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—— Abstract

The LKH algorithm based on k-opt is an extremely efficient algorithm solving the TSP. Given a
non-optimal tour in a graph, the idea of k-opt is to iteratively swap k edges of this tour in order to
find a shorter tour. However, the optimality of a tour cannot be proved with this method. In that
case, exact solving methods such as CP can be used. The CP model is based on a graph variable
with mandatory and optional edges. Through branch-and-bound and filtering algorithms, the set of
mandatory edges will be modified. In this paper, we introduce a new constraint to the CP model
named mandatory Hamiltonian path constraint searching for k-opt in the mandatory Hamiltonian
paths. Experiments have shown that the mandatory Hamiltonian path constraint allows us to gain
on average a factor of 3 on the solving time. In addition, we have been able to solve some instances
that remain unsolved with the state of the art CP solver with a 1 week time out.
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1 Introduction

The Traveling Salesman Problem (TSP) is a widely studied graph theory problem with a
simple statement: find a minimum cost cycle in a graph visiting all nodes. Unfortunately,
solving a TSP is not as easy as stating it: finding the optimal solution of the TSP is NP-Hard.

Heuristics allow one to find non-proved optimal solutions of the TSP in reasonable solving
times. The most efficient heuristic solving the TSP is the Lin-Kernighan-Helsgaun (LKH)
algorithm [17, 12]. It starts from a tour that is not optimal and iteratively improves the
tour with one of the most popular tour improvement algorithms: the local search algorithm
k-opt [18]. It consists in finding k edges in a given tour such that swapping them create a
cheaper tour. Unfortunately, the k-opt algorithm has a time complexity in O(n*) such that
n is the number of nodes in a graph. In order to obtain an efficient algorithm, they suggest
many improvements such as using a variable k and not considering all the swaps of size k
but only the most “promising” swaps.

Exact algorithms allow one to find optimal solutions of the TSP. In practice, they are
usually much slower than heuristics because of the optimality proof. The most efficient
method solving the “pure” TSP is the specialized solver Concorde [1] based on MIP methods.
It is mainly based on the relaxation of the integrity and subtour constraints of the TSP
model. In addition, the cutting plane method [5] is used in order to correct structural
defects of the intermediate solutions obtained by this relaxation. It proceeds by iteratively
generating constraints that are violated by the solution of the relaxed problem. Among
them, there are the well-known Comb inequalities. However, no polynomial time algorithm
is known at this time to detect whether a solution of the relaxed problem violates a Comb
inequality. Therefore, many polynomial time algorithms have been developed in order
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to handle particular cases [6, 8, 4, 16]. In addition, Concorde embed other sophisticated
techniques such as local cuts. Note that Concorde outperforms the other exact solving
methods when considering large graphs. However, CP method is competitive with Concorde
for small-medium size graphs [2]. In addition, a TSP is often combined with other constraints.
For instance, precedence constraints, TSPTW where there is a time window to visit a node.
For these problems, Concorde is not well suited whereas the CP method is a good candidate
because it is more robust to side constraints. Nowadays, the most efficient method solving the
TSP in CP is the Weighted Circuit Constraint (WCC) [2] in combination with the structural
k-cutset constraint [13]. The optimization part of the WCC is based on the Lagrangian
Relaxation (LR) of Held and Karp [10, 11]. The lower bound of the LR is computed by
selecting a node x with its two lowest cost neighbors and a minimum spanning tree in the
graph without z, i.e. it is a 1-tree. If a minimum 1-tree is found such that all its nodes
have exactly two neighbors, then an optimal solution is obtained. Thus, the 1-tree is derived
through the LR process until an optimal solution is obtained. However, optimally solving the
TSP with a LR only can be extremely slow. Thus, the WCC integrates filtering algorithms
based on the cost of the edges, the 1-tree cost and a degree constraint on the nodes. In
addition, the k-cutset constraint is based on the graph structure. It considers the cutsets
of the graph containing k£ mandatory edges and deduces structural filtering. In contrast
to heuristic methods, the CP method does not improve a tour but builds an optimal tour.
Indeed, the CP model imposes some edges through a branch and bound. Those edges, named
mandatory edges, can form paths. Therefore, the purpose of the CP method is to find a
tour going through these edges. However, finding an optimal solution can be impossible.
For instance, it happens when a path is not itself optimal. Thus, it finds solutions that are
suboptimal.

In this paper, we define the mandatory Hamiltonian path constraint that uses the k-opt
algorithm on the mandatory paths. More precisely, let us define p, a path composed of
mandatory edges going from s to ¢ through a set of nodes X’. If p can be improved by
another path p’ going from s to ¢ through X’, then p cannot belong to an optimal solution.
In addition, we define a filtering algorithm removing edges: if a path can be improved when
an edge is added to it, then it cannot exist an optimal solution simultaneously containing
that path and that edge.

This article is organized as follows: first, we recall some concepts of graph theory. Then, we
introduce the TSP in CP with the k-cutset constraint and the tour improvement algorithms.
Next, we define the mandatory Hamiltonian path constraint and its incremental version.
Finally, we discuss some experiments and we conclude.

2 Preliminaries

2.1 Definitions

The definitions of graph theory are taken from Tarjan’s book [21].

A directed graph or digraph G = (X, U) consists of a node set X and an arc set U,
where every arc (z;,z;) is an ordered pair of distinct nodes. We note X (G) the set of nodes
of G such that n = | X (G)| and U(G) the set of arcs of G such that m = |[U(G)|. In addition,
U(4) is the set of adjacent edges of i. The cost of an arc is a value associated with the arc.
An undirected graph is a digraph such that for each arc (z;,z;) € U, (z;,x;) = (z;, ;).
If G; = (X1,U1) and G = (X2, Us) are graphs, both undirected or both directed, G is a
subgraph of G5 if X; C X5 and U; C Us. A path from node z1 to node x; in G is a list of
nodes [z1, ...,z such that (z;,2;41) is an arc for ¢ € [1..k — 1]. The path contains node
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x; for i € [1..k] and arc (x;, z;41) for ¢ € [1..k — 1]. The path is simple if all its nodes are
distinct. The path is a cycle if k > 1 and z7 = x;. A cycle is Hamiltonian if [z, ..., 25_1]
is a simple path and contains every node of X. The cost of a path p, denoted by w(p), is
the sum of the costs of the arcs contained in p. For a graph G, a solution to the traveling
salesman problem (TSP) in G is a Hamiltonian cycle HC € G minimizing w(HC'). An
undirected graph G is connected if there is a path between each pair of nodes, otherwise it

is disconnected. The maximum connected subgraphs of G are its connected components.

A tree is a connected graph without a cycle. A tree T = (X',U’) is a spanning tree
of Gif X' = X and U’ C U. The U’ edges are the tree edges T and the U — U’ edges
are the non-tree edges 7. A minimum spanning tree T = (X', U’) is a spanning tree
minimizing the cost of the tree edges. A partition (S, T) of the nodes of G such that S C X
and T = X — S is a cut. The set of edges (z;,z;) € U having x; € S and z; € T is the
cutset of the (S,T) cut. A k-cutset is a cutset of cardinality k.

2.2 TSP inCP

The current best CP method solving the TSP is a combination of the Weighted Circuit
Constraint (WCC) [2] and the structural constraint k-cutset [13]. The WCC is mainly based
on the 1-tree Lagrangian Relaxation (LR) of Held and Karp [10, 11]. Intuitively, the LR
derives a lower bound of the TSP (here, the 1-tree) until a solution of the TSP is found. A
1-tree is a minimum spanning tree in G = (X — {z},U) such that € X is connected by
its two nearest neighbors to the minimum spanning tree. Thus, a 1-tree covers the whole
graph with n edges and a single cycle. In addition, if the 1-tree satisfies the degree constraint
(each node of the 1-tree has exactly two neighbors), then the 1-tree is an optimal solution
of the TSP. Therefore, the goal is to minimize the number of nodes that violate the degree
constraint in the 1-tree. To do so, this constraint is integrated into the objective function
and a Lagrangian multiplier 7; is associated to each node i. Let d; be the degree of the node
i in the 1-tree. For each node i of the graph, if d; < 2, then 7; is decreased. Otherwise, if
d; > 2, then 7; is increased. Next, the edge cost w((4, 7)) is modified such that w'((4,7)) is
the modified cost and w’((4, j)) = w((¢,7)) + m; + ;. Finally, we obtain an optimal solution
of the TSP by computing a succession of 1-trees and modifying the edge costs.

However, experiments shown a very slow convergence toward the optimal solution. Thus,
the WCC integrates the following filtering algorithms based on the costs:

If an edge e does not belong to any 1-tree with cost smaller than a given upper bound,

then e can be safely deleted.

If an edge e belongs to all 1-trees with cost smaller than a given upper bound, then e is

mandatory.

Moreover, the WCC integrates a structural constraint imposing that each node has exactly
two neighbors (the degree constraint).

Next, for each cutset of size k, the k-cutset constraint imposes that an even number of
edges is mandatory. In practice, the study is limited to k£ < 3 since the given algorithm has
a complexity growing with k. In addition, the interaction of the filtering algorithms and the
convergence of the Lagrangian relaxation is not straightforward. Thus, Isoart and Régin [14]
introduced an adaptive method in order to improve the overall solving times.

About the search strategy, it consists in making a binary search where a left branch is an
edge assignment and a right branch is an edge removal. More precisely, we use the search
strategy LCFirst of Fages et al. [7] which is an interpretation of Last Conflict heuristics [9, 15]
for graph variables. It selects one edge in the graph according to a heuristic and keeps
branching on one extremity of this edge until the extremity is exhausted. Note that it keeps
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branching even if a backtrack occurs. Thus, it is a highly dynamic search strategy that learns
from previous choices. Moreover, most of the search strategies are much more efficient (up
to an order of magnitude) when LCFirst is used. In practice, we observe that using LCFirst
strongly interferes with the Lagrangian relaxation and filtering algorithms.

In addition, the WCC uses a single undirected graph variable where all nodes are
mandatory. Without loss of generality, we note O the set of optional edges, M the set of
mandatory edges and D the set of deleted edges such that OUM UD =U, ONM = (),
OND =0and MND =(. Thus, the purpose of the CP is to find a TSP in the input graph
Ginit = (X, M, O) such that M is a growing set and O is a shrinking set. When a solution is
found, |[M| =n and O = ().

For the sake of clarity, we define Ggope = (X, M’,0’) the current graph such that
MCM C(OUM)and O' C O. In addition, we define Ggpppe the graph G,y modified
by the search strategy and the filtering algorithms and Gy,anqd = (X, M’, () the graph of
mandatory edges. If not specified, we will use these notations and data structures in the
next sections.

2.3 Tour improvement algorithms

In order to find a TSP, a tour improvement algorithm takes as input a tour and iteratively
tries to improve it. The most popular tour improvement algorithms are the local search
algorithms 2-opt and 3-opt.

X1 X2

Y2 U1

Figure 1 An example of 2-opt. The circle represents a tour and the dashed lines are the suggested
move for the pair of edges ((x1,x2), (y1,¥2))-

The idea of 2-opt is pretty simple. Given a tour 7', for each pair of edges (e1,e2) in T,
if replacing (e1, e2) by another pair of edges (es, e4) of T leads to a connected and shorter
tour, then we can replace (e, e2) with (e3,e4) in 7. We name such a replacing procedure a
move. Note that some heuristics are looking for the best improving move before applying
the replacement of a move. In addition, for each pair of edges, there is only one move
reconnecting the graph that is not the null move. The iteration on pairs leads to a time
complexity in O(n?). Figure 1 shows an example where e; = (71,22), e2 = (y1,¥2) and the
move is e3 = (21,y1), €4 = (T2,¥2).

For the 3-opt algorithm, instead of choosing pair of edges, we choose a triplet of edges
and, as for 2-opt, we search for moves reducing the overall cost of the tour. In that case,
there are seven ways to reconnect the graph. Note that three of them are simple 2-opt (that
is a combination with one edge of the triplet not moved). Thus, 3-opt allows checking more
sophisticated combination than 2-opt and then can potentially find better moves. However,
it leads to an algorithm with a time complexity in O(n?). Figure 2 shows an example of all
3-opt moves that are not 2-opt.
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T €2 T T2 €1 T2 T €2

Figure 2 An example of 3-opt. The circle represents a tour and the dashed lines are the suggested
move for the triplet of edges ((x1,x2), (y1,¥2), (21, 22))-

Naturally, the 2-opt and the 3-opt algorithms can be generalized to the k-opt algorithm
with a time complexity in O(n*). Experiments have shown that increasing the value of k
improves the quality of the tours but slows down solving times. Thus, some methods [19, 3]
consider some 3-opt and/or 4-opt, but not all, in order to reduce the time complexity and
speed up the solving times.

Moreover, Lin and Kernighan suggested to use a variable k while solving [17] in order
to include larger moves. The algorithm is therefore more complex but it greatly improves
the results (tour quality and solving times). To do so, they suggested several rules. First,
they are looking for the most promising permutations only. Next, they allow improving
k-opt moves that can be built from a sequence of 2-opt moves such that some moves do
not improve the tour. These moves are much more complex and provide better moves than
a simple run of the 2-opt algorithm. In order to make this algorithm extremely efficient,
Helsgaun [12] has remarkably refined most of the rules given by Lin and Kernighan [17].
Nowadays, the Lin-Kernighan-Helsgaun algorithm is considered as one of the most efficient
heuristic solving the TSP and therefore it is embedded in most of the exact methods.

In this paper, we integrate 2-opt and 3-opt concepts into CP. Unlike tour improvement
algorithms, the CP model does not have a tour to improve. However, the CP model has
mandatory edges that can form paths and try to find a tour going through these paths. We
then search for 2-opt and 3-opt in the paths of mandatory edges.

3 Mandatory Hamiltonian path constraint

We note M’ (%) (resp. O'(i)) the set of mandatory (resp. optional) edges having ¢ for extremity
in M’ (resp. O’). For each node 4, |[M’(i)| < 2 because of the degree constraint. Thus, the
mandatory edges form disjoint paths. Without loss of generality, we assume that the current
assignment of the Ggoe is consistent with the degree constraint.

» Definition 1. A mandatory Hamiltonian path p is a path such that p is a Hamiltonian
path in a subgraph of Gsowe and for each edge e = (z;,x;41) of p, e € M.

We note p; = [x1, 2, ..., 2] a mandatory Hamiltonian path of Ggpe-

3.1 Consistency Check
In this section, we will study the existence of optimal solutions in Gggye-

» Definition 2. An alternative path py = [z}, 2}, ..., x}] of p1 is a permutation of the
nodes of p1 such that p1 # p2, ©1 = x, ©; = x; and for each i € [1,k — 1], (z},2j,,) € U.

Figure 3 shows an example of an alternative path. Thus, an alternative path can be
composed of edges in M UO U D, i.e. in U.

CP 2021
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] ——— T2 ] —— X2
\\1 //
\\ //
N 7
1 10
// A
1 R
T3 ———1—0——— T4 T3 T4

Figure 3 The left graph is a subgraph of G;n;it. The blue edges are from M, they form a
mandatory Hamiltonian path going from z3 to z4. The dashed edges are from D (the deleted edges).
The right graph is an alternative path of the left graph.

» Definition 3. The mandatory Hamiltonian path py is minimal if and only if there is no
alternative path py of p1 such that w(ps) < w(py).

In Figure 3, the mandatory Hamiltonian path is not minimal. The right graph represents
an alternative path with a cost of 4 whereas the mandatory Hamiltonian path has a cost of
12. The idea is to search for a non-minimal mandatory Hamiltonian path ps in the connected
components of Gana = (X, M’,0). In Proposition 4, we show that if such a path po exists,
then the cost of the TSP in Gyope = (X, M’,0’) is greater than the cost of the TSP in
Ginit = (X, M, O).

» Proposition 4. If there is a mandatory Hamiltonian path p1 that is not minimal, then p,
cannot belong to any solution of TSP(Ginit)-

Proof. Given w(T'SP(Ginit + p1)) the cost of TSP(G;pit) such that pp is in the solution. If
there is no solution for T'SP(Ginit + p1), then p; cannot belong to any solution T'SP(G nit)-
Otherwise, if p; is not minimal, then there is an alternative path ps of p; such that w(ps2) <
w(p1). Thus, W(T'SP(Ginit + p2)) < w(T'SP(Ginit + p1)) and therefore p; cannot belong to
any TSP(G””t) <

In the context of a CP solver, if there is a mandatory Hamiltonian path p that is not
minimal, then from Proposition 4 we can trigger a failure because the current solution is
not minimal. Moreover, it raises a question: how do we verify if a mandatory Hamiltonian
path is minimal? A first algorithm consists in checking all the possible permutations for
each mandatory Hamiltonian path. Unfortunately, checking all the permutations leads to
an impractical algorithm. However, a large number of heuristics improving tours have been
designed. Among them, there are the ones introduced in Subsection 2.3. Thus, we can use
any of these heuristics on the mandatory Hamiltonian paths. If it finds an improvement,
then a mandatory Hamiltonian path is not minimal and therefore we can trigger a failure.

In this paper, we use k-opt heuristics as tour improvement since they are very efficient
and easy to implement. In Section 4, we will show that 2-opt and 3-opt are enough in order
to obtain good results.

» Definition 5. Given the set of mandatory Hamiltonian paths P and an integer k. For
each mandatory Hamiltonian path p € P, the mandatory Hamiltonian path constraint ensure
that there is no alternative path p' obtained by swapping k edges of p such that w(p') < w(p).

Therefore, we define the mandatory Hamiltonian path constraint in Definition 5 such
that if its consistency is not verified, then we trigger a failure.
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Algorithm 1 Consistency check of the mandatory Hamiltonian paths.

1 ConsistencyCheck (Ginit, Gmand, k)
Input: The initial graph Gy, the graph of mandatory edges G.nang and an

integer k.
Output: A Boolean specifying whether G,,,q4nq contains a mandatory
Hamiltonian path that is not minimal.

2 P + computeMandatoryHamiltonianPaths(Gmand) ;
3 foreach path p € P do

4 if k-optPath(Ginit, p) then

5 L return False ;

6 return True ;

In Algorithm 1, we introduce an implementation of the algorithm checking the consistency
of the mandatory Hamiltonian path constraint. We assume that k-optPath(Gipit, p) returns

true if and only if the mandatory Hamiltonian path constraint with the given k is consistent.

Internally, k-optPath(Giy:t,p) uses a k-opt heuristic. Then, for each mandatory Hamiltonian
path p, we run k-optPath(Gini, p) in O(|p|*).

» Proposition 6. Given P the set of mandatory Hamiltonian paths. Then, ZpGP Ip| < n
and |P| < n.

Proof. By definition, each node can only be contained in one mandatory Hamiltonian path
and there are n nodes in Goppe. Thus, ZpEP Ip| < n. In addition, if each node is contained
in a different path, then there are n paths and then therefore |P| < n. |

Each p of P are disjoint. From Proposition 6, the sum of |p| for all p € P is lower or
equal to n. Finally, the time complexity of Algorithm 1 is in O(3_ p Ip|*) < O(nk).
3.2 Filtering algorithm

In this section, we will consider that the consistency has been checked. An edge e = (x4, x;)
is a successor of p; and an edge e = (x;,x1) is a predecessor of p;. In addition, we note
T+ p1 = [T, 21,2, ..., 2] and p1 4+ 25 = [21, 22, ., T, @)

From Proposition 4, we have the two following corollaries:

» Corollary 7. For each edge e € O’ such that e is a predecessor of py, if i + p1 is not a

minimal mandatory Hamiltonian path, then e cannot belong to any solution of T'SP(Gsoive)-

» Corollary 8. For each edge e € O' such that e is a successor of p1, if p1 + i is not a

minimal mandatory Hamiltonian path, then e cannot belong to any solution of T'SP(Gsorve)-

Thus, in order to define a filtering algorithm we are interested in the minimality of p; + 4
and i+p;. If the minimality of p; has already been checked, then we can avoid all permutations
only containing the elements of p;. We impose ¢ to be in the considered permutations and we
look for permutations of size (k — 1) in p;. Then, for a mandatory Hamiltonian path p and a
single successor or predecessor, we can filter the edge in O(|p|*~!) < O(n*~1). Performing

the filtering for all predecessors and successors of p can be done in O(|O'(p)||p|*~1) < O(n*).

From Proposition 6, there can be at most n paths and the sum of the size of all paths is
smaller than or equal to n. Thus, from Corollary 7 and 8 a we can filter the edges of all paths
with a complexity in O(n**1). Note that the number of checked permutations in practice is
much smaller.
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A mandatory Hamiltonian path p; can have a successor or a predecessor e connecting
another mandatory Hamiltonian path ps. Then, adding e to the solution leads to a minimality
check in p; 4+ p2. We can then extend the two previous corollaries:

» Corollary 9. For each edge e = (z;,21) € O'(z1), if it exists po = [2},25,...,2}] a
mandatory Hamiltonian path of Gsorwe such that x; = x} and pa + p1 s not a minimal
mandatory Hamiltonian path, then e cannot belongs to any TSP(Gsopve)-

» Corollary 10. For each edge e = (x;,z;) € O'(xy), if it exists po = [x),25,...,2}] a
mandatory Hamiltonian path of Gsowe such that x; = 2§ and p1 + p2 is not a minimal
mandatory Hamiltonian path, then e cannot belongs to any TSP(Gsopve)-

Given a mandatory Hamiltonian path ps of G, connected to p; with e € O’. Then, we
have to check if p; + py is minimal in order to determine whether e can be in a solution of
TSP (Gsorve)- It can be done with Corollary 9 and 10 in O((|p1|+|p2|)*—|p1 ¥ —|p2|¥) < O(n¥).
The number of predecessors and successors of p; is at most 2n. If P(p;) is the set of mandatory
Hamiltonian paths such that each path of P(p;) is connected to p; with a successor or a
predecessor of py, then the filtering on p1 can be done in O(3,,  p(, ([P1] + [p2])* — |p1]* —
Ip2|¥) < O(nk*1). Given P the set of mandatory Hamiltonian paths. The filtering for
all paths of P can be done in O(3_, cp >, cppy) (IP1] + [p2)* = [p1]* = [p2]*) < O(n*F2).
Algorithm 2 is a possible implementation.

For the sake of clarity, we will use the following notations in the algorithms:

P: contains all the mandatory Hamiltonian paths of the graph Ggope-

P[i]: if there is a path p containing the node ¢, then it returns p. Otherwise, it returns i.

p.first(): returns the first node of the path p.

p.last(): returns the last node of the path p.

Algorithm 2 Filtering algorithm for the mandatory Hamiltonian paths.
1 Filter (Ginit, Gsoiwe = (X, M',0’), P, k)

Input: The initial graph Gini, a graph Ggope, the set of mandatory
Hamiltonian paths P and an integer k.
2 foreach p; = [z1,22,...,24) € P do
3 foreach edge e = (21,j) € O'(x1) do
4 p2 < P(j);
5 if po.last() # j then reverse(ps);
6 if (p1 =p2 and |M'| #n —1) or k-optPath(Ginit, p2, p1) then
7 L O+ 0 —e;
8 foreach edge e = (x4, j) € O'(x;) do
9 p2 < P(j) ;
10 if po.first() # j then reverse(ps);
11 if (p1 =p2 and |M'| #n—1) or k-optPath(Ginit, p1,p2) then
12 L O+ 0 —e;

Given P the set of the mandatory Hamiltonian paths. For each path p; € P, we perform
the filtering on all the predecessor and successor e of p;. We note py the path connected to p;
by e (p2 can be a single node). In addition, we note k-optPath(graph, p1,p2) the k-optPath
algorithm considering the permutations of p; + ps such that each permutation contains at
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least one element of p; and at least one element of p;. When two paths are merged, they
must be in the right order. If po must be inserted in front of p;, then the node j must be the
last node of py. Otherwise, j must be the first node of py. Thus, py is reversed if needed.
Note that we can save the reversed path in order to avoid redundant computations. If an
improvement is found when p; and ps are merged, then from Corollary 9 or 10 the edge e
cannot belong to a solution of T'SP(Gepe) and therefore e is removed from the optional
edges of Ggope. In addition, if py = py and |[M’| # n — 1, then it exists an edge e = (3, J)
such that 7 and j belong to the same mandatory Hamiltonian path and therefore the edge
close a cycle with a size lower than n. Thus, adding e to the solution creates a sub-cycle and
then e is removed from the optional edges of Ggoppe-

3.3 Maintenance during the search

In this section, we will consider the incremental aspect of this constraint, i.e. the consistency
of this constraint or its filtering when some edges become mandatory or deleted. Moreover,
we will consider the restoration of the data structures introduced for the incremental aspect

when a backtrack occurs. In this study, an edge can be deleted or an edge becomes mandatory.

» Proposition 11. Given G' = (X, M’,0") such that O"” C O’. If py is minimal, then p is
minimal in G'.

Proof. The graph G’ is the graph G, such that some edges are deleted. By definition,
the deleted edges are in D and the alternative paths can contain edges of D. Thus, if p; is
minimal, then p is minimal in G’. |

From Proposition 11, if we know that all the mandatory Hamiltonian paths of Ggope are
minimal and then some edges are removed, then the mandatory Hamiltonian paths of Gope
remain minimal. In addition, removing some edges does not change the result of the filtering
algorithm since new alternative paths cannot be created from removal. Thus, the consistency
test and the filtering algorithm are only triggered when there are new mandatory edges.

In the following algorithms, we use the following data structures:

candidates: a stack of graph nodes such that the nodes are adjacent to edges that can be

filtered.

deltaMand: a set of the new mandatory edges since the last call of the constraint for the

current search node.

3.3.1 Consistency check

When an edge e becomes mandatory, there are three cases:
e is not connected to any path and therefore e creates a new path only containing its
two endpoints. Note that a mandatory Hamiltonian path with two nodes is necessarily
minimal.
e is connected to a mandatory Hamiltonian path p and therefore p and e are merged in a
not necessarily minimal mandatory Hamiltonian path because new alternative paths may
exist.
e is connected to two mandatory Hamiltonian paths p; and py and therefore p; and
po are merged in a not necessarily minimal mandatory Hamiltonian path because new
alternative paths may exist.

Thus, for consistency check, we only consider the paths that must be merged. In addition,
given a new mandatory edge e connecting p; and ps, we note p3 the merged path of p; and
p2. When two paths are merged, we assume that the minimality check has been performed
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on the two paths. Therefore, when the k-optPath algorithm is checking the minimality for
the path ps, it can avoid the permutations containing either only elements of p; or only
elements of po. Then, we consider the permutations that contain at least one element of p;
and at least one element of ps.

In Algorithm 3, we give a possible implementation of the incremental algorithm checking
the minimality of the mandatory Hamiltonian paths. For each edge (i, j) newly mandatory,
we have p; and py the mandatory Hamiltonian paths such that ¢ and j are respectively an
extremity of p; and ps. Therefore, the edge (4,7) merge p; and py and p; and/or py are
accordingly reversed. Note that the candidates stack is filled for the filtering algorithm.
Then, we run the k-optPath algorithm in order to find alternative paths in p; + ps. Note
that we only consider permutations such that each permutation contains at least one element
of p; and at least one element of py. Finally, if no alternative path is found, p; + ps2 is a
minimal mandatory Hamiltonian path and we merge p; and ps in P. Otherwise, we return
False and a failure is triggered.

Algorithm 3 Incremental minimality check of the mandatory Hamiltonian paths.

1 IncrementalConsistencyCheck (G, P, deltaMand, candidates, k)
Input: The initial graph G, the set of mandatory Hamiltonian paths P, the

set of new mandatory edges deltaM and, candidates a filtering used stack
and an integer k.

Output: A Boolean specifying whether P contains a mandatory Hamiltonian

path that is not minimal.

foreach (i,j) € deltaMand do

p1 < Pli] ;

p2 < Plj] ;

if py.last() # i then reverse(p;);

if po.first() # j then reverse(ps);

candidates.push(p;. first()) ;

candidates.push(py.last()) ;

if k-optPath(Ginit,p1,p2) then

L return False ;

© w0 N o ok W N

o
(=]

// merge p; and py in P
11 merge (P, p1,p2) ;

12 return True ;

The overall time complexity of Algorithm 3 is O3 ; j)edertarrana (Pl + |P[5])F —
|Pli]|* — |P[4]|*) < O(n*). Note that Algorithm 1 has a time complexity in O3 . p [p|*) <
O(n*) when all paths are already merged which is equivalent to O(3; i)edertanrand(IPLi]] +
|P[j]))*) if paths are not merged. Thus, the incremental algorithm improves the time
complexity for checking the minimality of the mandatory Hamiltonian paths.

3.3.2 Filtering algorithm

When an edge e becomes mandatory, we have the same three cases as for the consistency
check. Thus, we will only consider the merged mandatory Hamiltonian paths in the previous
consistency check. More precisely, we will only consider the neighborhood of the first node
and the last node of these paths.
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Algorithm 4 is a possible implementation of an incremental algorithm performing the
filtering. First, we iterate on candidates. Every time two paths are merged in Algorithm 3,
the first and last nodes of the merged path are pushed in candidates. Thus, candidates
contains the first node and last nodes of all merged paths. In addition, candidates may
contain some nodes that are “intermediate” merged paths. For example, merging p; and
po results in ps such that ps.first() = « and ps.last() = y. Then, z and y are pushed in
candidates. Merging ps with py results in ps such that ps.first() = 2’ and ps.last() = y/'.
Then, ' and 3y’ are pushed in candidates. However, x and y still are in candidates while x
or y is no longer the first node or the last node of a merged path. Then, while iterations on
candidates, we need to avoid these nodes. Finally, if a node 7 is an endpoint of a mandatory
Hamiltonian path, then we check in the neighborhood of the node ¢ (same as for Algorithm 2).

Algorithm 4 Incremental filtering of the mandatory Hamiltonian paths.

1 IncrFiltering (Ginit, Gsotve = (X, M',0"), P, candidates, k)

Input: The initial graph Gjnq, a graph Ggoppe, the set of mandatory
Hamiltonian paths P, the stack of nodes to consider for the filtering
candidates and an integer k.

while candidates.isNotEmpty() do

i1 + candidates.pop() ;

p1 < P[i] ;

if i = py.first() or i = p;.last() then

foreach edge e = (i,j) € O'(i) do

p2 + P[j] ;

if p;.last() # ¢ then reverse(p);

if po.first() # j then reverse(ps);

if (p1 =p2 and |M'| #n —1) or k-optPath(Ginit, p1,p2) then
L O+ 0 —e;

© W N O oA W N

I
= o

If P(i) is the set of mandatory Hamiltonian paths such that each path of P(%) is connected
with a successor or a predecessor of P[i], then the time complexity of Algorithm 4 is in

O(Xiccandidates 2pye (i Pl + [p2)* = [Plil[* — [p2[*)) < O(n*+2).

3.3.3 Restoration

In order to save more computations, we maintain the set P of mandatory Hamiltonian paths.
When a backtrack occurs, the difference between the backtracked state and the current
state is that some mandatory edges could have been found and therefore some mandatory
Hamiltonian paths of P could have been merged. Thus, in order to restore P, the merged
mandatory Hamiltonian paths should be split. To do so, we define a stack S such that S
contains the added mandatory edges from the root to the current state. In addition, we
save the size of the stack for each open search node. Then, when a backtrack occurs, we
iteratively pop the mandatory e edges of S until the wanted size is obtained. For each e, we
split the mandatory Hamiltonian path in P containing e.
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4 Experiments

The algorithms have been implemented in Java 11 in a locally developed constraint program-
ming solver. The experiments were performed on Clear Linux with an Intel Xeon E5-2696v2
and 64 GB of RAM. The instances are from the TSPLib [20], a library of reference graphs
for the TSP. We rerun experiments ran in Isoart and Régin [13] and exclude instances solved
in less than two seconds by the state of the art. In addition, we tried some harder instances
from the TSPLib and selected those that did not have reached a time out ¢.0. by both the
state of the art and our method. Note that we set t.0. to 1 week, that is 604,800 seconds.
The name of each instance is suffixed by its number of nodes. In our implementation, the
TSP is modeled by the WCC using the CP-based LR configuration introduced in Isoart
and Régin [14]. We note “state of the art” the TSP model introduced in Subsection 2.2,
“MHP 2-opt” the state of the art combined with the mandatory Hamiltonian path constraint
searching for 2-opt and “MHP 3-opt” the state of the art combined with the mandatory
Hamiltonian path constraint searching for 3-opt. The search strategy used is LCFirst with
the heuristic minDeltaDeg [7] which is also the state of the art. Given e = (7, ) an edge,
minDeltaDeg selects the edge with the minimum difference between the sum of the number
of optional neighbors of ¢ and j and the sum of the number of mandatory neighbors of 4
and j. Thus, we compare our constraint and the state of the art through the number of
backtracks (#bk) and the solving times in seconds in arrays. All considered instances are
symmetric graphs. If not specified, we use the implementation given in Algorithm 3 and 4.

Table 1 shows the solving times and the number of backtracks for the state of the art
solving method and with 2-opt and 3-opt added to it. In addition, we display a ratio column
in order to show the gain factor for each instance by using 2-opt and 3-opt.

For the state of the art, we notice that 4 instances over 32 have reached the time out.
For the mandatory Hamiltonian path constraint combined with 2-opt, we notice that only 2
of the 4 instances have reached the time out. Indeed, pr299 is solved in 9,640s and rd400
is solved in 28,122s with 2-opt whereas they remain unsolved in 604,800s with the state of
the art.

Most of the time, we notice that the use of 2-opt allows us to improve the solving times.
For example, ali535 is improved by a factor of 3.5 in solving time and by a factor of 3.7 in
backtracks. Some problems have higher gain factors: d493 gains a factor 6 in solving time
and a factor 4.9 in backtracks. Moreover, only pr124 has a degraded solving time when using
2-opt: 2.8s vs 3.3s. Note that there is gain in backtracks 1856 vs 1700.

The mandatory Hamiltonian path constraint combined with 3-opt allow us to obtain an
additional improvement to the use of 2-opt only. Indeed, 3-opt can be slower than 2-opt
in terms of backtracks/second but it greatly reduce the number of backtracks. Note that
this configuration solve all the considered instances. Indeed, pr299 is solved in 3,039s, pr493
is solved in 170,127s, rd400 is solved in 12,352s and ub74 is solved in 198,693s with the
mandatory Hamiltonian path constraint combined with 3-opt whereas they remain unsolved
in 604,800s with the state of the art. We thus obtain great improvement factors on the
solving times: > 199 for pr299, > 3.6 for pr493, > 49 for rd400 and > 3 for u574. In addition,
some instances are solved much faster with 3-opt than with 2-opt: gr666 is solved in 303.293s
with the state of the art, 64,391s with 2-opt and 21,853s with 3-opt. Some other instances
are solved with almost the same number of backtracks for 2-opt and 3-opt: for ali535 with
2-opt there is 3,148,626bk and there is 3,178,482bk with 3-opt. However, it has a slower
solving time with 2-opt than with 3-opt: 24,367s vs 35,026s. This can be due to several
reasons: the extra cost of using an algorithm in O(n3) compared to an algorithm in O(n?).
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Table 1 General results comparing the mandatory Hamiltonian path constraint combined with
2-opt or 3-opt and the state of the art.

State of the art (1) MHP 2-opt (2) ratio (1)/(2) MHP 3-opt (3) ratio (1)/(3)

time(s) #bk time(s) #bk time  #bk | time(s) #bk time(s)  #bk

a280 7.0 2,372 6.5 2,182 1.1 1.1 10.8 3,134 0.6 0.8
alis35 | 84,929.1 11,747,704 | 24,367.5 3,148,626 35 37| 35020 3,178,482 24 3.7
ch150 2.9 1,526 2.1 644 1.4 2.4 1.7 392 1.7 3.9
d198 14.0 7,192 12.6 6,062 1.1 1.2 10.4 3,694 1.4 1.9
d493 95,916.6 13,478,616 | 15,931.0 2,778,780 6.0 4.9 31,162.1 1,877,298 3.1 7.2
gil262 5230.2 2,254,728 | 3,804.8 1,710,410 14 13| 38333 1,501,756 14 15
grl37 3.4 1,910 1.7 706 2.0 2.7 1.5 518 2.2 3.7
gr202 24 886 2.0 600 1.2 1.5 2.3 448 1.0 2.0
gr229 227.0 166,378 64.6 44,696 3.5 3.7 59.1 33,336 3.8 5.0
gra31 1,724.8 265,698 494.8 68,432 3.5 3.9 556.3 65,100 3.1 4.1
ar666 | 303,293.4 28,432,754 | 64,390.7 5,168,402 47 55| 248531 1,721,794 122 165
kroA100 2.0 1,270 1.2 438 1.7 2.9 1.3 458 1.6 2.8
kroA150 6.1 4,164 5.2 3,374 1.2 1.2 3.9 1,814 1.6 2.3
kroA200 401.0 237,806 63.8 33,166 6.3 7.2 68.2 34,058 5.9 7.0
kroB100 5.4 4,816 2.8 2,164 1.9 2.2 1.7 972 3.2 5.0
kroB150 262.6 247,574 30.5 23,296 8.6 10.6 21.7 16,012 121 155
kroB200 127.8 87,296 34.5 21,060 3.7 4.1 15.8 8,140 8.1 10.7
kroC100 2.0 1,470 1.1 346 1.8 4.2 1.1 334 1.8 4.4
kroE100 2.3 1,804 1.6 782 1.4 2.3 1.6 824 1.4 2.2
lin318 32.9 7,834 8.7 1,944 3.8 4.0 10.1 2,018 3.3 3.9
prl24 2.8 1,856 3.3 1,700 0.8 1.1 2.3 1,142 1.2 1.6
prl36 20.4 18,684 16.2 13,886 1.3 1.3 13.1 8,598 1.6 2.2
prl44 2.3 1,036 1.8 628 1.3 1.6 1.9 594 1.2 1.7
pr264 4.7 690 4.9 508 1.0 1.4 5.1 524 0.9 1.3
pr299 t.o. t.o. 9,640.5 2,710,230 | > 62.7 - 3,038.7 805,344 | > 199.0 -
pra39 t.0. to. to. to. - - | 170,127.1 35,750,706 | > 3.6 .
rat195 38.5 24,274 17.9 10,286 2.2 24 17.8 8,560 2.2 2.8
rd400 t.0. to. | 281211 6,524,576 | > 21.5 - 12,3519 2,507,272 | > 49.0 .
sil75 288.5 301,102 204.5 197,968 1.4 1.5 342.6 275,870 0.8 1.1
tsp225 121.5 65,002 116.8 59,688 1.0 1.1 51.4 24,042 2.4 2.7
ub74 t.o. t.o. t.o. t.o. - - | 198,962.7 28,269,058 > 3.0 -

The Lagrangian relaxation can also be impacted by the filtered edges. However, since 3-opt
solves more problems than 2-opt and that on average (if we do not consider the instances the
instances that have reached the time out) we obtain a gain of a factor of 2.5 for 2-opt and 3
for 3-opt over the state of the art. Thus, we will consider the version with 3-opt. Note that

we also could use some other heuristics such as 2.5-opt that compute 2-opt and some 3-opt.

The improvement over the number of backtracks is not as much important as for the 3-opt
method but the number of backtracks per second is higher. In practice, we have observed on
average a 10% difference on the solving times between 3-opt and 2.5-opt.

In Table 2, we show the impact of the use of the incremental version of the mandatory
Hamiltonian path constraint on some instances of Table 1. On this instance set, the
incremental version is on average 33% faster than the non-incremental one. With the
incremental version, the solving times of somes instances such as d198 are improved of 8%
whereas for other instances such as gr229 the solving times are improved of 50%. Thus,
the benefit of avoiding recalculations may be interesting for this constraint due to the time
complexity of the k-opt algorithm.

In Table 3, we are interested in the use of k-opt algorithms with k greater than 3. For
the number of backtracks, we notice that on average 4-opt is more efficient than 3-opt which
is more efficient than 2-opt. In addition, 4-opt and 5-opt achieve similar results. However,
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Table 2 Comparison of solving times for the non-incremental and the incremental version of the
mandatory Hamiltonian path constraint.

(1) 3-opt (2) 3-opt ratio
not incremental | incremental | (1) / (2)

time(s) time(s) time
a280 16.2 10.8 1.49
d198 11.2 10.4 1.08
gr229 90.8 59.1 1.53
kroA200 75.1 68.2 1.10
prl36 19.5 13.1 1.49
rat195 22.5 17.8 1.26
mean 39.22 29.92 1.33

Table 3 Comparison of solving times for mandatory Hamiltonian path constraint with 2-opt,
3-opt, 4-opt and 5-opt.

2-opt 3-opt 4-opt 5-opt
time(s) #bk time(s) #bk time(s) #bk time(s) #bk

a280 6.5 2,182 10.8 3,134 132.0 3,386 | 41,884.8 3,386
ch150 2.1 644 1.7 392 3.0 392 246.9 392
d198 12.6 6,062 10.4 3,694 32.3 3,694 | 4,839.9 3,694
gr229 64.6 44,696 59.1 33,336 97.4 23,930 | 11,001.2 26,036
kroA200 63.8 33,166 68.2 34,058 71.1 31,050 | 1,450.7 31,050
prl36 16.2 13,886 13.1 8,598 54.5 6,496 | 8,183.5 6,496
rat195 17.9 10,286 17.8 8,560 56.9 10,192 | 5,816.3 10,192
mean 26.2 15,846.0 25.9 13,110.3 63.9 11,305.7 | 10,489.0 11,606.6

the use of 4-opt and 5-opt degrades the solving times compared to 2-opt and 3-opt. Indeed,
for 4-opt we observe a loss of a factor greater than 2. For 5-opt, we observe a loss of a factor
greater than 400. Thus, the solving times and number of backtracks trade-off is not good
when k > 3.

In Table 4, we show the gap between the MIP solver Concorde [1] and the state of the art
CP solving method with the mandatory Hamiltonian path constraint with 3-opt. Note that
the results for Concorde are obtained on our machine. For the small sized instances, we notice
that our method is competitive with Concorde. Indeed, small sized instances such as att48 are
solved in 0.14s with Concorde whereas we solved it in 0.03s. For medium sized instances such
as rat195, we can see a slight degradation of the results: Concorde solved it in 8.73s whereas
we solved it in 17.82s. However, the solving times are still comparable. Unfortunately, our
method starts to slowing down for larger instances. For example, rd400 is solved in 20.6s
with Concorde whereas it is solved in 12,351.85s with our method. Nevertheless, in [2], the
solving time ratio with Concorde of kroC100 is about 1000, here it is only 3.1. Thus, we
hope that same improvement factors will be obtained for larger instances in future works.

5 Conclusion

In this paper, we introduced a new constraint based on the k-opt algorithm, named mandatory
Hamiltonian path constraint, into to the TSP model in CP. We also introduced an incremental
version of this constraint. Experiments have shown that the use of this constraint leads to an



N. Isoart and J.-C. Régin

Table 4 Comparison of the solving times and the number of backtracks for mandatory Hamiltonian

path constraint with 3-opt and Concorde.

Concorde 3-opt ratio

time(s) #bk | time(s) #bk time
gr24 0.02 0 0.00 2 0.0
att48 0.14 0 0.03 6 0.2
eil51 0.07 0 0.05 32 0.8
st70 0.12 0 0.14 70 1.1
kroC100 0.35 0 1.08 334 3.1
bier127 0.31 0 0.28 60 0.9
grl37 1.32 0 1.55 518 1.2
ch150 0.93 0 1.73 392 1.9
sil7h 3.58 2 342.64 275,870 95.8
rat195 8.73 6 17.82 8,560 2.0
gr202 2.92 0 2.30 448 0.8
lin318 2.59 0 10.12 2,018 3.9
ali535 6.72 0 | 35,025.96 3,178,482 | 5215.3
d493 47.17 4 | 31,162.09 1,877,298 660.6
rd400 20.60 8 | 12,351.85 2,507,272 599.7

improvement of at least a factor of 3 in solving times. In addition, it shown that the use of
3-opt is well suited for our constraint. Moreover, we have been able to solve some instances
that remains unsolved with the state of the art CP model. The k-opt algorithm is embedded
in most of the solving methods of the TSP and therefore now in the CP. In future work, we

will study an extension of this constraint not only considering the mandatory Hamiltonian

paths but the mandatory cutsets in the graph.
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