
Learning TSP Requires Rethinking Generalization
Chaitanya K. Joshi # Ñ

Institute for Infocomm Research, A*STAR, Singapore

Quentin Cappart #

Ecole Polytechnique de Montréal, Canada

Louis-Martin Rousseau #

Ecole Polytechnique de Montréal, Canada

Thomas Laurent #

Loyola Marymount University, LA, USA

Abstract
End-to-end training of neural network solvers for combinatorial optimization problems such as the
Travelling Salesman Problem is intractable and inefficient beyond a few hundreds of nodes. While
state-of-the-art Machine Learning approaches perform closely to classical solvers when trained on
trivially small sizes, they are unable to generalize the learnt policy to larger instances of practical
scales. Towards leveraging transfer learning to solve large-scale TSPs, this paper identifies inductive
biases, model architectures and learning algorithms that promote generalization to instances larger
than those seen in training. Our controlled experiments provide the first principled investigation into
such zero-shot generalization, revealing that extrapolating beyond training data requires rethinking
the neural combinatorial optimization pipeline, from network layers and learning paradigms to
evaluation protocols.

2012 ACM Subject Classification Computing methodologies → Neural networks

Keywords and phrases Combinatorial Optimization, Travelling Salesman Problem, Graph Neural
Networks, Deep Learning

Digital Object Identifier 10.4230/LIPIcs.CP.2021.33

Related Version arXiv Pre-Print: https://arxiv.org/abs/2006.07054

Supplementary Material Software (Source Code and Dataset): https://github.com/chaitjo/
learning-tsp; archived at swh:1:dir:49220f1be1ae634e106f41948968734ac1569dbd

Acknowledgements We would like to thank X. Bresson, V. Dwivedi, A. Ferber, E. Khalil, W. Kool,
R. Levie, A. Prouvost, P. Veličković and the anonymous reviewers for helpful discussions.

1 Introduction

NP-hard combinatorial optimization problems are the family of integer constrained optimiza-
tion problems which are intractable to solve optimally at large scales. Robust approximation
algorithms to popular problems have immense practical applications and are the backbone of
modern industries. Among combinatorial problems, the 2D Euclidean Travelling Salesman
Problem (TSP) has been the most intensely studied NP-hard graph problem in the Operations
Research (OR) community, with applications in logistics, genetics and scheduling [31]. TSP
is intractable to solve optimally above thousands of nodes for modern computers [2]. In
practice, the Concorde TSP solver [1] uses linear programming with carefully handcrafted
heuristics to find solutions up to tens of thousands of nodes, but with prohibitive execution

© Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 33; pp. 33:1–33:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joshick@i2r.a-star.edu.sg
http://chaitjo.com
https://orcid.org/0000-0003-4722-1815
mailto:quentin.cappart@polymtl.ca
mailto:louis-martin.rousseau@polymtl.ca
mailto:tlaurent@lmu.edu
https://doi.org/10.4230/LIPIcs.CP.2021.33
https://arxiv.org/abs/2006.07054
https://github.com/chaitjo/learning-tsp
https://github.com/chaitjo/learning-tsp
https://archive.softwareheritage.org/swh:1:dir:49220f1be1ae634e106f41948968734ac1569dbd;origin=https://github.com/chaitjo/learning-tsp;visit=swh:1:snp:f57c8f99e6ba3c9e1b3454917173d590ac3e357a;anchor=swh:1:rev:bb28f5795924d99f7e7d945695e884f8d1f7df45
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Learning TSP Requires Rethinking Generalization

0 2 4 6 8 10 12 14
Training Samples 1e6

0

10

20

30

40

50

60

70
TS

P2
00

 O
pt

im
ia

lit
y

Ga
p

(%
)

0 100 200 300 400 500
Wall Clock Time (Hours)

Model
Training from scratch
Active Search from scratch
Pretraining
Pretraining + Active Search
Pretraining + Finetuning
Insertion Heuristic
Training Size
TSP200
TSP20-50

Figure 1 Computational challenges of learning large scale TSP. We compare three
identical autoregressive GNN-based models trained on 12.8 Million TSP instances via reinforcement
learning. We plot average optimality gap to the Concorde solver on 1,280 held-out TSP200 instances
vs. number of training samples (left) and wall clock time (right) during the learning process.
Training on large TSP200 from scratch is intractable and sample inefficient. Active Search [4], which
learns to directly overfit to the 1,280 held-out samples, further demonstrates the computational
challenge of memorizing very few TSP200 instances. Comparatively, learning efficiently from trivial
TSP20-TSP50 allows models to better generalize to TSP200 in a zero-shot manner, indicating
positive knowledge transfer from small to large graphs. Performance can further improve via rapid
finetuning on 1.28 Million TSP200 instances or by Active Search. Within our computational budget,
a simple non-learnt furthest insertion heuristic still outperforms all models. Precise experimental
setup is described in Appendix A.

times.1 Besides, the development of problem-specific OR solvers such as Concorde for novel
or under-studied problems arising in scientific discovery [43] or computer architecture [37]
requires significant time and specialized knowledge.

An alternate approach by the Machine Learning community is to develop generic learning
algorithms which can be trained to solve any combinatorial problem directly from problem
instances themselves [5]. Using classical problems such as TSP, Minimum Vertex Cover
and Boolean Satisfiability as benchmarks, recent end-to-end approaches [28, 46, 33] leverage
advances in graph representation learning [29, 19] and have shown competitive performance
with OR solvers on trivially small problem instances up to few hundreds of nodes. Once
trained, approximate solvers based on Graph Neural Networks (GNNs) have significantly
favorable time complexity than their OR counterparts, making them highly desirable for
real-time decision-making problems such as TSP and the associated class of Vehicle Routing
Problems (VRPs).

1.1 Motivation
Scaling end-to-end approaches to practical and real-world instances is still an open question [5]
as the training phase of state-of-the-art models on large graphs is extremely time-consuming.
For graphs larger than few hundreds of nodes, the gap between GNN-based solvers and
simple non-learnt heuristics is especially evident for routing problems like TSP [28, 30].

As an illustration, Figure 1 presents the computational challenge of learning TSP on 200-
node graphs (TSP200) in terms of both sample efficiency and wall clock time. Surprisingly,
it is difficult to outperform a simple insertion heuristic when directly training on 12.8 Million
TSP200 samples for 500 hours on university-scale hardware.

1 The largest TSP solved by Concorde to date has 109,399 nodes with a total running time of 7.5 months.

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:3

We advocate for an alternative to expensive large-scale training: learning efficiently from
trivially small TSP and transferring the learnt policy to larger graphs in a zero-shot fashion or
via fast finetuning. Thus, identifying promising inductive biases, architectures and learning
paradigms that enable such zero-shot generalization to large and more complex instances is
a key concern for training practical solvers for real-world problems.

1.2 Contributions
Towards end-to-end learning of scale-invariant TSP solvers, we unify several state-of-the-art
architectures and learning paradigms [40, 30, 12, 27] into one experimental pipeline and
provide the first principled investigation on zero-shot generalization to large instances. Our
findings suggest that learning scale-invariant TSP solvers requires rethinking the status quo
of neural combinatorial optimization to explicitly account for generalization:

The prevalent evaluation paradigm overshadows models’ poor generalization capabilities
by measuring performance on fixed or trivially small TSP sizes.
Generalization performance of GNN aggregation functions and normalization schemes
benefits from explicit redesigns which account for shifting graph distributions, and can be
further boosted by enforcing regularities such as constant graph diameters when defining
problems using graphs.
Autoregressive decoding enforces a sequential inductive bias which improves generalization
over non-autoregressive models, but is costly in terms of inference time.
Models trained with supervision are more amenable to post-hoc search, while reinforcement
learning approaches scale better with more computation as they do not rely on labelled
data.

We open-source our framework and datasets2 to encourage the community to go beyond
evaluating performance on fixed TSP sizes, develop more expressive and scale-invariant
GNNs, as well as study transfer learning for combinatorial problems.

2 Related Work

Neural Combinatorial Optimization. In a recent survey, Bengio et al. [5] identified three
broad approaches to leveraging machine learning for combinatorial optimization problems:
learning alongside optimization algorithms [18, 8], learning to configure optimization al-
gorithms [55, 14], and end-to-end learning to approximately solve optimization problems,
a.k.a. neural combinatorial optimization [53, 4].

State-of-the-art end-to-end approaches for TSP use Graph Neural Networks (GNNs) [29,
19] and sequence-to-sequence learning [48] to construct approximate solutions directly from
problem instances. Architectures for TSP can be classified as: (1) autoregressive approaches,
which build solutions in a step-by-step fashion [28, 12, 30, 35]; and (2) non-autoregressive
models, which produce the solution in one shot [40, 39, 27]. Models can be trained to
imitate optimal solvers via supervised learning or by minimizing the length of TSP tours via
reinforcement learning.

Other classical problems tackled by similar architectures include Vehicle Routing [38, 9],
Maximum Cut [28], Minimum Vertex Cover [33], Boolean Satisfiability [46, 62], and Graph
Coloring [23]. Using TSP as an illustration, we present a unified pipeline for characterizing
neural combinatorial optimization architectures in Section 3.

2 https://github.com/chaitjo/learning-tsp

CP 2021

https://github.com/chaitjo/learning-tsp

33:4 Learning TSP Requires Rethinking Generalization

Notably, TSP has emerged as a challenging testbed for neural combinatorial optimization.
Whereas generalization to problem instances larger and more complex than those seen in
training has at least partially been demonstrated on non-sequential problems such as SAT,
MaxCut, and MVC [28, 33, 46], the same architectures do not show strong generalization for
TSP [30, 27].

Combinatorial Optimization and GNNs. From the perspective of graph representation
learning, algorithmic and combinatorial problems have recently been used to characterize
the expressive power of GNNs [44]. An emerging line of work on learning to execute local
graph algorithms [51] has lead to the development of provably more expressive GNNs [10]
and improved understanding of their generalization capability [60, 61]. Towards tackling
realistic and large-scale combinatorial problems, this paper aims to quantify the limitations of
prevalent GNN architectures and learning paradigms via zero-shot generalization to problems
larger than those seen during training.

Novel Applications. Advances on classical combinatorial problems have shown promising
results in downstream applications to novel or under-studied optimization problems in
the physical sciences [20, 47] and computer architecture [36, 41], where the development
of exact solvers is expensive and intractable. For example, autoregressive architectures
provide a strong inductive bias for device placement optimization problems [37, 65], while
non-autoregressive models [7] are competitive with autoregressive approaches [26, 63] for
molecule generation tasks.

3 Neural Combinatorial Optimization Pipeline

Many NP-hard problems can be formulated as sequential decision making tasks on graphs
due to their highly structured nature. Towards a controlled study of neural combinatorial
optimization, we unify recent ideas [40, 30, 12, 27] via a five stage end-to-end pipeline
illustrated in Figure 2. Our discussion focuses on the Travelling Salesman Problem (TSP),
but the pipeline presented is generic and can be extended to characterize modern architectures
for several NP-hard graph problems.

3.1 Problem Definition
The 2D Euclidean TSP is defined as follows: “Given a set of cities and the distances between
each pair of cities, what is the shortest possible route that visits each city and returns to the
origin city?" Formally, given a fully-connected input graph of n cities (nodes) in the two
dimensional unit square S = {xi}n

i=1 where each xi ∈ [0, 1]2, we aim to find a permutation
of the nodes π, termed a tour, that visits each node once and has the minimum total length,
defined as:

L(π|s) = ∥xπn
− xπ1∥2 +

n−1∑
i=1

∥xπi
− xπi+1∥2, (1)

where ∥ · ∥2 denotes the ℓ2 norm.

Graph Sparsification. Classically, TSP is defined on fully-connected graphs. Graph sparsi-
fication heuristics based on k-nearest neighbors aim to reduce TSP graphs, enabling models
to scale up to large instances where pairwise computation for all nodes is intractable [28]

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:5

Input Cities Fully-connected Graph Sparse Graph

Sparsific-
ation

Heuristic

(a) Problem Definition: TSP is formulated via a fully-connected graph of cities/nodes. The graph can
be sparsified via heuristics such as k-nearest neighbors.

Initial Node Embeddings Message-passing GNN Embedder Updated Node Embeddings

(b) Graph Embedding: Embeddings for each graph node are obtained using a Graph Neural Network
encoder. At each layer, nodes gather features from their neighbors to represent local graph structure via
recursive message passing.

Final Node Embeddings

Link Prediction
MLP Decoder

(Non-AR)

Probabilistic Prediction Discrete Solution

Graph
Search

(c) Solution Decoding & Search: Probabilities are assigned to each node for belonging to the solution
set, either independent of one-another (i.e. Non-autoregressive decoding) or conditionally through graph
traversal (i.e. Autoregressive decoding). The predicted probabilities are converted into discrete decisions
through classical graph search techniques such as greedy search or beam search.

Figure 2 End-to-end neural combinatorial optimization pipeline: The entire model in
trained end-to-end via imitating an optimal solver (i.e. supervised learning) or through minimizing
a cost function (i.e. reinforcement learning).

CP 2021

33:6 Learning TSP Requires Rethinking Generalization

or learn faster by reducing the search space [27]. Notably, problem-specific graph reduction
techniques have proven effective for out-of-distribution generalization to larger graphs for
other NP-hard problems such as MVC and SAT [33].

Fixed size vs. variable size graphs. Most work on learning for TSP has focused on training
with a fixed graph size [4, 30], likely due to ease of implementation. Learning from multiple
graph sizes naturally enables better generalization within training size ranges, but its impact
on generalization to larger TSP instances remains to be analyzed.

3.2 Graph Embedding

A Graph Neural Network (GNN) encoder computes d-dimensional representations for each
node in the input TSP graph. At each layer, nodes gather features from their neighbors to
represent local graph structure via recursive message passing [19]. Stacking L layers allows
the network to build representations from the L-hop neighborhood of each node. Let hℓ

i and
eℓ

ij denote respectively the node and edge feature at layer ℓ associated with node i and edge
ij. We define the feature at the next layer via an anisotropic message passing scheme using
an edge gating mechanism [6]:

hℓ+1
i = hℓ

i + ReLU
(

Norm
(

U ℓhℓ
i + Aggrj∈Ni

(
σ(eℓ

ij) ⊙ V ℓhℓ
j

)))
, (2)

eℓ+1
ij = eℓ

ij + ReLU
(

Norm
(

Aℓeℓ
ij + Bℓhℓ

i + Cℓhℓ
j

))
, (3)

where U ℓ, V ℓ, Aℓ, Bℓ, Cℓ ∈ Rd×d are learnable parameters, Norm denotes the normalization
layer (BatchNorm [25], LayerNorm [3]), Aggr represents the neighborhood aggregation
function (Sum, Mean or Max), σ is the sigmoid function, and ⊙ is the Hadamard product.
As inputs hℓ=0

i and eℓ=0
ij , we use d-dimensional linear projections of the node coordinate xi

and the euclidean distance ∥xi − xj∥2, respectively.

Anisotropic Neighborhood Aggregation. We make the aggregation function anisotropic
or directional via a dense attention mechanism which scales the neighborhood features
hj , ∀j ∈ Ni, using edge gates σ(eij). Anisotropic and attention-based GNNs such as Graph
Attention Networks [50] and Gated Graph ConvNets [6] have been shown to outperform
isotropic Graph ConvNets [29] across several challenging domains [13], including TSP [30, 27].

3.3 Solution Decoding

Non-autoregressive Decoding (NAR). Consider TSP as a link prediction task: each edge
may belong/not belong to the optimal TSP solution independent of one another [40]. We
define the edge predictor as a two layer MLP on the node embeddings produced by the final
GNN encoder layer L, following Joshi et al. [27]. For adjacent nodes i and j, we compute
the unnormalized edge logits:

p̂ij = W2

(
ReLU

(
W1

([
hG, hL

i , hL
j

])))
, where hG = 1

n

n∑
i=0

hL
i , (4)

W1 ∈ R3d×d, W2 ∈ Rd×2, and [·, ·, ·] is the concatenation operator. The logits p̂ij are
converted to probabilities over each edge pij via a softmax.

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:7

Autoregressive Decoding (AR). Although NAR decoders are fast as they produce pre-
dictions in one shot, they ignore the sequential ordering of TSP tours. Autoregressive
decoders, based on attention [12, 30] or recurrent neural networks [53, 35], explicitly model
this sequential inductive bias through step-by-step graph traversal.

We follow the attention decoder from Kool et al. [30], which starts from a random node
and outputs a probability distribution over its neighbors at each step. Greedy search is used
to perform the traversal over n time steps and masking enforces constraints such as not
visiting previously visited nodes.

At time step t at node i, the decoder builds a context ĥC
i for the partial tour π′

t′ , generated
at time t′ < t, by packing together the graph embedding hG and the embeddings of the
first and last node in the partial tour: ĥC

i = WC

[
hG, hL

π′
t−1

, hL
π′

1

]
, where WC ∈ R3d×d and

learned placeholders are used for hL
π′

t−1
and hL

π′
1

at t = 1. The context ĥC
i is then refined via

a standard Multi-Head Attention (MHA) operation [49] over the node embeddings:

hC
i = MHA

(
Q = ĥC

i , K = {hL
1 , . . . , hL

n}, V = {hL
1 , . . . , hL

n}
)

, (5)

where Q, K, V are inputs to the M -headed MHA (M = 8). The unnormalized logits for
each edge eij are computed via a final attention mechanism between the context hC

i and the
embedding hj :

p̂ij =

C · tanh
(

(WQhC
i)T ·(WKhL

j)√
d

)
if j ̸= πt′ ∀t′ < t

−∞ otherwise.

(6)

The tanh is used to maintain the value of the logits within [−C, C] (C = 10) [4]. The logits
p̂ij at the current node i are converted to probabilities pij via a softmax over all edges.

Inductive Biases. NAR approaches, which make predictions over edges independently of
one-another, have shown strong out-of-distribution generalization for non-sequential problems
such as SAT and MVC [33]. On the other hand, AR decoders come with the sequential/tour
constraint built-in and are the default choice for routing problems [30]. Although both
approaches have shown close to optimal performance on fixed and small TSP sizes under
different experimental settings, it is important to fairly compare which inductive biases are
most useful for generalization.

3.4 Solution Search
Greedy Search. For AR decoding, the predicted probabilities at node i are used to select
the edge to travel along at the current step via sampling from the probability distribution pi

or greedily selecting the most probable edge pij , i.e. greedy search. Since NAR decoders
directly output probabilities over all edges independent of one-another, we can obtain valid
TSP tours using greedy search to traverse the graph starting from a random node and
masking previously visited nodes. Thus, the probability of a partial tour π′ can be formulated
as p(π′) =

∏
j′∼i′∈π′ pi′j′ , where each node j′ follows node i′.

Beam Search and Sampling. During inference, we can increase the capacity of greedy
search via limited width breadth-first beam search, which maintains the b most probable
tours during decoding. Similarly, we can sample b solutions from the learnt policy and
select the shortest tour among them. Naturally, searching longer, with more sophisticated

CP 2021

33:8 Learning TSP Requires Rethinking Generalization

techniques [16, 58], or sampling more solutions allows trading off run time for solution
quality. However, it has been noted that using large b for search/sampling or local search
during inference may overshadow an architecture’s inability to generalize [15]. To better
understand generalization, we focus on using greedy search and beam search/sampling with
small b = 128.

3.5 Policy Learning
Supervised Learning. Models can be trained end-to-end via imitating an optimal solver at
each step (i.e. supervised learning). For models with NAR decoders, the edge predictions
are linked to the ground-truth TSP tour by minimizing the binary cross-entropy loss for each
edge [40, 27]. For AR architectures, at each step, we minimize the cross-entropy loss between
the predicted probability distribution over all edges leaving the current node and the next
node from the groundtruth tour, following Vinyals et al. [53]. We use teacher-forcing to
stabilize training [57].

Reinforcement Learning. Reinforcement learning is a elegant alternative in the absence of
groundtruth solutions, as is often the case for understudied combinatorial problems. Models
can be trained by minimizing problem-specific cost functions (the tour length in the case of
TSP) via policy gradient algorithms [4, 30] or Q-Learning [28]. We focus on policy gradient
methods due to their simplicity, and define the loss for an instance s parameterized by the
model θ as L(θ|s) = Epθ(π|s) [L(π)], the expectation of the tour length L(π), where pθ(π|s)
is the probability distribution from which we sample to obtain the tour π|s. We use the
REINFORCE gradient estimator [56] to minimize L:

∇L(θ|s) = Epθ(π|s) [(L(π) − b(s)) ∇ log pθ(π|s)] , (7)

where the baseline b(s) reduces gradient variance. Our experiments compare standard critic
network baselines [4, 12] and the greedy rollout baseline proposed by Kool et al. [30].

4 Experiments

4.1 Controlled Experiment Setup
We design controlled experiments to probe the unified pipeline described in Section 3 in order
to identify inductive biases, architectures and learning paradigms that promote zero-shot
generalization. We focus on learning efficiently from small problem instances (TSP20-50)
and measure generalization to a wider range of sizes, including large instances which are
intractable to learn from (e.g. TSP200). We aim to fairly compare state-of-the-art ideas in
terms of model capacity and training data, and expect models with good inductive biases
for TSP to: (1) learn trivially small TSPs without hundreds of millions of training samples
and model parameters; and (2) generalize reasonably well across smaller and larger instances
than those seen in training. To quantify “good” generalization, we additionally evaluate our
models against a simple, non-learnt furthest insertion heuristic baseline [30].

Training Datasets. Our experiments focus on learning from variable TSP20-50 graphs. We
also compare to training on fixed graph sizes TSP20, TSP50, TSP100, which have been the
default choice in TSP literature. In the supervised learning paradigm, we generate a training
set of 1,280,000 TSP samples and groundtruth tours using Concorde. Models are trained
using the Adam optimizer for 10 epochs with a batch size of 128 and a fixed learning rate

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:9

50 100 150 200
TSP Size

0

5

10

15

20

25

30

35
Op

tim
al

ity
 G

ap
 (%

)
Training Size
TSP20
TSP50
TSP100
TSP200
TSP20-50
Insertion Heuristic

Figure 3 Learning from various TSP
sizes. The prevalent protocol of evaluation
on training sizes overshadows brittle out-of-
distribution performance to larger and smaller
graphs.

50 100 150 200
TSP Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Op
tim

al
ity

 G
ap

 (%
)

Nearest Neighbors
10-NN
20-NN
20%-NN
50%-NN
Full
Insertion Heuristic

Figure 4 Impact of graph sparsification.
Maintaining a constant graph diameter across
TSP sizes leads to better generalization on larger
problems than using full graphs.

1e−4. For reinforcement learning, models are trained for 100 epochs on 128,000 TSP samples
which are randomly generated for each epoch (without optimal solutions) with the same
batch size and learning rate. Thus, both learning paradigms see 12,800,000 TSP samples in
total. Considering that TSP20-50 are trivial in terms of complexity as they can be solved by
simpler non-learnt heuristics, training good solvers at this scale should ideally not require
millions of instances.

Model Hyperparameters. For models with AR decoders, we use 3 GNN encoder layers
followed by the attention decoder head, setting hidden dimension d = 128. For NAR
models, we use the same hidden dimension and opt for 4 GNN encoder layers followed by
the edge predictor. This results in approximately 350,000 trainable parameters for each
model, irrespective of decoder type. Unless specified, most experiments use our best model
configuration: AR decoding scheme and Graph ConvNet encoder with Max aggregation and
BatchNorm (with batch statistics). All models are trained via supervised learning except
when comparing learning paradigms.

Evaluation. We compare models on a held-out test set of 25,600 TSP samples, consisting of
1,280 samples each of TSP10, TSP20, . . . , TSP200. Our evaluation metric is the optimality
gap w.r.t. the Concorde solver, i.e. the average percentage ratio of predicted tour lengths
relative to optimal tour lengths. To compare design choices among identical models, we plot
line graphs of the optimality gap as TSP size increases (along with a 99%-ile confidence
interval) using beam search with a width of 128. Compared to previous work which evaluated
models on fixed problem sizes [4, 12, 30], our evaluation protocol identifies not only those
models that perform well on training sizes, but also those that generalize better than
non-learnt heuristics for large instances which are intractable to train on.

4.2 Does learning from variable graphs help generalization?
We train five identical models on fully connected graphs of instances from TSP20, TSP50,
TSP100, TSP200 and variable TSP20-50. The line plots of optimality gap across TSP sizes
in Figure 3 indicates that learning from variable TSP sizes helps models retain performance
across the range of graph sizes seen during training (TSP20-50). Variable graph training

CP 2021

33:10 Learning TSP Requires Rethinking Generalization

50 100 150 200
TSP Size

0

5

10

15

20
Op

tim
al

ity
 G

ap
 (%

)
Aggregation
GNN-Max
GNN-Mean
GNN-Sum
Transformer
MLP (No Aggr.)
Insertion Heuristic

Figure 5 Impact of GNN aggregation
functions. For larger graphs, aggregation func-
tions that are agnostic to node degree (Mean
and Max) are able to outperform theoretically
more expressive aggregators.

50 100 150 200
TSP Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Op
tim

al
ity

 G
ap

 (%
)

Normalization
BatchNorm (Learnt stats)
BatchNorm (Batch stats)
LayerNorm
No Norm
Insertion Heuristic

Figure 6 Impact of normalization
schemes. Modifying BatchNorm to account
for changing graph statistics leads to better gen-
eralization on larger graphs.

compared to training solely on the maximum sized instances (TSP50) leads to marginal gains
on small instances but, somewhat counter-intuitively, does not enable better generalization
to larger problems. Learning from small TSP20 is unable to generalize to large sizes while
TSP100 models generalize poorly to trivially easy sizes, suggesting that the prevalent protocol
of evaluation on training sizes [30, 27] overshadows brittle out-of-distribution performance.

Training on TSP200 graphs is intractable within our computational budget, see Figure 1.
TSP100 is the only model which generalizes better to large TSP200 than the non-learnt
baseline. However, training on TSP100 can also be prohibitively expensive: one epoch takes
approximately 8 hours (TSP100) vs. 2 hours (TSP20-50) (details in Appendix B). For rapid
experimentation, we train efficiently on variable TSP20-50 for the rest of our study.

4.3 What is the best graph sparsification heuristic?
Figure 4 compares full graph training to the following heuristics: (1) Fixed node degree
across graph sizes, via connecting each node in TSPn to its k-nearest neighbors, enabling
GNNs layers to specialize to constant degree k; and (2) Fixed graph diameter across
graph sizes, via connecting each node in TSPn to its n × k%-nearest neighbors, ensuring
that the same number of message passing steps are required to diffuse information across
both small and large graphs.

Although both sparsification techniques lead to faster convergence on training instance
sizes, we find that only approach (2) leads to better generalization on larger problems than
using full graphs. Consequently, all further experiments use approach (2) to operate on sparse
20%-nearest neighbors graphs. Our results also suggest that developing more principled
graph reduction techniques beyond simple k-nearest neighbors for augmenting learning-based
approaches may be a promising direction.

4.4 What is the relationship between GNN aggregation functions and
normalization layers?

In Figure 5, we compare identical models with anisotropic Sum, Mean and Max aggregation
functions. As baselines, we consider the Transformer encoder on full graphs [12, 30] as well
as a structure-agnostic MLP on each node, which can be instantiated by not using any
aggregation function in Eq.(2), i.e. hℓ+1

i = hℓ
i + ReLU

(
Norm

(
U ℓhℓ

i

))
.

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:11

50 100 150 200
TSP Size

0

10

20

30

40

50
Op

tim
al

ity
 G

ap
 (%

)
Model
NAR
AR
Encoder
GNN-Max
MLP
Transformer

Figure 7 Comparing AR and NAR de-
coders. Sequential decoding is a powerful in-
ductive bias for TSP as it enables significantly
better generalization, even in the absence of
graph structure (MLP encoders).

50 100 150 200
TSP Size

0

5

10

15

20

Ev
al

ua
tio

n
Ti

m
e

(s
)

Model
AR
AR + re-embed
NAR
Search Setting
Greedy Search
Beam Search (width=128)

Figure 8 Inference time for various de-
coders. One-shot NAR decoding is significantly
faster than sequential AR, especially when re-
embedding the graph at each decoding step [28].

We find that the choice of GNN aggregation function does not have an impact when
evaluating models within the training size range TSP20-50. As we tackle larger graphs,
GNNs with aggregation functions that are agnostic to node degree (Mean and Max) are
able to outperform Transformers and MLPs. Importantly, the theoretically more expressive
Sum aggregator [59] generalizes worse than structure-agnostic MLPs, as it cannot handle
the distribution shift in node degree and neighborhood statistics across graph sizes, leading
to unstable or exploding node embeddings [51]. We use the Max aggregator in further
experiments, as it generalizes well for both AR and NAR decoders (not shown).

We also experiment with the following normalization schemes: (1) standard BatchNorm
which learns mean and variance from training data, as well as (2) BatchNorm with batch
statistics; and (3) LayerNorm, which normalizes at the embedding dimension instead of
across the batch. Figure 6 indicates that BatchNorm with batch statistics and LayerNorm
are able to better account for changing statistics across different graph sizes. Standard
BatchNorm generalizes worse than not doing any normalization, thus our other experiments
use BatchNorm with batch statistics.

Poor performance on large graphs than those seen during training can be explained
by unstable node and graph-level representations due to the choice of aggregation and
normalization schemes. Using Max aggregators and BatchNorm with batch statistics are
temporary hacks to overcome the failure of the current architectural components. Overall,
our results suggest that inference beyond training sizes will require the development of
expressive GNN mechanisms that are able to leverage global graph topology [17, 52] while
being invariant to distribution shift [32].

4.5 Which decoder has a better inductive bias for TSP?
Figure 7 compares NAR and AR decoders for identical models. To isolate the impact
of the decoder’s inductive bias without the inductive bias imposed by GNNs, we also
show Transformer encoders on full graphs as well as structure-agnostic MLPs. Within our
experimental setup, AR decoders are able to fit the training data as well as generalize
significantly better than NAR decoders, indicating that sequential decoding is powerful for
TSP even without graph information.

CP 2021

33:12 Learning TSP Requires Rethinking Generalization

50 100 150 200
TSP Size

0

5

10

15

20

25
Op

tim
al

ity
 G

ap
 (%

)
Learning
SL
RL (Rollout)
Insertion Heuristic
Search Setting
Greedy Search
Beam Search (width=128)
Sampling (128 soln.)

Figure 9 Comparing solution search set-
tings. Under greedy decoding, RL demonstrates
better performance and generalization. Con-
versely, SL models improve over their RL counter-
parts when performing beam search or sampling.

50 100 150 200
TSP Size

0

5

10

15

20

25

Op
tim

al
ity

 G
ap

 (%
)

Learning
SL
RL (Rollout)
Insertion Heuristic
Search Setting
Greedy Search
Beam Search (width=128)
Beam Search (width=512)
Beam Search (width=1280)

Figure 10 Impact of increasing beam
width. Teacher-forcing during SL leads to poor
generalization under greedy decoding, but makes
the probability distribution more amenable to
beam search.

Conversely, NAR architectures are a poor inductive bias as they require significantly more
computation to perform competitively to AR decoders. For instance, recent work [40, 27] used
more than 30 layers with over 10 Million parameters. We believe that such overparameterized
networks are able to memorize all patterns for small TSP training sizes [64], but the learnt
policy is unable to generalize beyond training graph sizes. At the same time, when compared
fairly within the same experimental settings, NAR decoders are significantly faster than AR
decoders described in Section 3.3 as well as those which re-embed the graph at each decoding
step [28], see Figure 8.

4.6 How does the learning paradigms impact the search phase?
Identical models are trained via supervised learning (SL) and reinforcement learning (RL)
(We show only the greedy rollout baseline for clarity.). Figure 9 illustrates that, when using
greedy decoding during inference, RL models perform better on the training size as well as on
larger graphs. Conversely, SL models improve over their RL counterparts when performing
beam search or sampling.

In Appendix D, we find that the rollout baseline, which encourages better greedy behaviour,
leads to the model making very confident predictions about selecting the next node at each
decoding step, even out of training size range. In contrast, SL models are trained with teacher
forcing, i.e. imitating the optimal solver at each step instead of using their own prediction.
This results in less confident predictions and poor greedy decoding, but makes the probability
distribution more amenable to beam search and sampling, as shown in Figure 10. Our results
advocate for tighter coupling between the training and inference phase of learning-driven
TSP solvers, mirroring recent findings in generative models for text [21].

4.7 Which learning paradigm scales better?
Our experiments till this point have focused on isolating the impact of various pipeline
components on zero-shot generalization under limited computation. At the same time, recent
results on natural language have highlighted the power of large scale pre-training for effective
transfer learning [42]. To better understand the impact of learning paradigms when scaling

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:13

0 20 40 60 80 100 120
samples 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Op

tim
al

ity
 G

ap
 (%

)

Model
L=3, d=128 (SL)
L=6, d=128 (SL)

L=3, d=128 (RL)
L=6, d=128 (RL)
Insertion Heuristic

Test Set
TSP100
TSP50

Figure 11 Scaling computation and parameters for SL and RL-trained models. All
models are trained on TSP20-50. We plot optimality gap on 1,280 held-out samples of both TSP50
(performance on training size) and TSP100 (out-of-distribution generalization) under greedy decoding.
Note that SL models are less amenable than RL models to greedy search. RL models are able to
keep improving their performance within as well as outside of training size range with more data.
On the other hand, SL performance is bottlenecked by the need for optimal groundtruth solutions.

computation, we double the model parameters (up to 750,000) and train on tens times more
data (12.8M samples) for AR architectures. We monitor optimality gap on the training size
range (TSP20-50) as well as a larger size (TSP100) vs. the number of training samples.

In Figure 11, we see that increasing model capacity leads to better learning. Notably, RL
models, which train on unique randomly generated samples throughout, are able to keep
improving their performance within as well as outside of training size range as they see more
samples. On the other hand, SL is bottlenecked by the need for optimal groundtruth solutions:
SL models iterate over the same 1.28M unique labelled samples and stop improving at a
point. Beyond favorable inductive biases, distributed and sample-efficient RL algorithms [45]
may be a key ingredient for learning from larger TSPs beyond tens of nodes.

5 Conclusion

Learning-driven solvers for combinatorial problems such as the Travelling Salesman Problem
have shown promising results for trivially small instances up to a few hundred nodes. However,
scaling such end-to-end learning approaches to real-world instances is still an open question
as training on large graphs is extremely time-consuming. As a motivating example, we have
demonstrated that state-of-the-art techniques are unable to outperform simple insertion
heuristics on TSP beyond 200 nodes when trained on university-scale hardware.

This paper advocates for an alternative to expensive large-scale training: the generalization
gap between end-to-end approaches and insertion heuristics can be brought closer by training
models efficiently from trivially small TSP and transferring the learnt policy to larger graphs
in a zero-shot fashion or via fast fine-tuning. Thus, identifying promising inductive biases,

CP 2021

33:14 Learning TSP Requires Rethinking Generalization

architectures and learning paradigms that enable such zero-shot generalization to large
and more complex instances is a key concern for developing practical solvers for real-world
combinatorial problems.

We perform the first principled investigation into zero-shot generalization for learning
large scale TSP, unifying state-of-the-art architectures and learning paradigms into one
experimental pipeline. Our findings suggest that key design choices such as Graph Neural
Network layers, normalization schemes, graph sparsification, and learning paradigms need to
be explicitly re-designed to consider out-of-distribution generalization.

Future work can tackle generalization to large-scale problem instances in the following ways:
(1) GNN architectures which are sufficiently expressive beyond simple max/mean aggregation
functions, while at the same time incorporating inductive biases which account for the shifting
graph degree distribution and statistics that characterize larger scale combinatorial problems.
(2) Novel learning paradigms which focus on generalization, e.g. this work explored zero-shot
generalization to larger problems, but the logical next step is to fine-tune the model on a small
number of larger problems. Thus, it will be interesting to explore fine-tuning/generalization
as a meta-learning problem, wherein the goal is to train model parameters specifically for
fast adaptation and fine-tuning to new data distributions and problem sizes.

References
1 David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde tsp solver, 2006.
2 David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling

salesman problem: a computational study. Princeton university press, 2006.
3 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint,

2016. arXiv:1607.06450.
4 Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural

combinatorial optimization with reinforcement learning. In International Conference on
Learning Representations, 2017. URL: https://openreview.net/pdf?id=Bk9mxlSFx.

5 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. arXiv preprint, 2018. arXiv:1811.06128.

6 Xavier Bresson and Thomas Laurent. An experimental study of neural networks for variable
graphs. In International Conference on Learning Representations, 2018.

7 Xavier Bresson and Thomas Laurent. A two-step graph convolutional decoder for molecule
generation. In NeurIPS Workshop on Machine Learning and the Physical Sciences, 2019.

8 Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin Rousseau. Improv-
ing optimization bounds using machine learning: Decision diagrams meet deep reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1443–1451, 2019.

9 Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial
optimization. In Advances in Neural Information Processing Systems, pages 6278–6289, 2019.

10 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint, 2020. arXiv:2004.05718.

11 George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America, 2(4):393–410, 1954.

12 Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In International Conference on
the Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 170–181. Springer, 2018.

13 Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint, 2020. arXiv:2003.00982.

http://arxiv.org/abs/1607.06450
https://openreview.net/pdf?id=Bk9mxlSFx
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/2004.05718
http://arxiv.org/abs/2003.00982

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:15

14 Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer
program as a layer. In AAAI Conference on Artificial Intelligence, 2020.

15 Antoine François, Quentin Cappart, and Louis-Martin Rousseau. How to evaluate machine
learning approaches for combinatorial optimization: Application to the travelling salesman
problem. arXiv preprint, 2019. arXiv:1909.13121.

16 Zhang-Hua Fu, Kai-Bin Qiu, Meng Qiu, and Hongyuan Zha. Targeted sampling of enlarged
neighborhood via monte carlo tree search for {tsp}, 2020. URL: https://openreview.net/
forum?id=ByxtHCVKwB.

17 Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational
limits of graph neural networks. arXiv preprint, 2020. arXiv:2002.06157.

18 Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. arXiv preprint, 2019.
arXiv:1906.01629.

19 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

20 Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

21 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In International Conference on Learning Representations, 2020. URL:
https://openreview.net/forum?id=rygGQyrFvH.

22 John J Hopfield and David W Tank. “neural” computation of decisions in optimization
problems. Biological cybernetics, 52(3):141–152, 1985.

23 Jiayi Huang, Mostofa Patwary, and Gregory Diamos. Coloring big graphs with alphagozero.
arXiv preprint, 2019. arXiv:1902.10162.

24 Gurobi Optimization Inc. Gurobi optimizer reference manual. URL http://www. gurobi. com,
2015.

25 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint, 2015. arXiv:1502.03167.

26 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder
for molecular graph generation. In International Conference on Machine Learning, pages
2323–2332, 2018.

27 Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the travelling salesman problem. arXiv preprint, 2019. arXiv:1906.
01227.

28 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6348–6358, 2017.

29 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

30 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019. URL: https://openreview.
net/forum?id=ByxBFsRqYm.

31 Jan Karel Lenstra and AHG Rinnooy Kan. Some simple applications of the travelling salesman
problem. Journal of the Operational Research Society, 26(4):717–733, 1975.

32 Ron Levie, Michael M Bronstein, and Gitta Kutyniok. Transferability of spectral graph
convolutional neural networks. arXiv preprint, 2019. arXiv:1907.12972.

33 Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph
convolutional networks and guided tree search. In Advances in Neural Information Processing
Systems, pages 539–548, 2018.

CP 2021

http://arxiv.org/abs/1909.13121
https://openreview.net/forum?id=ByxtHCVKwB
https://openreview.net/forum?id=ByxtHCVKwB
http://arxiv.org/abs/2002.06157
http://arxiv.org/abs/1906.01629
https://openreview.net/forum?id=rygGQyrFvH
http://arxiv.org/abs/1902.10162
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1906.01227
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
http://arxiv.org/abs/1907.12972

33:16 Learning TSP Requires Rethinking Generalization

34 John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. An algorithm for the
traveling salesman problem. Operations research, 11(6):972–989, 1963.

35 Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimiz-
ation by graph pointer networks and hierarchical reinforcement learning. In AAAI Workshop
on Deep Learning on Graphs: Methodologies and Applications, 2020.

36 Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Proceedings of the
ACM Special Interest Group on Data Communication, pages 270–288. ACM, 2019.

37 Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optim-
ization with reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 2430–2439. JMLR.org, 2017.

38 Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pages 9861–9871, 2018.

39 Alex Nowak, David Folqué, and Joan Bruna Estrach. Divide and conquer networks. In 6th
International Conference on Learning Representations, ICLR 2018, 2018.

40 Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning algorithms
for quadratic assignment with graph neural networks. arXiv preprint, 2017. arXiv:1706.07450.

41 Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and Oriol
Vinyals. Regal: Transfer learning for fast optimization of computation graphs. arXiv preprint,
2019. arXiv:1905.02494.

42 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint, 2019. arXiv:1910.10683.

43 Maithra Raghu and Eric Schmidt. A survey of deep learning for scientific discovery. arXiv
preprint, 2020. arXiv:2003.11755.

44 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural
networks for combinatorial problems. In Advances in Neural Information Processing Systems,
pages 4081–4090, 2019.

45 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint, 2017. arXiv:1707.06347.

46 Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a sat solver from single-bit supervision. arXiv preprint, 2018. arXiv:1802.03685.

47 Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
Chongli Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein
structure prediction using potentials from deep learning. Nature, pages 1–5, 2020.

48 Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

49 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

50 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International Conference on Learning Represent-
ations, 2018. URL: https://openreview.net/forum?id=rJXMpikCZ.

51 Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. In International Conference on Learning Representations, 2020.
URL: https://openreview.net/forum?id=SkgKO0EtvS.

52 Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant
graph neural networks with message-passing. arXiv preprint, 2020. arXiv:2006.15107.

53 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pages 2692–2700, 2015.

http://arxiv.org/abs/1706.07450
http://arxiv.org/abs/1905.02494
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2003.11755
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1802.03685
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=SkgKO0EtvS
http://arxiv.org/abs/2006.15107

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:17

54 Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning
on graphs. arXiv preprint, 2019. arXiv:1909.01315.

55 Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1658–1665, 2019.

56 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

57 Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989.

58 Zhihao Xing and Shikui Tu. A graph neural network assisted monte carlo tree search approach
to traveling salesman problem, 2020. URL: https://openreview.net/forum?id=Syg6fxrKDB.

59 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint, 2018. arXiv:1810.00826.

60 Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. What can neural networks reason about? In International Conference on Learning
Representations, 2019.

61 Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. arXiv
preprint, 2020. arXiv:2009.11848.

62 Emre Yolcu and Barnabas Poczos. Learning local search heuristics for boolean satisfiability.
In Advances in Neural Information Processing Systems, pages 7990–8001, 2019.

63 Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in neural information
processing systems, pages 6410–6421, 2018.

64 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. arXiv preprint, 2016. arXiv:1611.03530.

65 Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C Ma, Qiumin Xu, Ming
Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, et al. Gdp: Generalized device placement
for dataflow graphs. arXiv preprint, 2019. arXiv:1910.01578.

A Additional Context for Figure 1: Computational challenges of
learning large scale TSP

Experimental Setup. In Figure 1, we illustrate the computational challenges of learning
large scale TSP by comparing three identical models trained on 12.8 Million TSP instances
via reinforcement learning. Our experimental setup largely follows Section 4.1. All models
use identical configurations: autoregressive decoding and Graph ConvNet encoder with
Max aggregation and LayerNorm. The TSP20-50 model is trained using the greedy rollout
baseline [30] and the Adam optimizer with batch size 128 and learning rate 1e − 4. Direct
training, active search and finetuning on TSP200 samples is done using learning rate 1e − 5,
as we found larger learning rates to be unstable. During active search and finetuning, we use
an exponential moving average baseline, as recommended by Bello et al. [4].

Furthest Insertion Baseline. We characterize “good” generalization across our experiments
by the well-known furthest insertion heuristic, which constructively builds a solution/partial
tour π′ by inserting node i between tour nodes j1, j2 ∈ π′ such that the distance from node i

to its nearest tour node j1 is maximized. The Appendix of Kool et al. [30] provides a detailed
description of insertion heuristic approaches.

CP 2021

http://arxiv.org/abs/1909.01315
https://openreview.net/forum?id=Syg6fxrKDB
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/2009.11848
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1910.01578

33:18 Learning TSP Requires Rethinking Generalization

We motivate our work by showing that learning from large TSP200 is intractable on
university-scale hardware, and that efficient pre-training on trivial TSP20-50 enables models
to better generalize to TSP200 in a zero-shot manner. Within our computational budget,
furthest insertion still outperforms our best models. At the same time, we are not claiming
that it is impossible to outperform insertion heuristics with current approaches: reinforcement
learning-driven approaches will only continue to improve performance with more computation,
training data and sample efficient learning algorithms. We want to use simple non-learnt
baselines to motivate the development of better architectures, learning paradigms and
evaluation protocols for neural combinatorial optimization.

Routing Problems and Generalization. It is worth mentioning why we chose to study TSP in
particular. Firstly, TSP has stood the test of time in terms of relevance and continues to serve
as an engine of discovery for general purpose techniques in applied mathematics [11, 34, 22].

TSP and associated routing problems have also emerged as a challenging testbed for
learning-driven approaches to combinatorial optimization. Whereas generalization to problem
instances larger and more complex than those seen in training has at least partially been
demonstrated on non-sequential problems such as SAT, MaxCut, Minimum Vertex Cover [28,
33, 46]3, the same architectures do not show strong generalization for TSP. For example,
furthest insertion heuristics outperforms or are competitive with state-of-the-art approaches
for TSP above tens of nodes, see Figure D.1.(e, f) from Khalil et al. [28] or Figure 5 from
Kool et al. [30], despite using more computation and data than our controlled study.

B Hardware and Timings

Fairly timing research code can be difficult due to differences in libraries used, hardware
configurations and programmer skill. In Table 1, we report approximate total training
time and inference time across TSP sizes for the model setup described in Section 4.1. All
experiments were implemented in PyTorch and run on an Intel Xeon CPU E5-2690 v4 server
and four Nvidia 1080Ti GPUs. Four experiments were run on the server at any given time
(each using a single GPU). Training time may vary based on server load, thus we report the
lowest training time across several runs in Table 1.

We experimented with improving the latency of GNN-based models by using graph
machine learning libraries such as DGL [54]. DGL requires graphs to be prepared as sparse
library-specific data objects, which significantly boosts the inference speed of GNNs. However,
using DGL had a negative impact on the speed of the rest of our pipeline (batched data
preparation, decoders, beam search). This issue is especially amplified for reinforcement
learning, where we constantly generate new random datasets at each epoch. For now, we
present timings and results with pure PyTorch code. We confirm that results are consistent
with using DGL, but decided against it in order to run a large volume of experiments for
more comprehensive analysis.

C Datasets

We generate 2D Euclidean TSP instances of varying sizes and complexities as graphs of
n node locations sampled uniformly in the unit square S = {xi}n

i=1 and xi ∈ [0, 1]2. For
supervised learning, we generate a training set of 1,280,000 samples each for TSP20, TSP50,

3 It is worth noting that classical algorithmic and symbolic components such as graph reduction, sophist-
icated tree search as well as post-hoc local search have been pivotal and complementary to GNNs in
enabling such generalization [33].

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:19

Table 1 Approximate training time (12.8M samples) and inference time (1,280 samples) across
TSP sizes and search settings for SL and RL-trained models. GS : Greedy search, BS128 : beam
search with width 128, S128 : sampling 128 solutions. RL training uses the rollout baseline and
timing includes the time taken to update the baseline after each 128,000 samples.

Graph Size Training Time Inference Time
SL RL GS BS128 S128

TSP20 4h 24m 8h 02m 2.62s 7.06s 63.37s
TSP20-50 9h 49m 15h 47m - - -

TSP50 16h 11m 40h 29m 7.45s 29.09s 86.48s
TSP100 68h 34m 108h 30m 19.04s 98.26s 180.30s
TSP200 - 495h 55m 54.88s 372.09s 479.37s

TSP100, and TSP20-50. The groundtruth tours are obtained using the Concorde solver [1].
For reinforcement learning, 128,000 samples are randomly generated for each epoch (without
optimal solutions). We compare models on a held-out test set of 25,600 TSP samples and
their corresponding optimal tours, consisting of 1,280 instances each of TSP10, TSP20, . . . ,
TSP200. We release all dataset files as well as the associated scripts to produce TSP datasets
of arbitrarily large sizes along with our open-source codebase.

D Learning Paradigms and Amenity to Search

Figure 10 demonstrate that SL models are more amenable to beam search and sampling, but
are outperformed by RL-rollout models under greedy search. In Figure 12, we investigate
the impact of learning paradigms on probability distributions by plotting histograms of
the probabilities of greedy selections during inference across TSP sizes for identical models
trained with SL and RL. We find that the rollout baseline, which encourages better greedy
behaviour, leads to the model making very confident predictions about selecting the next
node at each decoding step, even beyond training size range. In contrast, SL models are
trained with teacher forcing, i.e. imitating the optimal solver at each step instead of using
their own prediction. This results in less confident predictions and poor greedy decoding, but
makes the probability distribution more amenable to beam search and sampling techniques.

We understand this phenomenon as follows: More confident predictions (Figure 12b) do
not automatically imply better solutions. However, sampling repeatedly or maintaining the
top-b most probable solutions from such distributions is likely to contain very similar tours.
On the other hand, less sharp distributions (Figure 12a) are likely to yield more diverse tours
with increasing b. This may result in comparatively better optimality gap, especially for
TSP sizes larger than those seen in training.

Probability of Greedy Selection

TSP Size

(a) Supervised Learning

Probability of Greedy Selection

TSP Size

(b) Reinforcement Learning

Figure 12 Histograms of greedy selection probabilities (x-axis) across TSP sizes (y-axis).

CP 2021

33:20 Learning TSP Requires Rethinking Generalization

E Visualizing Model Predictions

As a final note, we present a visualization tool for generating model predictions and heatmaps
of TSP instances, see Figures 13 and 14. We advocate for the development of more prin-
cipled approaches to neural combinatorial optimization, e.g. along with model predictions,
visualizing the reduce costs for each edge (obtained using the Gurobi solver [24]) may help
debug and improve learning-driven approaches in the future.

Figure 13 Prediction visualization for TSP20.

Figure 14 Prediction visualization for TSP50.

C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:21

Figure 15 Prediction visualization for TSP200.

CP 2021

	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Neural Combinatorial Optimization Pipeline
	3.1 Problem Definition
	3.2 Graph Embedding
	3.3 Solution Decoding
	3.4 Solution Search
	3.5 Policy Learning

	4 Experiments
	4.1 Controlled Experiment Setup
	4.2 Does learning from variable graphs help generalization?
	4.3 What is the best graph sparsification heuristic?
	4.4 What is the relationship between GNN aggregation functions and normalization layers?
	4.5 Which decoder has a better inductive bias for TSP?
	4.6 How does the learning paradigms impact the search phase?
	4.7 Which learning paradigm scales better?

	5 Conclusion
	A Additional Context for Figure 1: Computational challenges of learning large scale TSP
	B Hardware and Timings
	C Datasets
	D Learning Paradigms and Amenity to Search
	E Visualizing Model Predictions

