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—— Abstract

A backdoor in a finite-domain CSP instance is a set of variables where each possible instantiation

moves the instance into a polynomial-time solvable class. Backdoors have found many applications
in artificial intelligence and elsewhere, and the algorithmic problem of finding such backdoors has
consequently been intensively studied. Sioutis and Janhunen (KI, 2019) have proposed a generalised
backdoor concept suitable for infinite-domain CSP instances over binary constraints. We generalise
their concept into a large class of CSPs that allow for higher-arity constraints. We show that
this kind of infinite-domain backdoors have many of the positive computational properties that
finite-domain backdoors have: the associated computational problems are fixed-parameter tractable
whenever the underlying constraint language is finite. On the other hand, we show that infinite
languages make the problems considerably harder.
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1 Introduction

The constraint satisfaction problem (CSP) is the widely studied combinatorial problem of
determining whether a set of constraints admits at least one solution. It is common to
parameterise this problem by a set of relations (a constraint language) which determines the
allowed types of constraints, and by choosing different languages one can model different
types of problems. Finite-domain languages e.g. makes it possible to formulate Boolean
satisfiability problems and coloring problems while infinite-domain languages are frequently
used to e.g. model classical qualitative reasoning problems in artificial intelligence such as
Allen’s interval algebra and the region-connection calculus (RCC). Under the lens of classical
complexity a substantial amount is known: every finite-domain CSP is either tractable or
is NP-complete [5, 34], and for infinite domains there exists a wealth of dichotomy results
separating tractable from intractable cases [1].

© Peter Jonsson, Victor Lagerkvist, and Sebastian Ordyniak;

licensed under Creative Commons License CC-BY 4.0
27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 32; pp. 32:1-32:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:peter.jonsson@liu.se
mailto:victor.lagerkvist@liu.se
mailto:sordyniak@gmail.com
https://doi.org/10.4230/LIPIcs.CP.2021.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2

Algorithms and Lower Bounds for Backdoors for Infinite-Domain CSPs

The vast expressibility of infinite-domain CSPs makes the search for efficient solution
methods extremely worthwhile. While worst-case complexity results indicate that many
interesting problems should be insurmountably hard to solve, they are nevertheless solved in
practice on a regular basis. The discrepancy between theory and practice is often explained
by the existence of “hidden structure” in real-world problems [15]. If such a hidden structure
exists in CSPs, then it may be exploited and offer a way of constructing improved constraint
solvers. To this end, backdoors have been proposed as a concrete way of exploiting this
structure. A backdoor represents a “short cut” to solving a hard problem instance and may
be seen as a measurement for how close a problem instance is to being polynomial-time
solvable [23]. The existence of a backdoor then allows one to solve a hard problem by
brute forcing solutions to the (hopefully small) backdoor and then solving the resulting
problems in polynomial time. This approach has been highly successful: applications can
be found in e.g. (quantified) propositional satisfiability [29, 30], abductive reasoning [28],
argumentation [8], planning [24], logic [26], and answer set programming [10]. Williams et
al. [33] argue that backdoors may explain why SAT solvers occasionally fail to solve randomly
generated instances with only a handful of variables but succeed in solving real-world instances
containing thousands of variables. This argument appears increasingly relevant since modern
SAT solvers frequently handle real-world instances with millions of variables. Might it be
possible to make similar headway for infinite-domain CSP solvers? For example, can solvers
in qualitative reasoning (see, e.g., Section 3.3 in [9]) be analysed in a backdoor setting? Or
are the various problems under consideration so different that a general backdoor definition
does not make sense?

We attack the problem from a general angle and propose a backdoor notion applicable
to virtually all infinite-domain CSPs of practical and theoretical interest. Our departure
is a recent paper by Sioutis and Janhunen [32] where backdoors are studied for qualitative
constraint networks (which corresponds to CSPs over certain restricted sets of binary relations).
We begin in Section 3 by showing why the finite-domain definition of backdoors is inapplicable
in the infinite-domain setting and then continue by presenting our alternative definition,
based on the idea of defining a backdoor with respect to relationships between variables
rather than individual variables (which is the basis for the finite-domain definition [13]). We
consider CSPs with respect to a fixed set of binary' basic relations, e.g. the basic relation
in RCC-5, and then consider constraint languages definable by (not necessarily binary)
first-order formulas over the basic relations. In this setting we then define a backdoor as
a set of tuples of variables so that once the relationship between these variables are fixed,
the resulting problem belongs to a given tractable class. If we contrast our approach with
that of Sioutis and Janhunen [32], then our method is applicable to CSPs over relations of
arbitrarily high arity, and we require only mild, technical assumptions on the set of binary
basic relations. Crucially, Sioutis and Janhunen [32] do not consider the computational
complexity of any backdoor related problems, and thus do not obtain any algorithmic results.

One of the most important properties of finite-domain backdoors is that they have
desirable computational properties. Unsurprisingly, backdoor detection is NP-hard under the
viewpoint of classical complexity, even for severely restricted cases. However, the situation
changes if we adopt a parameterized complexity view. Here, the idea is to approach hard
computational problems by characterizing problem parameters that can be expected to
be small in applications, and then design algorithms polynomial in input size combined
with a super-polynomial dependence on the parameter. We say that a problem is fized-

! The generalisation to higher-arity relations is straightforward.
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O() where n is the instance

parameter tractable if its running time is bounded by f(p) - n
size, p the parameter, and f is a computable function. The good news is then that the
backdoor detection/evaluation problem for finite-domain CSPs with a fixed finite and tractable
constraint language, is fized-parameter tractable (fpt) when parameterized by the size p of

the backdoor [14], i.e. solvable in f(p) - n®™) time where n is instance size. However, if the

constraint language is not finite, the basic computational problems become W([2]-hard [6].

Thus, if the backdoor size is reasonably small, which we expect for many real-world instances
with hidden structure, backdoors can both be found efficiently and be used to simplify the
original problem. So-called XP algorithms with a running time bounded by nP°V(?) are
polynomial-time when p is fixed, too. However, since p appears in the exponent, they become
impractical when large instances are considered, and fpt algorithms are thus considered
significantly better. If the constraint language is infinite, then the detection problem is not

fixed-parameter tractable in general and the complexity landscape becomes more complex.

Note that if the detection problem is not efficiently solvable, then the complexity of the
evaluation problem is of minor importance.

While there are profound differences between finite- and infinite-domain CSPs, many
important properties of backdoors fortunately remain valid when switching to the world of
infinite domains. We construct algorithms (Section 4) for backdoor detection and evaluation
showing that these problems are fixed-parameter tractable (with respect to the size of the
backdoor) for infinite-domain CSPs based on finite constraint languages. Many CSPs studied

in practice fulfill this condition and our algorithms are directly applicable to such problems.

Algorithms for the corresponding finite-domain problems are based on enumeration of domain
values. This is clearly not possible when handling infinite-domain CSPs, so our algorithms
enumerate other kinds of objects, which introduces certain technical difficulties. Once we

leave the safe confinement of finite languages the situation changes drastically (Section 5).

We prove that the backdoor detection problem is W[2]-hard for infinite languages, making it
unlikely to be fixed-parameter tractable. Importantly, our W[2]-hardness result is applicable
to all infinite-domain CSPs where constraints are represented by first-order formulas over
a fixed relational structure, meaning that it is not possible to circumvent this difficulty
by targeting other classes of problems. Hence, while some cases of hardness are expected,
given earlier results for satisfiability and finite-domain CSPs [15], it is perhaps less obvious
that essentially all infinite-domain CSPs exhibit the same source of hardness. Again, these
negative results are not restricted to specific problems and instead show a general difficulty
in applying backdoors over infinite constraint languages. We conclude the paper with a
discussion concerning future research directions (Section 6).

Throughout, some proofs have been moved to the appendix, and the affected statements
are marked with an asterisk (x).

2 Preliminaries

2.1 Relations and Formulas

A relational structure over a set of values D (a domain) is a tuple (D; Ry, ..., R,,) where each
R; is a (finitary) relation over D. For simplicity we do not distinguish between the signature
of a relational structure and its relations. Assume that R contains binary relations over the
domain D. We say that the relations in R are jointly ezhaustive (JE) if |JR = D?, and that
they are pairwise disjoint (PD) if RN R’ = & for all distinct R, R’ € R. Additionally, a
constraint language which is both JE and PD is said to be JEPD.
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Let (1, ..., 2,) be a first-order formula (with equality) over free variables 1, . .., x,, over
a relational structure I' = (D; Ry, ..., Ryn). We write Sol(¢(z1, ..., x,)) for the set of models
of p(x1,...,x,) with respect to z1,...,x,, i.e., (di,...,d,) € Sol(o(x1,...,x,)) if and only
if (D;R1,...,Rm) = (dy,...,d,), and we use the notation R(z1,...,z,) = p(z1,...,2,)
to define R as Sol(¢(x1,...,2,)). In this case, we say that R is first-order definable (fo-
definable) in I'. In addition to first-order logic, we sometimes use the quantifier-free (gffo),
the primitive positive (pp), and the quantifier-free primitive positive (qfpp) fragments. The
qffo fragment consists of all formulas without quantifiers, the pp fragment consists of formulas
that are built using existential quantifiers, conjunction and equality, and the qfpp consists
of quantifier-free pp formulas. We lift the notion of definability to these fragments in the
obvious way. It is important to note that if R is pp-definable in I', then R is not necessarily
gfpp-definable in T" even if I" admits quantifier elimination.

If the structure T' admits quantifier elimination (i.e. every first-order formula has a
logically equivalent formula without quantifiers), then fo-definability coincides with qffo-
definability. This is sometimes relevant in the sequel since our results are mostly based
on qffo-definability. There is a large number of structures admitting quantifier elimination
and interesting examples are presented in every standard textbook on model theory, cf.
Hodges [17]. Well-known examples include Allen’s interval algebra (under the standard
representation via intervals in Q) and the spatial formalisms RCC-5 and RCC-8 (under
the model-theoretically pleasant representation suggested by Bodirsky & Wolfl [4]). Some
general quantifier elimination results that are highly relevant for computer science and Al
are discussed in Bodirsky [1, Sec. 4.3.1].

2.2 The Constraint Satisfaction Problem

Turning to computability, a constraint language, or simply language, over a domain D is a set
of relations I'p over D. The constraint satisfaction problem over a constraint language I'p
(CSP(T'p)) is then the computational problem of determining whether a set of constraints
over I'p admits at least one satisfying assignment.

CSP(I'p)

Input: A tuple (V, C') where V is a set of variables and C' a set of constraints
of the form R(z1,...,zr), where R € I'p and z1,...,2x € V.

Question:  Does there exists a satisfying assignment to (V,C), i.e., a function
f:V — D such that (f(z1),..., f(zx)) € R for each constraint
R(.’El, e ,:I}K) eC?

We write Sol(I) for the set of all satisfying assignments to a CSP(T") instance I. Finite-
domain constraints admit a simple representation obtained by explicitly listing all tuples
in the involved relation. For infinite domain CSPs, it is frequently assumed that I is a
first-order reduct of an underlying relational structure R, i.e., each R € I' is fo-definable in
R. Whenever R admits quantifier elimination, then we can always work with the gffo reduct
where each R € I is gffo-definable in R.

» Example 1. An equality language is a first-order reduct of a structure (D; () where D
is a countably infinite domain. Each literal in a first-order formula over this structure is
either of the form z = y, or ¢ # y = —(x = y). The structure (D; ) admits quantifier
elimination so every first-order reduct can be viewed as a qgffo reduct. For example, if we let
S be defined via the formula (z =y Ax # z) V (x # y Ay = z) then CSP({S}) is known to
be NP-complete [3]. On the other hand, CSP({=, #}) is well-known to be tractable.
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Figure 1 Illustration of the basic relations of RCC-5 with two-dimensional disks.

A temporal language is a first-order reduct of (Q;<). The structure (Q; <) admits
quantifier elimination so it is sufficient to consider gffo reducts. For example, the betweenness
relation (Betw) can be defined via the formula (z <y Ay < z) V(2 < y Ay < x), and the
resulting CSP is well-known to be NP-complete, due to Bodirsky & Kara [3].

It will occasionally be useful to assume that the underlying relational structure is JEPD.

Clearly, neither (N; @), nor (Q; <) are JEPD, but they can easily be expanded to satisfy the
JEPD condition by (1) adding the converse of each relation, and (2) adding the complement
of each relation. Thus, an equality language can be defined as a first-order reduct of (N; =, #),
and a temporal language as a first-order reduct of (Q; =, <,>). More ideas for transforming
non-JEPD languages into JEPD languages can be found in [2, Sec. 4.2].

Constraint languages in this framework also capture many problems of particular interest
in artificial intelligence. For example, consider the region connection calculus with the 5 basic
relations © = {DR,PO,PP,PP~' EQ} (RCC-5). See Figure 1 for a visualisation of these
relations. In the traditional formulation of this calculus one then allows unions of the basic
relations, which (for two regions X and Y') e.g. allows us to express that X is a proper part of
Y or X and Y are equal. This relation can easily be defined via the (quantifier-free) first-order
formula (zPPy) V (zrEQy). Hence, if we let ©®V= be the constraint language consisting of all
unions of basic relations in ©, then ®V= is a gffo reduct of ©.

2.3 Parameterized Complexity

To analyse complexity of CSPs we use the framework of parameterized complexity [7, 11]
where the run-time of an algorithm is studied with respect to a parameter p € N and the input
size n. Given an instance I of some computational problem, we let ||I|| denote the bit-size
of I. Many important CSPs are NP-hard on general instances and are regarded as being
theoretically intractable. However, realistic problem instances are not chosen arbitrarily and
they often contain structure that can be exploited for solving the instance efficiently. The idea
behind parameterized analysis is that the parameter describes the structure of the instance
in a computationally meaningful way. The result is a fine-grained complexity analysis that is
more relevant to real-world problems while still admitting a rigorous theoretical treatment
including, for instance, algorithmic performance guarantees.

The most favourable complexity class is FPT (fized-parameter tractable) which contains

all problems that can be decided in f(p) - n°®") time, where f is a computable function.

However, parameterised complexity offers strong theoretical evidence that inclusion in FPT
is highly unlikely for some problem, e.g. those that are hard for the class W[1]. The latter
contains all problems that admit many-to-one reductions from the PARAMETERISED CLIQUE
problem, which asks whether a graph has a clique of size p, where p is the parameter, and
the reduction runs in fixed-parameter time with respect to p.

We will prove that certain problems are not in FPT and this requires some machinery.

A parameterized problem is, formally speaking, a subset of ¥* x N where ¥ is the input
alphabet. Reductions between parameterized problems need to take the parameter into
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account. To this end, we will use parameterized reductions (or fpt-reductions). Let L; and
Ly denote parameterized problems with L; C X7 x N and Ls C 3% x N. A parameterized
reduction from L; to Ly is a mapping P : X7 x N — ¥3 x N such that (1) (z,k) € L, if and
only if P((x,k)) € La, (2) the mapping can be computed by an fpt-algorithm with respect
to the parameter k, and (3) there is a computable function ¢ : N — N such that for all
(x,k) € Ly if («/, k') = P((x,k)), then k' < g(k). The class W][1] contains all problems that
are fpt-reducible to Independent Set when parameterized by the size of the solution, i.e. the
number of vertices in the independent set. Showing W([1]-hardness (by an fpt-reduction)
for a problem rules out the existence of a fixed-parameter algorithm under the standard
assumption FPT # W[1].

3 Backdoors

This section is devoted to the motivation behind and the introduction of a general backdoor
concept for CSPs.

3.1 Motivation

We begin by recapitulating the standard definition of backdoors for finite-domain CSPs. Let
a: X — D be an assignment. For a k-ary constraint ¢ = R(x1,...,2;) we denote by Cla
the constraint over the relation Ry and with scope Xy obtained from c as follows: Ry is
obtained from R by (1) removing (di,...,d) from R if there exists 1 < ¢ < k such that
x; € X and a(z;) # d;, and (2) removing from all remaining tuples all coordinates d; with
x; € X. The scope X is obtained from x1, ...,z by removing every z; € X. For a set C of
constraints we define C|, as {c|o: ¢ € C}. We now have everything in place to define the
standard notion of a (strong) backdoor, in the context of Boolean satisfiability problems and
finite-domain CSPs.

» Definition 2 ([13, 33]). Let H be a set of CSP instances. A H-backdoor for a CSP(I'p)
instance (V,C) is a set B CV where (V \ B,C\,) € H for each o: B — D.

In practice, H is typically defined as a polynomial-time solvable subclass of CSP and one
is thus interested in finding a backdoor into the tractable class H. If the CSP instance I has
a backdoor of size k, then it can be solved in |D|* - poly(]|I||) time. This is an exponential
running time with the advantageous feature that it is exponential not in the instance size
[l7]], but in the domain size and backdoor set size only.

» Example 3. Let us first see why Definition 2 is less impactful for infinite-domain CSPs.
Naturally, the most obvious problem is that one, even for a fixed B C V, need to consider
infinitely many functions a.: V' — D, and there is thus no general argument which resolves
the backdoor evaluation problem. However, even for a fixed assignment a: V' — D we may
run into severe problems. Consider a single equality constraint of the form (z = y) and an
assignment o where o(z) = 0 but where « is not defined on y. Then (z = y)|, = {(0)}, i.e.,
the constant 0 relation, which is not an equality relation. Similarly, consider a constraint
XrY where r is a basic relation in RCC-5. Regardless of r, assigning a fixed region to X
but not to Y results in a CSP instance which is not included in any tractable subclass of
RCC-5 (and is not even an RCC-5 instance).

Hence, the usual definition of a backdoor fails to compensate for a fundamental difference
between finite and infinite-domain CSPs: that assignments to variables are typically much
less important than the relation between variables.
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3.2 Basic Definitions and Examples

Recall that we in the infinite setting are mainly interested in CSP(T") problems where each
relation in I' is gffo-definable over a fixed relational structure R. Hence, in the backdoor
setting we obtain three components: a relational structure R and two gffo reducts S and T
over R, where CSP(S) is the (likely NP-hard) problem which we want to solve by finding a
backdoor to the (likely tractable) problem CSP(T). Additionally, we will assume that R
only consists of binary JEPD relations and that the equality relation is gffo-definable in R.

» Definition 4. Let R = (D; Ry, Ra,...) be a relational structure where the relations are
binary and JEPD, the equality relation on D is qffo-definable in R, and let S and T be two
qffo reducts of R. We say that [S,T,R] is a language triple and we refer to

S as the source language,

T as the target language, and

R as the base language.

Note that S and 7 may contain non-binary relations even though R only contains binary
relations. One should note that all concepts work equivalently well for higher arity relations
in R but it complicates the presentation. Also note that the equality relation needs to
be gffo-definable in R since this relation is always available in first-order formulas. An
alternative way is to require that the equality relation is a member of R but this assumption
is stronger than is needed for our purposes (see Example 8 for an example).

We begin by describing how constraints can be simplified in the presence of a partial
assignment of relations from R to pairs of variables.

» Definition 5. Let [S,T,R]| be a language triple and let (V,C) be an instance of CSP(S).
Say that a partial mapping a: B — R for B C V2 is consistent if the CSP(R) instance

(ViA{R(z,y) | 7,y € V, a(z,y) is defined, R = a(z,y)})
is satisfiable. We define a reduced constraint with respect to a consistent a as:
R(x1,...,21) |0 = R(21,. .., 28) A /\ S(xi, ).
o(zq,x;)=Sz;,x;€{x1,..., T}

Next, we describe how reduced constraints can be translated to the target language. Let
[S, T, R] be a language triple and let a € NU {oo} equal sup{i | R € S has arity i}. Let

S = {Sol(R(z1,...,zk)ja) | RES, a: {a1,..., 2} = R}
and
T={p(x1,...,21) | k <a,p(x1,...,2) is a qfpp-definition over T }.

We interpret these two sets as follows. Each mapping a: {z1,...,2,}> — R applied to
a constraint R(zi,..., ) results in a (potentially) simplified constraint R(z1,...,Zx)a,
which might or might not be expressible via a CSP(7) instance. Then the condition that
Sol(R(x1,...,7k)|a) € S is qfpp-definable over S simply means that the set of models of the
constraint R(x1,...,%r)|o can be defined as the set of models of a CSP(S) instance. Thus,
the set S represents all possible simplifications of constraints (with respect to S) and the set

T represents all possibilities of expressing constraints (up to a fixed arity) by the language T.

Crucially, note that S and T are finite whenever S and T are finite. With the help of the two
sets S and T we then define the following method for translating (simplified) S-constraints
into 7 -constraints.
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» Definition 6. A simplification map s a partial mapping ¥ from S to T such that for every
ReS: X(R) =p(x1,...,2) if R(x1,...,2) = @(21,...,2k) for some p(zx1,...,2) €T,
and is undefined otherwise.

We typically say that a simplification map goes from the source language S to the target
language 7 even though it technically speaking is a map from S to T. Note that if S and T are
both finite, then there always exists a simplification map of finite size, and one may without
loss of generality assume that it is possible to access the map in constant time. We will take
a closer look at the computation of simplification maps for finite language in Section 4.1. If
S is infinite, then the situation changes significantly. First of all, a simplification map has an
infinite number of inputs and we cannot assume that it is possible to access it in constant
time. We need, however, always assume that it can be accessed in polynomial time. Another
problem is that we have no general way of computing simplification maps so they need to be
constructed on a case-by-case basis.

» Definition 7. Let [S,T,R] be a language triple, and let 3 be a simplification map from
S to T. For an instance (V,C) of CSP(S) we say that B C V? is a backdoor if, for every
consistent a: B — R, X(R(x1,...,2)|a) is defined for every constraint R(xy,...,zy) € C.

Before turning to computational aspects of finding and using backdoors, let us continue
by providing additional examples, starting with finite-domain languages.

» Example 8. Let D = {1,...,d} for some d € N and define the relational structure
D = (D;R;; | 1 <14,j <d) where R;; = {(4,7)}. This structure consists of binary JEPD
relations and the equality relation on D is gffo-definable in D via

r=py=Ru(z,y)V Raa(z,y) V-V Raa(z,y).

Note that any constraint language I' with domain D can be viewed as a first-order reduct
over D. Hence, a backdoor in the style of Definition 2 is a special case of Definition 7,
meaning that our backdoor notion is not merely an adaptation of the finite-domain concept,
but a strict generalisation, since we allow arbitrary binary relations (and not only unary
relations) in the underlying relational structure.

» Example 9. Consider equality languages, i.e. languages that are fo-definable over the base
structure (N; =, #). Recall the NP-hard ternary relation S from Example 1 and consider a
simplification map ¥ with respect to the tractable target language {=,#}. Note that we
cannot simplify an arbitrary constraint S(z,y,z), but that we can simplify S(x,y, 2)| if
(e.g.) a(z,y) is '=’, or if a(x,y) is #. Let (V,C) be an instance of CSP({S}). Consider
the set B = {(z,y) | S(z,y,2) € C} C V2. We claim that B is a backdoor with respect to
{=,#}. Let a: B — {=,#}, and consider an arbitrary constraint S(z,y, z) € C. Clearly,
(z,y) € B. Then, regardless of the relation between z and y, the constraint can be removed
and replaced by {=, #}-constraints.

» Example 10. Recall the definitions of ©® and ©V= for RCC-5 from Section 2. Consider
a reduced constraint R, (z,y) with respect to an instance (V,C) of CSP(©Y=), a set
B C V2, and a function a: B — ©. If (z,y) € B (or, symmetrically, (y,2) € B) then
R(z,y) A (a(z,y))(x,y) is (1) unsatisfiable if a(z,y) N R = 0, or (2) equivalent to a(z,y).
Hence, the simplification map in this case either outputs an unsatisfiable CSP(0) instance
or replaces the constraints with the equivalent constraint over a basic relation. This results
in an O(5!P1) - poly(||I]|) time algorithm for RCC-5, which can slightly be improved to
O(4/B1).-poly(||I]]) with the observation that only the trivial relation (DRUPOUPPUPP™'UEQ)
contains all the five basic relations.
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We now have a working backdoor definition for infinite-domain CSPs, but it remains to
show that they actually simplify CSP solving, and that they can be found efficiently. We
study such computational aspects in the following section.

4  Algorithms for Finite Languages

This section is divided into three parts where we analyse various computational problems
associated with backdoors.

4.1 Computing Simplification Maps

We discussed (in Section 3.2) the fact that a simplification map S — T always exists when S
and 7 are finite languages. How to compute such a map is an interesting question in its own
right. In the finite-domain case, the computation is straightforward (albeit time-consuming)
since one can enumerate all solutions to a CSP instance in finite time. This is clearly not
possible when the domain is infinite. Thus, we introduce a method that circumvents this
difficulty by enumerating other objects than concrete solutions.

Assume that [S,T,R] is a language triple. We first make the following observation
concerning relations that are gffo-defined in some binary and JEPD relational structure R
(for additional details, see e.g. Sec. 2.2. in Lagerkvist & Jonsson [19]). If R is gffo-defined in
R, then it can be defined by a DNF R-formula that involves only positive (i.e. negation-free)
atomic formulas of type R(Z), where R is a relation in R: every atomic formula —R(z,y)
can be replaced by

\ Sy

SER\{R}

and the resulting formula being transformed back to DNF.

Let I = (V,C) denote an arbitrary instance of, for instance, CSP(S). An R-certificate
for I is a satisfiable instance C = (V,C") of CSP(R) that implies every constraint in C, i.e.
for every R(vy,...,v;) in C, there is a clause in the definition of this constraint (as a DNF
R-formula) such that all literals in this clause are in C”’. It is not difficult to see that I has a
solution if and only if I admits an R-certificate (see, for instance, Theorem 6 by Jonsson and
Lagerkvist [19] for a similar result). Hence, we will sometimes also say that an R-certificate
C of a CSP(S) instance I satisfies I. We will additionally use complete certificates: a CSP(-)
instance is complete if it contains a constraint over every 2-tuple of (not necessarily distinct)
variables, and a certificate is complete if it is a complete instance of CSP().

» Example 11. Consider the structure (Q;<,>,=), i.e. the rationals under the nat-
ural ordering. Let B = {(z,y,2) € Q® | 2 <y < z2Vz <y < z}. Let I =
({z,y, z,w} | {B(x,y,2), B(y,z,w)}) be an instance of CSP({B}). The instance I is sat-
isfiable and this is witnessed by the solution f(z) = 0, f(y) = 1, f(2) = 2, f(w) = 3. A
certificate for this instance is {x < y,y < 2,2z < w} and a complete certificate is

r<y, <z zT<w, y<z, y<w, z<w,
y>x, z>r, w>r, Z>Y, W>Y, wW>Z,
r=x, Y=y, z=2, wW=uw.

We first show that satisfiable CSP instances always have complete certificates under fairly
general conditions. Furthermore, every solution is covered by at least one such certificate.
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» Lemma 12. (x) Assume R is JEPD and that ' is qffo-definable in R. An instance (V,C)
of CSP(T") has a solution f:V — D if and only if there exists a complete R-certificate for I
that has solution f.

We use the previous lemma for proving that two instances I, and I; have the same
solutions if and only if they admit the same complete certificates.

» Lemma 13. (x) Let [S,T,R] be a language triple such that S, T, and R are finite. Given
instances Iy = (V,C) of CSP(S) and I, = (V,C") of CSP(T), the following are equivalent:

1. Sol(I) = Sol(I;) and
2. I and Iy have the same set of complete R-certificates.

Finally, we present our method for computing simplification maps.

» Lemma 14. (x) Let X be the set of language triples [S,T,R] that enjoy the following
properties:

1. S, T, and R are finite and

2. CSP(R) is decidable.

The problem of constructing simplification maps for members of X is computable.

4.2 Backdoor Evaluation

We begin by studying the complexity of the following problem, which intuitively, says to
which degree the existence of a backdoor helps to solve the original problem.

[S, T, R]-BACKDOOR EVALUATION
Input: A CSP instance (V,C) of CSP(S) and a backdoor B C V? into
CSP(T).
Question: Is (V, C) satisfiable?

Clearly, [S,T,R]|-BACKDOOR EVALUATION is in many cases NP-hard: simply pick a
language S such that CSP(S) is NP-hard. Note that one, strictly speaking, is not forced to
use the backdoor when solving the [S, 7, R]-BACKDOOR EVALUATION problem, but if the
size of the backdoor is sufficiently small then we may be able to solve the instance faster via
the backdoor. Indeed, as we will now prove, the problem is in FPT for finite languages when
parameterised by the size of the backdoor.

» Theorem 15. [S, T, R]-BACKDOOR EVALUATION is in FPT when parameterised by the
size of the backdoor, if S, T, and R are finite and CSP(T) and CSP(R) are tractable.

Proof. Let ¥: & — T be a simplification map that has been computed off-line, let I = (V, C)
be an instance of CSP(S), let B C V2 be a backdoor of size k, and let m = |R|. Then, we
claim that I is satisfiable if and only if there is a consistent assignment «: B — R such that
the CSP(T) instance I, = (V,{X(c|) | ¢ € C}) is satisfiable.

Forward direction. Assume that [ is satisfiable. Since R is JEPD, and since S is qgffo-
definable in R, we know from Lemma 12 that I admits a complete certificate (V, C ). For every
pair (z,y) € B then define o to agree with the complete certificate (V, O), ie., afz,y) = S
for S(z,y) € C. Naturally, « is consistent since (V,C) is a complete certlﬁcate for I, and
since B is a backdoor set it also follows that the CSP(T) instance (V,{X(cq) | c € C) is
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well-defined. Pick an arbitrary constraint X(R(z1,. .., Zax(r))|a). It follows (1) that (V, 0)
satisfies R(x1,...,Tar(r)), and (2) that if a(z;,z;) = S for x5, 2; € {21,..., 2. (r)} then
(V,C) satisfies S(x;,x;), meaning that (V, C) satisfies

R(x1,. .. Tar(r)) N /\ S(xi, xj),

a(ziz;)=82:,2; €{T1,..;Tar(r) }

and hence also X(R(1,...,Tar(Rr))|a), Since X is a simplification map.

Backward direction. Assume that there exists a consistent a: B — R such that (V, {¥(c|q) |
c € C}) is satisfiable, and let (V, 6) be a complete certificate witnessing this. Naturally,
for any pair (z,y) € B it must then hold that S(z,y) € C for a(z,y) = S, since (V,C)
could not be a complete certificate otherwise. Pick a constraint R(z1,...,Za(g)) € C, and
let X(R(21,. .., ZTar(R))|a) = ©(21, . . . Tar(r)) for some p(z1, ..., Tar)) € T. It follows that
(V,C) satisfies

(P(l‘h cee a-rar(R))

and since

801(410('1:17 s 7xar(R))) = SOI(R(Ila cee axar(R))\a)

it furthermore follows that R(x1,...,Zar(r))|o must be satisfied, too. However, since

R(x1, .. Tarx(r)) o = R(@1, .. Tar(r)) A /\ S(zi, z5),

a(zi,z;)=S2:,2;€{21,. . Tar(r) }

and since every constraint S(z;,z;) is clearly satisfied, it must also be the case that (V, 6) is
a complete certificate of I.

Put together, it thus suffices to enumerate all m* choices for o and to check whether a
is consistent and whether I}, is satisfiable. CSP(R) is tractable so checking whether « is
consistent can be done in polynomial time. Moreover, using the simplification map X, we
can reduce |, to an instance of CSP(7"), which can be solved in polynomial-time. The total
running time is O(m* - poly(||I||])- <

4.3 Backdoor Detection

Theorem 15 implies that small backdoors are desirable since they can be used to solve CSP
problems faster. Therefore, let us now turn to the problem of finding backdoors. The basic
backdoor detection problem is defined as follows.

[S,T,R]-BACKDOOR DETECTION

Input: A CSP instance (V,C) of CSP(S) and an integer k.
Question:  Does (V, C) have a backdoor B into T of size at most k? (and if so
output such a backdoor)

The problem is easily seen to be NP-hard even when S and 7 are finite; we will provide
a proof of this in Corollary 20. We will now prove that the problem can be solved efficiently
if the size of the backdoor is sufficiently small.

» Theorem 16. [S, 7T, R]-BACKDOOR DETECTION is in FPT when parameterized by k, if S,
T and R are finite, and CSP(T) and CSP(R) are tractable.
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Proof. Let I = ((V,C), k) be an instance of [S, T, R]-BACKDOOR DETECTION, let a be the
maximum arity of any constraint of I, and let ¥ be a simplification map from S to 7 which
we assume has been computed off-line. We solve ((V,C), k) using a bounded depth search
tree algorithm as follows.

We construct a search tree T, for which every node is labeled by a set B C V? of size at
most k. Additionally, every leaf node has a second label, which is either YES or No. T is
defined inductively as follows. The root of T is labeled by the empty set. Furthermore, if ¢ is
a node of T', whose first label is B, then the children of ¢ in T are obtained as follows. If for
every consistent assignment «: B — R, where R = {Ry,..., R}, and every ¢ € C, we have
that ¥(c|o) is defined, then B is a backdoor into 7" of size at most & and therefore ¢ becomes
a leaf node, whose second label is YES. Otherwise, i.e., if there is a consistent assignment
a: B — R and a constraint ¢ € C such that ¥(c|,) is not defined, we distinguish two cases:
(1) |B| = k, then t becomes a leaf node, whose second label is No, and (2) |B| < k, then
for every pair p of variables in the scope of ¢ with p ¢ B, ¢ has a child whose first label is
BU {p}.

If T has a leaf node, whose second label is YES, then the algorithm returns the first label
of that leaf node. Otherwise the algorithm return No. This completes the description of the
algorithm.

We now show the correctness of the algorithm. First, suppose the search tree T built by
the algorithm has a leaf node ¢ whose second label is YES. Here, the algorithm returns the
first label, say B of t. By definition, we obtain that B is a backdoor into 7 of size at most k.

Now consider the case where the algorithm returns No. We need to show that there is
no backdoor set B into T with |B| < k. Assume, for the sake of contradiction that such a
set B exists.

Observe that if T has a leaf node ¢ whose first label is a set B’ with B’ C B, then the
second label of ¢ must be YES. This is because, either |B’| < k in which case the second label
of ¢t must be YES, or |B’| = k in which case B’ = B and by the definition of B it follows
that the second label of ¢t must be YES.

It hence remains to show that 7" has a leaf node whose first label is a set B’ with B’ C B.
This will complete the proof about the correctness of the algorithm. We will show a slightly
stronger statement, namely, that for every natural number ¢, either T" has a leaf whose first
label is contained in B or T" has an inner node of distance exactly ¢ from the root whose first
label is contained in B. We show the latter by induction on /.

The claim obviously holds for ¢ = 0. So assume that T' contains a node t at distance ¢
from the root of T' whose first label, say B’, is a subset of B. If t is a leaf node of T, then
the claim is shown. Otherwise, there is a consistent assignment o/: B’ — R and a constraint
c € C such that ¥(c)4) is not defined.

Let a: B — R be any consistent assignment of the pairs in B that agrees with o/ on the
pairs in B’. Then, ¥(c|,) is defined because B is a backdoor set into 7. By definition of the
search tree T, t has a child ¢’ for every pair p of variables in the scope of some constraint
c € C such that ¥(c|o/) is not defined. We claim that B contains at least one pair of variables
within the scope of c. Indeed, suppose not. Then ¥(c|,) = X(c|os) and this contradicts our
assumption that E(c‘a) is defined. This concludes our proof concerning the correctness of
the algorithm.

The running time of the algorithm is obtained as follows. Let T" be a search tree obtained
by the algorithm. Then the running time of the depth-bounded search tree algorithm is
O(|V(T)]) times the maximum time that is spend on any node of T'. Since the number of
children of any node of T is bounded by () (recall that a is the maximum arity of any
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constraint of (V, C)) and the longest path from the root of T' to some leaf of T' is bounded by
k + 1, we obtain that |[V(T)| < O(((2)"")
t of T is at most O(m*|C| - poly(||I||) (where the polynomial factors stems from checking
whether o is consistent). Therefore we obtain O(((3))***m*|C|) as the total run-time of
the algorithm showing that [S, 7, R]-BACKDOOR DETECTION is FPT when parameterized
by k. <

. Furthermore, the time required for any node

5 Hardness Results for Infinite Languages

Our positive FPT results are mainly restricted to finite languages. In Section 5.1, we
investigate how the situation differs for infinite languages, and will see that finiteness is not
merely a simplifying assumption, but in many cases absolutely crucial for tractability. We
remind the reader that if the source language is infinite, then there are an infinite number of
possible inputs for the simplificaton map, and this implies that it is not necessarily accessible
in polynomial time. However, we will see that simplification maps with good computational
properties do exist in certain cases. Even under this assumption, we prove that the backdoor
detection problem is in general W[2]-hard. We do not study the backdoor evaluation problem
since the hardness of backdoor detection makes the evaluation problem less interesting.

5.1 Hardness of Backdoor Detection

We begin by establishing the existence of a relation which turns out to be useful as a gadget
in the forthcoming hardness reduction. For every k > 2, we let the k-ary equality relation
Ry, be defined as follows:

Rp(wy,...,78) = /\ (s #2; V21 = T4
i, 7,l,m € [k] with ¢ # j and | #m

» Lemma 17. (x) The following holds for every k > 2.

1. Ri(z1,...,zx) cannot be written as a conjunction of binary equality relations x; = x;
and z; # x;, and

2. for every pair i, j with 1 < i < j < k and every assignment o of (z;,z;) to {(z; =
xj,x; # xj)}, it holds that Ry A a(xi,x5)) can be written as a conjunction of binary
equality relations.

Moreover, the definition of Ry, can be computed in time k*.

Let S = {R; | i > 1} where R; is defined as in Lemma 17 and let 7. = {=,#}. Note
that both S, and 7. are equality languages so they are gffo reducts of R, = {=,#}. We
first verify that S., despite being infinite, admits a straightforward simplification map to the
target language 7. = {=, #}.

» Lemma 18. (x) There is a simplification map ¥, from S, to T that can be accessed in
polynomial time.

Our reduction is based on the following problem.

HiTTING SET

Input: A finite set U, a family F of subsets of U, and an integer k£ > 0.
Question: Is there a set S C U of size at most k such that SN F # ) for every
FeF?

32:13

CP 2021



32:14

Algorithms and Lower Bounds for Backdoors for Infinite-Domain CSPs

Hitting Set is NP-hard even if the sets in F are restricted to sets of size 2: in this case,
the problem is simply the Vertex Cover problem. Furthermore, Hitting Set is W[2]-hard
when parameterized by k [7] but this does not hold if the sets in F have size bounded by
some constant.

» Theorem 19. [S., 7., R.[-BACKDOOR DETECTION is W[2]-hard when parameterised by the
size of the backdoor.

Proof. We give a parameterized reduction from the Hitting Set problem. Given an instance
(U, F, k) of Hitting set, let (V,C) be the CSP(S,) instance with V' = U U {n} having one
constraint Cr for every F' € F, whose scope is F'U {n} and whose relation is R (as
defined in connection with Lemma 17). This can easily be accomplished in polynomial time.
Next, we verify that (U, F, k) has a hitting set of size at most k if and only if (V,C) has a
backdoor set of size at most k into CSP(7e).

Forward direction. Let S be a hitting set for F. We claim that B = {(n,s)|s € S} is a
backdoor set into CSP(7;). Because S is a hitting set for 7, B contains at least two variables
from the scope of every constraint in C. Let « : B — {=,#} be an arbitrary consistent
assignment. Arbitrarily choose a constraint Rg(z1,...,zx) in C. By the construction of the
simplification map (Lemma 18), it follows that X.(Ry (21, ..., %k)|q) is defined so B is indeed
a backdoor.

Backward direction. Let B be a backdoor set for (V,C) into CSP(7.). Note first that
we can assume that b = (x,n) or b = (n,z) for every b € B. To see this, note that if this
is not the case for some b € B, then we can replace one of the variables in b with n, while
still obtaining a backdoor set, since it is sufficient to fix a single relation between pairs of
variables in Ry in order to simplify to CSP(7¢). We claim that (,c5 b) \ {n} is a hitting set
for F. This is clearly the case because for every constraint in C, there must be at least one
pair b € B such that both variables in b are in the scope of the constraint. Otherwise, there
would exist a constraint whose simplification is the constraint itself, and such a constraint
cannot be expressed as a conjunction of {=,#} constraints, due to the first condition of
Lemma 17. <

One may note that CSP(S.) is polynomial-time solvable and that the [S., Te, Re-
BACKDOOR DETECTION problem is thus computationally harder than the CSP problem
that we attempt to solve with the backdoor approach. This indicates that the backdoor
approach must be used with care and it is, in particular, important to know the computa-
tional complexity of the CSPs under consideration. Certainly, there are also examples of
infinite source languages with an NP-hard CSP such that backdoor detection is W[2]-hard.
For instance, let S, = S U {S} where S is the relation defined in Example 1 — it follows
immediately that CSP(S!) is NP-hard. Furthermore, it is not hard to verify that Lemma 18
can be extended to the source language S, so the proof of Theorem 19 implies W[2]-hardness
of [S., 7T, Re]-BACKDOOR DETECTION, £00.

Finally, we can now answer the question (that was raised in Section 4.3) concerning the
complexity of [S, T, R]-BACKDOOR DETECTION when S and T are finite. By observing that
the reduction employed in Theorem 19 is a polynomial-time reduction from Hitting Set and
using the fact that Hitting Set is NP-hard even if all sets have size at most 2, we obtain the
following result.

» Corollary 20. The problem [{Rs}, Tc, Se]-BACKDOOR DETECTION is NP-hard.
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6 Concluding Remarks

We have generalised the backdoor concept to CSPs over infinite domains and we have
presented parameterized complexity results for infinite-domain backdoors. Interestingly,
despite being a strict generalisation of finite-domain backdoors, both backdoor detection
and evaluation turned out to be in FPT. Hence, the backdoor paradigm is applicable to
infinite-domain CSPs, and, importantly, it is indeed possible to have a uniform backdoor
definition (rather than having different definitions for equality languages, temporal languages,
RCC-5, and so on). Let us now discuss a few different directions for future research.

Backdoor detection and evaluation for infinite languages

Our results show that there is a significant difference between problems based on finite
constraint languages and those that are based on infinite languages. The backdoor detection
and evaluation problems are fixed-parameter tractable when the languages are finite. In the
case of infinite languages, we know that the backdoor detection problem is W[2]-hard for
certain choices of languages. This raises the following question: for which infinite source
languages is backdoor detection fixed-parameter tractable? This question is probably very
hard to answer in its full generality so it needs to be narrowed down in a suitable way. A
possible approach is to begin by studying this problem for equality languages.

Broader tractable classes

Recent advances concerning backdoor sets for SAT and finite-domain CSP provide a rather
large number of promising and important research directions for future work. For instance,
Gaspers et al. [13] have introduced the idea of so-called hetereogenous backdoor sets, i.e.
backdoor sets into the disjoint union of more than one base language, and Ganian et al. [12]
have exploited the idea that if variables in the backdoor set separate the instance into several
independent components, then the instance can still be solved efficiently as long as each
component is in some tractable base class. Both of these approaches significantly enhance the
power and/or generality of the backdoor approach for finite-domain CSP and there is a good
chance that these concepts can also be lifted to infinite-domain CSPs. Another promising
direction for future research is the use of decision trees (or the even more general concept of
backdoor DNF's) for representing backdoors [27, 31]. Here the idea is to use decision trees or
backdoor DNFs as a compact representation of all (partial) assignments of the variables in
the backdoor set. This can lead to a much more efficient algorithm for backdoor evaluation
since instead of considering all assignments of the backdoor variables, one only needs to
consider a potentially much smaller set of partial assignments of those variables that (1) cover
all possible assignments and (2) for each partial assignment the reduced instance is in the
base class. It has been shown that this approach may lead to an exponential improvement of
the backdoor evaluation problem in certain cases, and it has been verified experimentally
that these kinds of backdoors may be substantially smaller than the standard ones [27, 31].

Another direction is to drop the requirement that backdoors move the instance to a
polynomial-time solvable class — it may be sufficient that the class is solvable in, say, single-
exponential 20" time. This can lead to substantial speedups when considering CSPs that
are not solvable in 29" time. Natural classes of this kind are known to exist under the
exponential-time hypothesis [20], and concrete examples are given by certain extensions of
Allen’s algebra that are not solvable in 2°(*1°87) time,
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The complexity of simplifying constraints

We have presented an algorithm for constructing simplification maps that works under the
condition that the source and target languages are finite. However, we have no general
method for computing simplification maps for infinite languages. It seems conceivable
that the computation of simplification maps is an undecidable problem and proving this is
an interesting research direction. However, could it still make sense to allow suboptimal
simplification maps which are oblivious to certain types of constraints, but which can be
computed more efficiently? Or simplification maps where not all entries are polynomial time
accessible? Thus, the general problem which we want to solve is, given a relation represented
by a first-order formula over R (i.e., corresponding to a simplified constraint) we wish to
determine whether it is possible to find a CSP(7’) instance whose set of models coincides with
this relation. This problem is in the literature known as an inverse constraint satisfaction
problem over a constraint language 7 (Inv-CSP(T)), and may be defined as follows.

Inv-CSP(T,R)
Input: A relation R (represented by an fo-formula over R).
Question: Can R be defined as the set of models of a CSP(T) instance?

We are thus interested in finding polynomial-time solvable cases of this problem, since
this would imply the existence of an efficiently computable simplification map to T even if
the source language is infinite. The Inv-CSP problem has been fully classified for the Boolean
domain [22, 25], but little is known for arbitrary finite domains, and even less has been
established for the infinite case. We suspect that obtaining such a complexity classification
is a very hard problem even for restricted language classes such as equality languages. One
of the reasons for this is the very liberal way that the input is represented. If one changes
the representation, then a complexity classification may be easier to obtain. A plausible
way of doing this is to restrict ourselves to w-categorical base structures. The concept of
w-categoricity plays a key role in the study of complexity aspects of CSPs [1], but it is
also important from an Al perspective [16, 18, 21]. Examples of such structures include all
structures with a finite domain and many relevant infinite-domain structures such as (N; =),
(Q; <), and the standard structures underlying formalisms such as Allen’s algebra and RCC.
For w-categorical base structures R, each fo-definable relation R can be partitioned into a
finite number of equivalence classes with respect to the automorphism group of R, and this
gives a much more restricted way of representing the input. We leave this as an interesting
future research project.
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A  Additional Proofs for Section 4

A.1 Proof of Lemma 12
Proof. Let I = (V,C) be an arbitrary instance of CSP(I").

Assume C = (V, C) is a complete R-certificate for I with a solution f: V — D. The certi-
ficate C = (V/, é) implies every constraint in C. Arbitrarily choose a constraint R(vy, ..., vk)
in C. There is a clause in the definition of this constraint (viewed as a DNF R-formula)
such that all literals in this clause are in C. This implies that (f(v1),..., f(vk)) € R since
f is a solution to C. We conclude that f is a solution to I since R(v1,...,v;) was chosen
arbitrarily.

Assume f: V — D is a solution to I. We know that R is JEPD. We construct a complete
certificate C = (V, 6) such that f is a solution to C. Consider a 2-tuple of (not necessarily
distinct) variables (v,v’) where {v,v'} C V. The tuple (f(v), f(v")) appears in exactly one
relation R in R since R is JEPD. Add the constraint R(v,v’) to C. Do the same thing for
all 2-tuples of variables. The resulting instance C is complete and it is satisfiable since f is a
valid solution. |

A.2 Proof of Lemma 13

Proof. Arbitrarily choose an instance Iy = (V,C;) of CSP(S) and an instance I; = (V, C})
of CSP(T).

Assume that I; and I; have the same set of complete R-certificates. Arbitrarily choose
a solution f : V — D to I that is not a solution to I; (the other direction is analogous).
There is a complete R-certificate C for I such that f is a solution to C by Lemma 12. We
know that C is a certificate for I; so Lemma 12 implies that f is a solution to I3, too. This
leads to a contradiction.

Assume that I, and I; have the same set of solutions. Assume C is a complete R-certificate
for I but not for I; (the other way round is analogous). By Lemma 12, every solution to C is
a solution to I. Since Iy and I; have the same set of solutions, C is a complete R-certificate
for I3, too, which leads to a contradiction. |

A.3 Proof of Lemma 14

Proof. Arbitrarily choose [S,7,R] in X. Recall the definitions of S and T that were
made in connection with Definition 6. Arbitrarily choose a relation R € S with arity k
and define I, = (V,C) = ({v1,..., v}, {R(v1,...,v,)}). Given a k-ary formula ¢ € T, let
I, = (V,(v1,...,vk)). Then, the following are equivalent
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(a) Sol(I) = Sol(I}),
(b) I, and I; have the same set of complete R-certificates

by Property 1 combined with Lemma 13. Property 2 implies that condition (a) is decidable:
there is a straightforward algorithm based on enumerating all complete R-certificates. Com-
pute every possible complete R-certificate on the variables in V' and check whether I, and
I, are equisatisfiable on these certificates. Recall that checking if a certificate implies the
constraints in I and I; is a decidable problem since CSP(R) is decidable. This procedure
can be performed in a finite number of steps since the number of complete R-certificates on
variable set V is finite.

With this in mind, there is an algorithm that computes a simplification map >: § — 7. Ar-
bitrarily choose a k-ary relation R in S and let Iy = (V,Cs) = ({v1,..., v}, {R(v1,. .., v%)}).
Enumerate all I; = (V, ¢(v1,...,v;)) where p € T is k-ary. If there exists an I; that satisfies
condition (a), then let X(R) = ¢, and, otherwise, let 3(R) be undefined. We know that
testing condition (a) is decidable by Property 2 and we know that S and T are finite sets, so
> can be computed in a finite number of steps. <

B Additional Proofs for Section 5.1
B.1 Proof of Lemma 17

Proof. For proving the first statement, we begin by showing that (aq,...,ax) € Ry if either
(1) a1 =az = ... = ay or (2) a; # a; for every i and j with i # j. Assume this is not the case.
Then there are 4, j,m, ! € [k] with i # j and m # [ such that a; = a; and a; # a,,,. But then
the term (x; # z; V x; = ,,) in the definition of Ry, is not satisfied by (a1,...,ax). Now,
consider a conjunction ¢ of atomic formulas from the set {R;(z;, z;) | R; € {=,#},4,7 € [k]}.
If each atomic formula in ¢ is of the type x; = z;, then the models of ¢ cannot correctly
define Ry: ¢ is not satisfied by any assignment where all variables are assigned distinct
values. Similarly, if there exists an atomic formula of the type x; # z; in ¢, then ¢ cannot
be satisfied by an assignment where all variables are assigned the same value. Hence, Ry
cannot be defined as a conjunction of binary equality constraints.

For the second statement, let o be an assignment of a pair (z;,z;) to either z; # x; or
x; = ;. We observe the following.

if a(z;,x;) = (x; = x;), then Ri(z1,...,xx) A a(z;, z;) is logically equivalent to the

formula (x1 = x2) A (x1 = x3) A... A (21 = ). The definition of Ry contains the clauses

(x; #x; Vo =) for all 1 <1 # m < k. Since x; # x; does not hold due to a(xz;, z;),

it follows that all variables must be assigned the same value.

if a(z;,2;) = (x; # x;), then Ry(z1,...,2x) A ax;, x;) is logically equivalent to the

conjunction of (z; # x;) for every i,j € [k] where i # j. The definition of R}, contains

the clauses (x; # x; V &1 = x,,) for all 1 <1 # m < k. Since x; = z; does not hold due

to a(z;,z;), it follows that all variables must be assigned distinct values.
We finally note that the definition of R can easily be computed in k* time so Ry, satisfies
the statement of the lemma. |

B.2 Proof of Lemma 18

Proof. Consider ¥¢(Rg(w1,...,%k)[a). If [{z1,..., 24} <k, then we may (without loss of

generality) assume that we want to compute Y (Ry(x1, 21,22 ..., Tk1)|q). This is equivalent
to computing . (Rg(21,y, T2,. .., Tr—)|o) Where y is a fresh variable and « is extended to
o' so that o(z1,y) implies 1 = y. Then, we map X(Ry(z1,¥,...,2x)|o’) to a suitable
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CSP(T.) instance as prescribed by Lemma 17. Assume instead that [{z1,...,zx}| = k. We
let Xo(Ry(1,...,%)|o) be undefined if a(z;,x;) is not defined for any distinct z;,x; €
{x1,..., 21} — this is justified by Lemma 17. Otherwise, we map X(Rg(x1,...,7%)[a) to a
suitable CSP(7T.) instance as prescribed by Lemma 17. We conclude the proof by noting that
these computations are easy to perform in polynomial time so 3. is trivially polynomial-time
accessible. |
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