesting research topics, which
could extend our work and have an important impact for the video game industry, providing
novel challenges for constraint programming.



G. Glorian, A. Debesson, S. Yvon-Paliot, and L. Simon 27:3

2 The Dungeon Variations Problem

2.1 Motivations

Our goal is to provide a game creation assistant tool for level designers (LD). This tool should
provide LD an efficient way of building level variations to fill the open world at distinct
places. This is a restricted view of the more general problem of procedural game generation,
the aim of which is to guarantee high-quality automatic content generations. In these games,
each level must be consistent with the narrative and the user’s progression, which is not yet
possible with fully autonomous level generation solutions. Delivering an AAA+ game with
an unplayable level, or an inconsistent story can have dramatic effects in terms of images
and costs for the responsible game studio. In order to reach the best possible quality, each
level is handcrafted and validated by a LD guaranteeing a precise purpose of this level in
the overall story. Our approach is thus not to generate levels from scratch but to propose
variations (with guaranteed properties) of a dungeon pattern designed by an artist. All the
variations have, by design, a strong story consistency (monsters, possible quests, ...).

We call dungeon source the original design (see for instance a very simple example of
such a design Figure 1). This dungeon contains rooms with properties (in practice, the
concept of rooms can be misleading: a room can be composed of a set of areas which will be
considered as a whole block). A room can be an entry (a connection from the outside), an
exit (a connection to the outside). Rooms can also have a set of tags to encode gameplay
situations, design, or any other optional set up. The set of rooms that the user can explore
and the situations (e.g. rewards, fights) encountered is called the flow. It is a common
practice in level designing to add final rooms to dungeons to allow side quests or optional
explorations. These final rooms, which are dead-end rooms (other than the hallway leading
to them), usually contain treasures, keys, special items or monsters, but do not block the
player. They are important for players because, in addition to optional rewards, final rooms
offers a non-linear way of exploring the dungeon, which is a crucial aspect for the positive
perception of levels by players. It should be noted that the connections between the rooms
are directed (a door can be one-way access, the player can fall from one room to another, ...).

The goal of the Dungeon Variations Problem is to generate a coherent subset of rooms
from the source dungeon satisfying some constraints (see for instance Figure 2). The first set
of constraints is structural: each set of rooms must be playable (all rooms are connected,
we have at least one entry and one exit), and the final rooms must be tagged as such (the
role of the LD is typically to be able to check the interest of final rooms). The second set
of constraints are configuration constraints, which are optional and can be defined by the
user: some special rooms can be forced to be active, entry, exit or final in the solution. Our
tool will have to offer, within a reasonable time (a few seconds), interesting variants to the
LD, as illustrated, for example, Figure 2. The LD will set some tags defining the desired
solutions to explore and will be able to navigate through a number of variations.

Procedural Generation of levels and flows is not new [6,17, 18]. However, as pointed out
in these references, systems are not yet mature to be autonomous and AAA+ studios are
only using them in very restricted subareas of game creations. Moreover, none of these works
has the potential to reach the level of quality expected in our context. To the best of our
knowledge, no previous work is able to handle both the dungeon generation (structure of the
dungeon) and the story itself (which is a cornerstone of our work, and will be ensured by the
definition of the source dungeon). As described in the next section, we propose to tackle this
problem by defining it as a graph problem. The connectivity property will be guaranteed by
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a new extension of the graph constraint [5, 14] adapted to our problem. To illustrate this
formalisation, Figures 3 and 4 show simplified versions of a graph-encoding of two generated
variations used in production.
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Figure 3 Two generated variations of a source dungeon used in production for a AAA+ video
game (for clarity sake, we did not represent oriented edges in this example). We can see the
differences between the two variations on the use of final rooms and alternative paths. The blue
node 0 is both the entry and the exit of this level. Nodes and edges in red are not kept in each
variation.

2.2 Related Works
Most work on constraints and graphs (e.g. [3, 4, 8, 11, 15]) generally consider one source node
and one objective node with path/circuit problem. Unfortunately, we cannot rely directly on
these works. They are either not applicable or too constrained: by definition, the path (or
circuit) problem force the edges to be used only once, which is not relevant in our case. In
addition, we have to consider the fact that the graphs are directed, and each variation can
have a lot of source nodes (inputs) as well as several objective nodes (outputs). Of course, in
our case, a node can be an entry and an exit at the same time1, which is another argument
to develop a novel approach. It is more classical, in state-of-the-art approaches, to suppose
that entries and exit nodes are distinct (e.g., in path constraint [7]). Using the reachable
constraint from every entry will unfortunately introduce a prohibitive overhead. It is also
important to note, at this point, that we are not yet trying to optimise the paths in any way.
We plan to do this as part of a further work by, for example, considering path optimisation
of optimal objects placements [11]. It may also be important to optimise the flow in many
additional ways, for example, by optimising a constraint-based formalisation of the fun as
perceived by the player, or by optimising the hardware cost of rendering the scenes during
the flow in order to guarantee a graphical performances.

3 CP model of the Dungeon Variations Problem

In this section, we formulate the problem as a constraint satisfaction problem. The constraints
are presented in natural language at first, then in clausal and set form (Table 1).

1 In practice, in real-world problems, this often happens.
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Figure 4 The two variations of Figure 3 with the remaining edges and nodes, reported for
simplicity. The blue node 0 is both the entry and the exit of this level.

3.1 Model Variables
Let n be the number of nodes in the pattern (numbered from 0 to n− 1). The connections
(e.g. corridors) between the nodes are identified by node numbers (e.g. Cij is a connection
from node i to node j). We use six arrays of size n to model the problem: Four arrays of
booleans entries, exits, actives and finals which indicates, respectively, if a node is
an entry, an exit, if it is active and if it is final. Two arrays sumToNode and sumFromNode
which respectively counts the number of connections entering each node and leaving each
node. To encode the connections between rooms, we use an n× n adjacency matrix C that
can indicate the active edges (connections) of the graph since the nodes can have multiple
successors. Arrays sumToNode and sumFromNode are defined using sum constraints. We also
avoid multiple corridors between the same rooms. Such a tricky variation, when needed, can
be handled at another level (e.g. on top of a variation that admits two connected rooms
allowing multiple connections). To prevent trivial loops, our CP model must also block the
diagonal of the adjacency matrix C.

Formally, the problem can be expressed as a graph problem in a fairly simple way: let
G(V, E) be a graph with V ⊂ N represents the rooms and E ⊂ {(i, j) | i, j ∈ V ∧ i ̸= j} the
corridors. The goal of the Dungeon Variations Problem is to generate a graph G′(V ′, E′)
with V ′ ⊂ V and E′ ⊂ E with additional constraints encoding the fact that the variation is
playable. Note that actives ≡ V ′. The sets entries, exists and finals are subsets of V ′.

3.2 Model Constraints
The constraints of the model ensure the consistency of each variation, given in natural
language in the following list (see Table 1 for the clausal and set form). These constraints
are expressed as intention constraints in the XCSP3 model [1]:
(1) If a node is an entry, it must be active.
(2) If a node is an exit, it must be active.
(3) If a node is final, it must be active.
(4) If a node is an entry, it cannot be final.
(5) If a node is an exit, it cannot be final.
(6) If a connection is used, then the associated nodes must be active.
(7) If a node is active, at least one connection must go to (or leave from) this node.
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Table 1 Constraints in clausal and set form. Note that the clausal form, lines 8-11, can be
encoded as a single set constraint.

Clausal form Set form

1 entriesi = 0 ∨ activesi = 1 i ∈ entries⇒ i ∈ V ′

2 exitsi = 0 ∨ activesi = 1 i ∈ exits⇒ i ∈ V ′

3 finalsi = 0 ∨ activesi = 1 i ∈ finals⇒ i ∈ V ′

4 entriesi = 0 ∨ finalsi = 0 entries ∩ finals = ∅
5 exitsi = 0 ∨ finalsi = 0 exits ∩ finals = ∅
6 Cij = 0 ∨ (activesi = 1 ∧ activesj = 1) (i, j) ∈ E′ ⇒ {i, j} ∈ V ′

7 activesi = 0 ∨ sumFromNodei > 0 i ∈ V ′ ⇒ ∃j | ((i, j) ∈ E′ ∨ (j, i) ∈ E′)
∨sumToNodei > 0

8 finalsi = 0 ∨ sumToNodei = 1 i ∈ finals⇔ ∃!j | ({(i, j), (j, i)} ⊂ E′)
9 finalsi = 0 ∨ sumFromNodei = 1 See 8.

10 finalsi = 0 ∨ Cij = 0 ∨ Cji = 1 See 8.
11 finalsi = 0 ∨ Cij = 1 ∨ Cji = 0 See 8.
12 Cij = 0 ∨ Cji = 0 ∨ sumToNodei ̸= 1 {(i, j), (j, i)} ⊂ E′ ∧ ∀k |{(i, k)} ∈ E′| = 1

∨sumFromNodei ̸= 1 ∨ finalsi = 1 ∧ ∀k |{(k, i)} ∈ E′| = 1⇒ i ∈ finals

(8) If a node is final, then one and only one connection must go to this node.
(9) If a node is final, then one and only one connection must leave from this node.

(10) If a node i is final and one connection goes from i to j then a must go from j to i.
(11) If a node i is final and one connection goes from j to i then a must go from i to j.
(12) If there is a round trip between two nodes i and j and there is only one connection to i

and from i, then the node i must be final.

The above set of constraints allows to specify the structure of the desired variations
(the problem of unconnected solutions will be discussed in the next section). Note that the
management of final rooms is covered by lines 8 to 11. It ensures that the player can return
to the main path from a dead-end, possibly corresponding to a secondary quest. This set
of constraints (lines 8–11) is encoded as a single constraint when using the set-based form,
Table 1.

Some other constraints, called configuration constraints, are also allowed in the proposed
tool, but not reported here for simplicity (for instance, the tool allows the LD to limit the
number of inputs, outputs, active and final rooms). It is also necessary that our tool allows
the user to force specific parts to be active (or not) in all the generated variants (for instance,
the LD may activate or deactivate certain parts of the source dungeon depending on where
the variation will be placed on the map, for instance). The user can also deactivate a subset
of corridors to explore the corresponding variations (for instance, some corridors may require
the user to use some items/capacities that may not be available at all steps of the overall
story). Likewise, it is possible to give control over situations (and therefore over the dungeon
flow) by limiting the number of rooms with some given tags. For example, if we have 8 rooms
marked as a combat room in a source dungeon, an LD may want to generate a variation with
only 3 of them. To handle these limits easily, we can create a sum constraint on the active
property of the tagged rooms. We do not further describe this part of the model since it is
covered by a classical constraint-based approach and can be handled as soon as the overall
problem is tackled by CP.
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Figure 5 The graph displayed on the left represents a source dungeon (or a variation) with two
entries (nodes A and G) and one exit (node B). We can see that the node H is not accessible
and will be filtered by the constraint introduced in Section 3.2. A cul-de-sac is also present in this
dungeon (nodes C and D). Indeed, when entering node C, a player would be stuck inside the two
rooms without any possibility to escape this “trap”. This kind of cul-de-sac is not filtered by the
structural constraints and are not welcome in the resulting variations. The goal of the connected+
constraint is to filter these cases and obtain the dungeon displayed on the right.

4 The Connected Constraint Extended

As mentioned before, we need to make sure that our variations are connected to satisfy all
the constraints. We can ensure this in two different ways. (1) We may verify each solution,
afterwards, with an ad hoc algorithm (this is a classic approach in video games: the levels
generated can be tested subsequently by algorithms, bots and/or humans) or, (2) we may
force any proposed variation to be correct by construction, filtering out partial solutions as
soon as possible when looking for variations. Let us recall here that the goal of our approach
is to help the LD navigating through the possible alternatives as easily as possible. Being able
to guarantee that each proposed solution has certain properties by construction is, therefore,
a crucial element. Figure 5 shows a very simple example of the connected+ constraint we
propose, in practice.

The approach we propose is a two-level propagator that first relies on a simple implement-
ation of the constraint connected [5] on the undirected version of the graph (Algorithm 1).
Then, another level of filtering is added (Algorithm 4 and 3) to guarantee the validity of
the paths. The connected constraint guarantees that we do not have disjoint dungeons but
does not consider directed graphs. We, therefore, have no guarantee that the dungeon is
playable (i.e. all nodes are accessible from the entrances, in particular, the exit nodes). To
overcome this problem, we introduce an algorithm to find paths from each entry to at least
one exit (this algorithm can be extended in many ways, for instance to handle the size of the
paths, whether they are constrained or not, or to obtain information (average length, etc.)).
For this reason, the propagator need to know the values of the entries and exits arrays.

Algorithm 1 starts from an active node (line 2, the selectActiveNode() function selects
an active node in the graph, i.e. a node x such that activesx = 1, or returns an empty set
if no active node is found). Then, it follows each connection by considering the undirected
version of the graph (line 12). From line 3 to 7, if we do not find any active node, we need
to check the consistency of the graph. Indeed, if some of the nodes are not yet decided (i.e.
their Boolean domain size is 2), the constraint is consistent since we cannot filter anything.
Otherwise, an inconsistency is detected if all the nodes are marked inactive (lines 4–5). Until
the stack is empty, we mark the current node (line 11) and add its neighbours to the stack
(line 12). When the stack is empty, Algorithm 2 is called to filter the nodes and to check

CP 2021
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Algorithm 1 connected(): Boolean.

1 seen← {∅};
2 stack ← selectActiveNode();

3 if stack = ∅ then
4 if {node s.t. |dom(activesnode)| = 2} = ∅ then
5 return false ; // conflict detected

6 else
7 return true;

8 while stack ̸= ∅ do
9 current← pop(stack);

10 if current ̸∈ seen then
11 seen← seen ∪ current;
12 stack ← stack ∪ {x s.t. activesx ̸= 0 ∧ (Ccurrent,x ̸= 0 ∨ Cx,current ̸= 0)};

13 return removeUnseen(seen);

Algorithm 2 removeUnseen(seen : Set of nodes) : Boolean.

1 foreach node ̸∈ seen do
2 if |dom(activesnode)| = 1 ∧ activesnode = 1 then
3 return false; // conflict detected

4 activesnode ← 0;
5 return true;

the consistency of the constraints. In fact, for each node that we did not see in the search
of Algorithm 1 (therefore not connected to the considered graph), we must set their active
value to 0. A conflict is identified when an already decided active node is processed.

After running Algorithm 2, the undirected graph is guaranteed to be connected. Now, we
need to check the directed paths from each entry node and identify the unreachable nodes to
disable them. We formally introduce Algorithms 4 and 3 to manage the directed graph.

Algorithm 3 checks that there is a path between each entry and at least one exit node.
Three sets are used: seen, possible and kept. These sets contain, respectively, the nodes
that have been seen, the nodes in a possibly valid path (i.e. which reach an exit) from the
considered entry, as well as the nodes which are kept if no conflict is detected before the end
of the algorithm. The graph is then traversed from each potential entry using Algorithm 4
(line 6). If the considered entry is valid, it is counted (line 7); otherwise, it is marked as
invalid following a consistency test (line 9 to 11). If no valid entry is found (lines 13 and 14),
a conflict is raised. We then call Algorithm 2 (line 15) to filter the nodes that have not been
kept (and possibly detect a conflict).

Algorithm 4 (called on line 6 of Algorithm 3) is used to test the validity of a node provided
as a parameter (node). First, the node to be tested is added to the seen and possible sets
(lines 2 and 3). Then, if the node is already in the set of nodes to keep kept or if this node is
a possible exit, then it is marked as valid and kept (lines 4 to 6). It should be noted that the
search is not stopped when a node (or more particularly an entry) is found valid since we
want to mark all the nodes reachable from the node which is currently considered. The main
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Algorithm 3 checkPaths(G : the graph) : Boolean.

1 seen← {∅};
2 possible← {∅};
3 kept← {∅};
4 nbV alidEntries← 0;

5 foreach node s.t. entriesnode ̸= 0 ∧ activesnode ̸= 0 do
6 if isValidNode(node, seen, possible, kept) then
7 nbV alidEntries← nbV alidEntries + 1
8 else
9 if entriesnode = 1 then

10 return false; // conflict detected

11 entriesnode ← 0
12 possible← {∅};

13 if nbV alidEntries = 0 then
14 return false; // conflict detected

15 return removeUnseen(kept);

Algorithm 4 isValidNode(node : a node, seen, possible, kept : node sets) : Boolean.

1 valid← false;
2 seen← seen ∪ {node};
3 possible← possible ∪ {node};

4 if node ∈ kept ∨ exitsnode ̸= 0 then
5 valid← true;
6 kept← kept ∪ possible;

7 foreach a s.t. activesnode ̸= 0 ∧ Cnode,a ̸= 0 do
8 if a ∈ kept then
9 valid← true;

10 kept← kept ∪ possible;
11 else if a ̸∈ seen then
12 if isValidNode(a, seen, possible, kept) then
13 valid← true;

14 possible← possible \ {node};
15 return valid;

loop (lines 7 to 13) allows considering the children of the node considered (node). Indeed,
like line 12 of Algorithm 1, we add the neighbours of the current node without considering
the undirected case this time. For each of the children a, that are not deactivated, two cases
are possible:
1. a is already in the set of kept nodes (kept) (lines 8 to 10). This implies that node is

valid because it joins a path already validated previously. The path of the possible nodes
is therefore kept (line 10).

CP 2021
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Algorithm 5 propagate() : Boolean.

1 return connected() && checkPaths();

2. a has never been explored (lines 11 to 13). Algorithm 4 is therefore called recursively to
test the validity of a (as well as that of node if a is valid 2).

Finally, before returning the validity of the original node (node), it is removed from the
possible set (line 14).

The connected+ propagator (Algorithm 5) first applies the connected algorithm (Al-
gorithm 1), and if no conflict occurs, then the paths are checked (Algorithm 3).

5 Experiments

We implemented the algorithms in the Nacre [9] solver to evaluate them. The XCSP3 team
kindly provided us with an alternative version of the official parser to manage our new global
constraint.

The experiments were performed on a computer with a 6-core processor clocked at 3.70
GHz (Intel i7-8700K) with 32GB of RAM. We used the complete search method (MAC) of
the Nacre solver without restarts to count the solutions found3.

The experiments are divided into three parts. The first one presents a real-world use case
called the 1,000 dungeons. It is a simple scenario that illustrate how our tool can be used in
practice, on a simple use case. This “finalised” proof of concept was used to demonstrate
the practical interest of our approach to the AAA+ game studio we collaborated with for
this study. Indeed, generating a large number of variations from a few source patterns lets
us quickly fill the world with many high-quality playgrounds. The second part shows the
performances of our approach against the previously used one (the a posteriori method
used in the AAA+ game studio) on a real-world source dungeon. Our procedure generates
only valid variations for an insignificant overhead compared to the one without the global
constraint. In the last part, we present a source dungeon generator, based on a structured
problem random generator, to evaluate our approach to more dungeons. This generator
allows us to conclude on the usefulness and performances of our procedure in different cases.

5.1 The 1,000 Dungeons Experiment
The 1,000 dungeons experiment is a proof of concept developed in the AAA+ video game
studio with which we collaborated to show the practical interest of our approach. It
corresponds to a finalised tool, build on top of many other internal tools. In this experiment,
we generated, from three source patterns, 1, 000 variations. The structural constraints of the
model are the ones presented in Section 3.2. The configuration constraints for the computed
variations are set up as follows: between 3 and 12 rooms; at most 3 final rooms; one treasure
in a final room; and between 3 and 8 fights.

Figure 6 shows a sneak peek of the generated dungeons. We can distinguish the different
source patterns used as input. The green and golden rooms are kept in the variation; the
golden ones are the final rooms. The crossed swords point out a fight room, and the cup
shows a treasure room.

2 It is not necessary to replicate line 10 after line 13 if a and node are valid, this has already been done
in the call at line 12.

3 ./nacre_mini_release DUNGEON.xml -complete -sols=X
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Figure 6 A sneak peek of the 1, 000 dungeons experiment using 3 source dungeons that shows
the integration of our CP model and propagator in a production tool for a AAA+ video game.

This proof of concept shows that our approach could be useful to quickly fill a world
with a lot of different variations or to train bots (e.g., for exploration, for fights). It also
illustrates how variants of the same source dungeon could be very different in practice. Most
of the considered dungeons Figure 6 will be perceived as different levels by the player. To
increase the player’s feeling of visiting different levels, for this experiment, we adapted our
tool to avoid close variations. We generated much more variations and selected distant
ones in the search tree (choosing one solution every fifty solutions, during the backtrack
search, allowed us to increase the chances of increasing the diversity, as shown on the random
selection of some computed variations, Figure 6). To further expand this work and ensure
the generation of a relevant set of variations from one (or more) source dungeon in these
kinds of experiment, one could use some metrics (mission linearity, map linearity, leniency
and path redundancy [12, 16, 17], for example) to score each variation. The use of additional
tags (for instance by specifying the textures of the walls, the positions of furniture and items)
are another way of enforcing the novelty feeling by the player. Improving our tool to take
this kind of new constraints is easy with CP and will be discussed in the last section.

CP 2021
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Table 2 Data from experiments on the real-world instance considered, with 3, 019 variables and
11, 169 when expressed as a XCSP3 instance. The last column shows how many variations are valid
over the number of variations produced by the given method. As discussed in the text, only a small
fraction of generated variations are valid when the connected+ propagator is not used.

#Variations Method Time (seconds) #Conflicts #Valid Variations

W/o GC 2.7 15 0100 Connected+ 2.78 173 100
W/o GC 4.33 130 01,000 Connected+ 5.42 1,462 1,000
W/o GC 21.72 820 24810,000 Connected+ 32.23 11,781 10,000

5.2 Study of a real-world Instance

To evaluate our approach against the standard a posteriori method, we used a real-world
source dungeon taken from an actual game level. The source dungeon used for this experiment
has 52 nodes, 58 connections, 7 possible entrances, 7 possible exits, and 30 possible final
rooms. Even though this problem seems small, it is already difficult and represents real
problems well (mainly between 40 and 60 nodes, up to about 100 nodes for larger ones). The
XCSP3 instance associated to this problem has 3, 019 variables and 11, 169 constraints (1
more for the graph constraint connected+).

We evaluate the two approaches on generating 100, 1, 000 and 10, 000 variations, respect-
ively. The number of variants seems large (a typical shipped game will never contain so many
variations) but the goal of our tool is to give the LD as many variations as possible for them
to pick up the most interesting ones. It is thus expected that our tool will have to handle
such large sets of variations. We may have to score each variation (according to the metrics
mentioned, for instance, in section 5.1), and to list them for the LD.

The first approach (W/o GC in Table 2) does not use the new global constraint. The
second one (Connected+ in Table 2) uses the new global constraint and computes exactly the
number of variations specified (since they are all valid). The search stops when the specified
number of variations is found (but not necessarily valid ones for the W/o GC approach).

In Table 2, we can check that, as expected, having the graph checker as a built-in
propagator only produces valid variations for the price of small overhead. We conducted
further experiments to measure how many variations the method W/o GC would have to
compute in order to obtain 100 valid variations. We found that 5, 390 solutions would have
to be computed (in 7.63 seconds with 542 conflicts, to be compared with the 2.78 seconds of
our approach, with only 173 conflicts). We also tried to compute 1, 000 valid variations with
the W/o GC method but, after hitting the 2, 400 seconds timeout, it generated less than 300
valid variations for this instance. This has to be compared with our approach, that allows to
generate 1, 000 valid variations in 5.42 seconds.

This clearly shows the interest of our global constraint. It is now possible to produce a
tool allowing a real time exploration of many variants, to rank them and change the desired
tags almost on the fly. This was clearly not even possible with the previous approach.
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5.3 Small-World Random Generated Instances
In order to generalise our findings, we propose a deeper experimental analyse thanks to
a random instance generator (https://bit.ly/3xSXK2B), available for further works to
compare with (our previous problems are unfortunately not publicly available). To kept the
random generated graphs interesting and close to real-world problems, designed by humans,
our generator is based on the Watts–Strogatz model [10] adapted for directed graphs [13].
This model produces graphs with small-world properties; it allows us to simulate real-world
instances (e.g., with local clustering) and not random graph with uniform structure only.
The model takes the number of nodes of the graph we want to generate N , the mean degree
K of the graph and some special probability parameters (detailed below, these are reals
between 0 and 1). The associated algorithm is composed of two parts:
1. construct a ring lattice (a graph of N nodes each connected to K neighbours) ;
2. rewire some edges following a probability p.

As mentioned before, in our case, the algorithm is modified to handle directed graphs
(Section 3.2 of [13]). The first step remains the same, but the connections are set both ways.
The second step uses another probability d to choose if only one way is rewired or both. We
also randomly select nodes to be entries and exits. Our generator takes a few parameters:
1. n, the number of nodes of the graph;
2. k, the number of edges by nodes for the ring lattice;
3. a, the access density (percentage of entries and exits);
4. d, the probability for reciprocal edges during rewiring steps;
5. p, the probability of edge rewiring;
6. s, a seed can be specified for reproducibility.

This generator builds the structure of a source dungeon and does not propose to (ran-
domly) generate the configuration constraints. Indeed, choosing and generating a realistic
configuration is another work by itself.

We generated 100 instances4 from 10 nodes to 100 nodes with a step of 10 (10 instances
for each step). The generation tool is called with the following default parameters: 20%
accesses density (a parameter; 20% of nodes are entries and 20% of nodes are exits); 20%
chance for reciprocal edges (d parameter); 20% chance for rewiring (p parameter); and finally,
k, the number of edges by nodes for the ring lattice, is 40% of n, the number of nodes of the
graph.

The results of the two methods (W/o GC and Connected+) on the 100 generated instances
are reported Table 3. As we have done in the previous experiment, we evaluate the two
methods on the generation of 100, 1, 000 and 10, 000 variations. The data presented in the
Table are the computation time (in seconds) and the number of valid variations generated.
For each of the metrics, the minimum, maximum, median and mean are shown. This allows us
to show the behaviour on the easier (usually fewer nodes in the graph) and harder instances.

This last experiment, based on 300 runs for each method (each run generating many
variations, with a total of more than 2 millions variations generated), confirms the conclusions
on the previous real-world instance:

the overhead due to the addition of our global constraint connected+ constraint is very
small;

4 We used a script with the following parameters to generate the instances presented in Table 3:
./genDungeons.sh 10 100 10 10 0.
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Table 3 Data from experiments on the Watts-Stragatz small-world random instances. Each
reported number summarises 100 points, 10 points per increasing size of 10 to 100 (see text).

#Var Method Time (sec) #Valid Variations
Min Max Med. Mean Min Max Med. Mean

100 W/o GC 0.13 23.42 6.28 7.57 0 46 24 22.7
Connected+ 0.14 25.94 6.3 7.62 100 100 100 100

W/o GC 0.27 27.48 7.7 9.07 0 380 173 166.741,000 Connected+ 0.39 29.15 7.91 9.37 1K 1K 1K 1K
W/o GC 1.89 57.58 20.39 22.7 0 4798 1,244 1,578.4510,000 Connected+ 2.56 66.45 24.31 26.68 10K 10K 10K 10K

the variation problem, and the use of classical graph constraint, generates a very large
number of non valid solutions;
the median time obtained by our approach makes it possible to use it in an on-line
manner, to help LD navigating and sorting the solutions. This is not possible with an
approach based on existing constraints.

6 Conclusion & Perspectives

We have presented a new problem of industrial importance for constraint programming,
the Dungeon Variations Problem, and proposed a first approach to tackle it, based on the
introduction of a new global constraint with its propagator. Our solution is already used in
pre-production as an internal support tool for Levels Designers, supported by the XCSP3
model and the Nacre solver. There is, of course, still rooms for improvements, but we believe
our approach has already proven its usefulness and its practical interest for the studio. It is
a pragmatic and efficient solution to help Levels Designers in their daily work for the gaming
industry.

We are, of course, planning to expand this work in several ways. We can use metrics
(mission linearity, map linearity, leniency and path redundancy [12,16,17], for example) to
score each variation to generate a relevant set of variations from a source dungeon. These
metrics could be used for the optimisation version (COP) of the Dungeon Variations Problem,
allowing more control over the dungeons generated (an LD often plays on the linearity of the
flow). Using an approach similar to [2], we could find paths where the dungeon structure is
made using some data (or approximations): time or hardness to complete a fight or a puzzle,
for example. We could then build levels based on difficulty or time.

We could also enrich the model with different constraints to provide more control and
automation for the Dungeon Variations Problem (for example, considering the orientation of
the room, allowing its rotation). We can also think of models of rooms and connections (for
example, a connection can be a hallway, a window, a breakable wall). We can also extend
graph constraints to handle distance constraints (e.g., between accesses, from entrances to
combat rooms). A final improvement would be to consider qualitative constraint networks
(QCN ) to manage the relative positions of the different rooms and connections, allowing an
LD to specify the topological constraints of the connections from the dungeon to the outside.

A long-term goal of our work is to generate levels on the fly, based on each user experience
and preferences, with strong guarantees. We believe that this work is the first step in this
direction.
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