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Abstract
Efficient production scheduling is an important application area of constraint-based optimization
techniques. Problem domains like flow- and job-shop scheduling have been extensive study targets,
and solving approaches range from complete and local search to machine learning methods. In this
paper, we devise and compare constraint-based optimization techniques for scheduling specialized
manufacturing processes in the build-to-print business. The goal is to allocate production equipment
such that customer orders are completed in time as good as possible, while respecting machine
capacities and minimizing extra shifts required to resolve bottlenecks. To this end, we furnish
several approaches for scheduling pending production tasks to one or more workdays for performing
them. First, we propose a greedy custom algorithm that allows for quickly screening the effects of
altering resource demands and availabilities. Moreover, we take advantage of such greedy solutions
to parameterize and warm-start the optimization performed by integer linear programming (ILP)
and constraint programming (CP) solvers on corresponding problem formulations. Our empirical
evaluation is based on production data by Kostwein Holding GmbH, a worldwide supplier in the
build-to-print business, and thus demonstrates the industrial applicability of our scheduling methods.
We also present a user-friendly web interface for feeding the underlying solvers with customer order
and equipment data, graphically displaying computed schedules, and facilitating the investigation of
changed resource demands and availabilities, e.g., due to updating orders or including extra shifts.
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1 Introduction

High customization and flexibility of modern production processes increase the need for
efficient and performant scheduling methods in order to optimize the utilization of required
equipment and resources [13]. Well-studied problem domains like flow- and job-shop schedul-
ing [7, 19, 24], or even tardiness minimization for jobs running on a single machine [11],
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turn out to be NP-hard [23]. This elevated complexity makes constraint-based optimization
techniques based on integer linear programming (ILP) [4], constraint programming (CP) [22],
answer set programming (ASP) [17], or Boolean satisfiability (SAT) [5] attractive means for
tackling scheduling tasks, while problem size and specifics of industrial domains necessitate
customizations when adapting such solving methods from lab to real-world environments [14].

Industrial domains impose particular challenges due to irregularities and exceptions, such
as maintenance downtimes or extra shifts, uncertainties and variances, e.g., due to machine
breakdowns or manual handling times, as well as dynamics and policies, as evolving from
production order updates or customer service duties. While ILP and CP solvers proved to
be highly effective on benchmark scheduling problems [3, 9, 18, 21], which refer to abstract
domain models that do not incorporate the specifics encountered in industrial practice,
local dispatching [16], machine learning [25], and metaheuristic methods [27] are devised for
reactive decision making but cannot guarantee (near-)optimal quality of online schedules.

In this paper, we devise and empirically study optimization techniques for scheduling
specialized manufacturing processes of Kostwein Holding GmbH in the build-to-print business.
Unlike with large-scale assembly line production, each product is made and customized
to order, and lot size one is a frequent scenario. This goes along with the manual steps
of preparing machines and tools for particular production tasks in order to process daily
work plans at the discretion of experienced engineers. Hence, scheduling consists of deciding
which production tasks shall be performed at each workday such that resource bottlenecks
are projectively avoided and customer orders are completed in time as good as possible.
Moreover, we have to take dynamic factors like varying processing times and production
order updates into account, which can make schedules obsolete and necessitate quick changes.

In order to address these challenges, we furnish several approaches for scheduling pending
production tasks to one or more workdays, considering that long processes may exceed daily
machine capacities, for performing them. The four main contributions of our work are:

We provide an abstract formulation of our production scheduling problem from industry
and contribute an instance set based on real production data.
We propose a greedy custom algorithm as well as ILP and CP models, enabling constraint
optimization by state-of-the-art ILP and CP solvers like Gurobi1 and Google OR-tools2.
We empirically investigate our scheduling methods in realistic setups and show that
constraint-based optimization is highly beneficial for further improving greedy solutions.
We present a user-friendly web interface for launching solvers and inspecting their results
to facilitate rescheduling, e.g., with updated orders or extra shifts, and decision making.

As a result, we demonstrate the practical applicability of our scheduling methods to instances
of industrial size and relevance. In particular, our devised techniques support a timely
reaction to deviations, such as process delays and customer order updates, as well as an
upfront identification of resource bottlenecks, thus assisting production managers to take
appropriate measures like increasing machine capacities by including extra shifts or delegating
some of the pending production tasks to external suppliers.

The rest of this paper is organized as follows. Section 2 introduces an abstract formulation
of the production scheduling problem at Kostwein Holding GmbH. In Section 3, we present
a greedy custom algorithm as well as ILP and CP models for solving the problem. We
evaluate the devised techniques on instances extracted from real production data in Section 4.
Section 5 describes the web interface used to deploy our scheduling methods in industrial
practice. Finally, conclusions and future work are discussed in Section 6.

1 https://www.gurobi.com/products/gurobi-optimizer/
2 https://developers.google.com/optimization/
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2 Problem formulation

The specialized manufacturing processes at Kostwein Holding GmbH go along with manual
steps like preparing machines and tools for particular production tasks, where experienced
engineers organize the workflows at their operating units. Given such independent and
non-prescribed task execution, fine-grained sequencing of tasks competing for a resource,
e.g., performed in flow- and job-shop scheduling, is out of scope and scheduling consists of
deciding which of the pending production tasks shall be performed at each workday within
the available machine capacities. The overall goal is thus to balance the workload of machines
over several weeks from a global perspective such that bottlenecks are projectively avoided,
customer orders can be completed in time, and as few additional resources as possible have
to be utilized otherwise, e.g., by including extra shifts or delegating pending tasks to external
suppliers. In the following, we formally specify the application scenario we are dealing with.

We consider a set M of machines and a set J of jobs, where each job j ∈ J is a sequence
tj
1, . . . , tj

nj
of tasks to be successively performed on days denoted by integers D = {0, . . . , h}.

Every job j has an associated earliest start day ej ∈ D such that 1 ≤ ej , a deadline dj ∈ D,
and a weight wj ∈ N used for penalizing tardiness. While day 0 can be viewed as the date
of today and is admitted as deadline for jobs that should have been accomplished already,
the positive earliest start days express that tasks require some lead time and can only be
scheduled from tomorrow on or even later, e.g., in case raw materials need to be supplied first.
The machines m ∈ M are characterized by daily capacities qm,k ∈ Q+ ∪ {0} for 1 ≤ k ≤ h,
where qm,k = 0 means that m is unavailable on day k, such as on weekends or maintenance.

Each task t = tj
i of some job j ∈ J is further characterized by the following attributes:

the machine mt ∈ M to be used for processing t,
the processing time pt ∈ Q+ required for performing t,
the number gt ∈ N of gap days that must lie in-between the day of performing t = tj

i and
tj
i−1 if 1 < i ≤ nj , while we take gt = 0 as fixed when t = tj

1 has no preceding task, and
a coupling flag ct ∈ {0, 1}, where ct = 1 indicates that t = tj

i has to be performed directly
after tj

i−1 for 1 < i ≤ nj , while ct = 0 does not impose any such condition and is always
the case when t = tj

1.

Note that the machine to process a task is fixed, which reflects that specialized products
are customized to order, so that the specification of jobs may involve CAD design as well as
CNC programming and task allocation cannot easily be automated or adjusted. The possible
gap days between a task and its predecessor are included to leave time for intermediate steps
like specialized processes performed by external suppliers or transports between separate
manufacturing sites. In general, we assume that operating units organize their daily work
independently in order to perform their pending tasks efficiently, which precludes specific
assumptions about the sequencing of tasks on a machine and time slots of processing within
a day. Hence, a task t = tj

i must be performed gt + 1 or more days later than its predecessor
tj
i−1 (if any) and cannot be scheduled to the same day. On the other hand, the coupling

flag ct = 1 expresses that there must not be any delay between processing tj
i−1 and tj

i , apart
from days k ∈ D such that qmt,k = 0 signals unavailability of the machine mt. We use
such coupling for modeling long production tasks that exceed the daily capacity of their
machine and are thus broken up into parts to be processed directly after each other, which
circumvents unintended and inoperative preemptive scheduling of (long) tasks.

A schedule is an assignment a : T → D of tasks T = {tj
i | j ∈ J, 1 ≤ i ≤ nj} to days such

that, for every job j, 1 < i ≤ nj , and t = tj
i , we have that

CP 2021
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ej ≤ a(tj
1),

a(tj
i−1) + gt < a(tj

i ), and
if ct = 1, qmt,k = 0 for each day k ∈ D with a(tj

i−1) < k < a(tj
i ),

while the capacities qm,k of machines m ∈ M for days 1 ≤ k ≤ h have to be respected, i.e.,∑
t∈T,mt=m,a(t)=k pt ≤ qm,k must hold. That is, machine capacities, earliest start days of

jobs, and requirements about the days between successive tasks impose hard constraints
on feasible schedules. Clearly, the scheduling horizon h, i.e., the number of days to which
tasks can be scheduled, must be large enough to allow for allocating all tasks within the
available machine capacities, and in Section 3.1 we present a greedy algorithm to determine
a sufficient horizon. Also note that the rational numbers for processing times and machine
capacities are merely considered for a convenient representation of timeframes, e.g., in terms
of fractions of hours or minutes, while they can always be scaled to integers without loss
of precision, so that off-the-shelf ILP and CP solvers can be applied to the corresponding
models described in Section 3.2 and Section 3.3.

The deadlines dj and weights wj for jobs j ∈ J are used to assess the quality of schedules
by a weighted sum

∑
j∈J,a(tj

nj
)>dj

wj ·
(
ω · (a(tj

nj
) − dj) + ω′) subject to penalties ω, ω′ ∈ N

per day a job is delayed or per delayed job, respectively. Both penalties are multiplied by
job weights to incorporate priorities, the lower the weighted sum the better the quality of
a schedule is, and the numbers taken for ω and ω′ allow for balancing specific objectives
obtained when either penalty is set to zero: if ω′ = 0, the total weighted tardiness of a
schedule is to be minimized, or the weights of delayed jobs should be minimal in case ω = 0.

Our scheduling problem is a specific version of the Resource-Constrained Project Schedul-
ing Problem (RCPSP) [15], which considers the scheduling of activities under precedence
and resource constraints such that particular objectives are optimized. The broad RCPSP
framework embraces plenty problem variants with diverse features and solving approaches
proposed in the literature. Our application can here be categorized as a single-mode [8],
partially renewable [6], cumulative [20] resource allocation task with release dates and dead-
lines [10] subject to time-based objectives [2]. Machine unavailability days, usually standing
for weekends or bank holidays, constitute a specific phenomenon of our scenario leading to
variable time periods from start to completion for long production tasks, which we model by
splitting tasks stretching over several days up into several coupled parts.

2.1 Example
Table 1 provides the input parameters of an example problem instance with four jobs
and three machines. The earliest start days ej , deadlines dj , and weights wj of the jobs
j ∈ {1, 2, 3, 4} are listed in Table 1a, showing that the first job cannot be started before
day 2 and the others immediately on the first workday. Considering a horizon of five days,
the daily machine capacities are given in Table 1b. Note that the positive capacities qm,k

for m ∈ {1, 2, 3} are uniform, i.e., q1,k = 8, q2,k = 20, and q3,k = 4, while qm,k = 0 signals
unavailability of a machine m on day k otherwise. Currently we build on such uniform
capacity patterns for production scheduling at Kostwein Holding GmbH, since we statically
split long processes into coupled tasks such that the processing time of all but the last part
amounts to the uniform capacity of the allocated machine. The tasks t1

1 and t1
2 of the first job,

listed together with the other jobs’ tasks in Table 1c, constitute a corresponding example,
where both tasks are to be processed by machine 1, the processing time 8 of t1

1 matches
q1,1 = q1,2 = q1,4 = q1,5 = 8, and ct = 1 for t = t1

2 indicates that the second part obtained
by splitting a long task of 10 time units is coupled. Clearly, a coupled task like t = t1

2
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Table 1 Input parameters of an example problem instance.

(a) Earliest start days, deadlines, and
weights of jobs.

Job Earliest Deadline Weight
j ej dj wj

1 2 4 3
2 1 4 2
3 1 2 2
4 1 1 2

(b) Daily capacities of machines.

Machine Day 1 2 3 4 5
m qm,1 qm,2 qm,3 qm,4 qm,5

1 8 8 0 8 8
2 20 0 0 20 20
3 4 4 4 4 4

(c) Machines, processing times, and requirements of production tasks.

Job Task Machine Processing time Gap days Coupled
j t mt pt gt ct

1 1 1 8 0 0
1 2 1 2 0 1
2 1 2 10 0 0
2 2 1 2 0 0
2 3 3 3 1 0
3 1 2 0.5 0 0
4 1 3 2.5 0 0

always comes with gt = 0 gap days, as conflicting requirements to postpone and proceed
with processing t would be imposed otherwise. Unlike that, gt = 1 for t = t2

3, i.e., the third
task of the second job, means that at least one day must lie in-between performing t2

2 and t2
3,

e.g., for transport to a different manufacturing site.
Partial schedules considering only the first or second job, respectively, are displayed in

Figure 1a. Regarding the first job and its two coupled tasks in the upper part, t1
1 is scheduled

to the earliest start day e1 = 2 and occupies the full capacity q1,2 = 8 of machine 1 on day 2.
The coupled task t1

2 must be scheduled to the next day on which machine 1 is available,
which is day 4 in view of q1,3 = 0, and 6 time units of q1,4 = 8 are left for processing any
other jobs’ tasks by machine 1 on the same day. Turning to the second job and its three tasks
in the lower part, t2

1 is scheduled to day e2 = 1 and utilizes half of the capacity q2,1 = 20
of machine 2. The successor task t2

2 is processed by machine 1 directly on the next day 2,
occupying 2 time units of the capacity q1,2 = 8. Given the gap days gt = 1 for the remaining
task t = t2

3, the earliest day for performing t2
3 is 4, and it takes 3 time units of the capacity

q3,4 = 4 of machine 3. Scheduling t2
3 to day 4 is required for finishing the second job within

its deadline d2 = 4, while a penalty weighted by w2 = 2 would apply if delaying t2
3 to day 5.

An entire schedule for the example instance in Table 1 is shown in Figure 1b. Here
the three tasks of the second job are scheduled as discussed before, so that the second job
is finished within its deadline. The short tasks t3

1 and t4
1 of the third and fourth job are

additionally processed by machine 2 or 3, respectively, on the earliest start day e3 = e4 = 1.
This is possible because the sum of processing times 10 and 0.5 of t2

1 and t3
1 stays within

the capacity q2,1 = 20 of machine 2, and q3,1 = 4 also yields the availability of machine 3 to
process t4

1 for the required 2.5 time units. Different from the previous partial schedule for the
first job, its first task t1

1 cannot be scheduled to day 2 anymore because t2
2 takes part of the

capacity q1,2 = 8 of machine 1, while the full capacity would be required for processing t1
1.

Given that machine 1 is only available again on day 4, t1
1 is performed then, and its coupled

task t1
2 on the next day 5. That is, the first job is finished one day later than its deadline

d1 = 4, which in view of the weight w1 = 3 leads to the quality 3 ·(ω ·(5−4)+ω′) = 3 ·(ω +ω′)
w.r.t. the penalties ω, ω′ of the schedule displayed in Figure 1b.

CP 2021
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Job 2 Day 1 Day 2 Day 3 Day 4 Day 5

Machine 1 / 8 / 8 / 0 / 8 / 8

Machine 2 / 20 / 0 / 0 / 20 / 20

Machine 3 / 4 / 4 / 4 / 4 / 4

10

2

3

one rest day 
before
task three

Job 1 Day 1 Day 2 Day 3 Day 4 Day 5

Machine 1 / 8 / 8 / 0 / 8 / 8

Machine 2 / 20 / 0 / 0 / 20 / 20

Machine 3 / 4 / 4 / 4 / 4 / 4

8              / 8 2
earliest start 
is day two coupling

(a) Scheduling two jobs separately based on earliest availability of machines.

All jobs Day 1 Day 2 Day 3 Day 4 Day 5

Machine 1 / 8 / 8 / 0 / 8 / 8

Machine 2 / 20 / 0 / 0 / 20 / 20

Machine 3 / 4 / 4 / 4 / 4 / 4

8              / 8 2

10

2

32.5

(b) Schedule assigning the tasks of all four jobs to workdays.

Figure 1 Schedules for the example instance in Table 1.

3 Solving approaches

Our main goal is to utilize constraint optimization for solving the production scheduling
problem specified in the previous section. This, however, requires the choice of a sufficient
horizon in terms of workdays, so that all jobs can be scheduled and their tardiness inspected
in order to assess the solution quality. To this end, we start by proposing a greedy algorithm
able to quickly produce a sensible custom solution. Beyond the option to timely screen
the effects of and react to deviations in resource availabilities and demands, we use greedy
solutions to derive a feasible scheduling horizon along with strict limits on the completion of
jobs. Exhaustive optimization can then be performed by applying state-of-the-art solvers
to the ILP and CP models also presented in this section, where greedy solutions help to
warm-start the optimization and converge to high-quality schedules in shorter solving time.

3.1 Greedy algorithm
We have devised a greedy algorithm to heuristically determine a sensible custom solution
that yields a feasible scheduling horizon and can also be used to parameterize the constraint
optimization performed by ILP and CP solvers. The basic idea is to proceed day by
day to greedily schedule pending tasks, whose predecessors (if any) have been processed
before, according to some priority until all tasks are scheduled. Letting a(tj

0) = ej − 1 and
f j

i =
∑

i<i′≤nj ,t′=tj

i′
(gt′ + 1) for each job j ∈ J and 1 ≤ i ≤ nj , the priority function we use

for pending tasks t = tj
i and days k ∈ N is calculated as follows:

priority(tj
i , k) =


−∞ if k ≤ a(tj

i−1) + gt

∞ if a(tj
i−1) + gt < k and ct = 1

wj · ω+ω′

exp(dj−(k+fj
i

)) if a(tj
i−1) + gt < k, ct = 0, and k + f j

i ≤ dj

wj · ω
exp(nj−i+1) otherwise
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Algorithm 1 Greedy task scheduling.

T ← {tj
1 | j ∈ J};

k ← 0;
while T ̸= ∅ do

k ← k + 1;
S ← list of tasks t ∈ T in decreasing order of priority(t, k);
foreach t ∈ S such that priority(t, k) ̸= −∞ do

if pt ≤ qmt,k then
a(t)← k;
qmt,k ← qmt,k − pt;
T ← T \ {t};
if i < nj for t = tj

i then T ← T ∪ {tj
i+1};

end
end

end

The distinguished priority −∞ is taken for (successor) tasks t that cannot be scheduled
to the day k in view of the (positive) number gt of required gap days. In turn, a coupled
successor task t for which ct = 1 must be scheduled to the next day on which its allocated
machine is available, and in this case we use the distinguished priority ∞.

When no hard constraints forbid or force t = tj
i to be scheduled, we approximate the

feasibility of finishing the job j within its deadline dj according to the condition k + f j
i ≤ dj ,

which applies if and only if the gap days and workdays needed for successor tasks of t are still
left after the day k. If so, we optimistically assume the availability of allocated machines and
consider the sum ω + ω′ of penalties as cost to safe by processing t on day k. To also reflect
the criticality of jobs, we reduce this cost exponentially based on the number dj − (k + f j

i )
of remaining buffer days by which pending tasks of j can be further postponed within the
deadline dj . The outcome is then scaled by the weight wj to incorporate the importance of j.

The case that remains is that the job j can certainly not be finished within its deadline dj ,
so that the penalty wj · ω′ applies no matter whether t = tj

i is scheduled to day k or later.
This means that only the penalty ω is of further interest, we reduce it exponentially according
to the number nj − i + 1 of pending tasks of j, and again scale the outcome by the weight wj .
Among jobs that will certainly be delayed, the priority calculation thus prefers those with
fewer remaining tasks, which are presumably easier to complete soon. Arguably, such a
scheme may seem unbalanced and at risk to delay jobs needing more work for even longer,
but our empirical investigation of greedy heuristics led to best schedules with the described
prioritization strategy, and constraint optimization later goes for improvements.

Algorithm 1 outlines our greedy method by pseudo-code, whose central part is to traverse
the pending tasks t ∈ T per day k in decreasing order of priority. When the daily capacity
qmt,k of the allocated machine mt suffices to process t, we schedule t and subtract its
processing time pt from the machine capacity before checking whether other tasks of lower
priority can be performed in addition. If a scheduled task t = tj

i has the successor tj
i+1,

the latter is added to the set T of pending tasks and can be processed from day k + 1 on,
where the greedy scheduling proceeds when no further task can be performed within the
available machine capacities on day k. Given our assumption of uniform positive capacities
for days on which machines are available, the splitting of longer tasks into coupled parts with
processing times up the capacity of their allocated machine, and weekly repeating machine
capacity patterns (except for occasional holidays, maintenance, or extra shifts), Algorithm 1
will eventually succeed to schedule all tasks and thus yield a sufficient scheduling horizon.

CP 2021
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Reconsidering our example instance discussed in Section 2.1, all tasks that can be processed
on day 1, i.e., t2

1, t3
1, and t4

1, are scheduled greedily, as shown in Figure 1b. The pending tasks
on day 2, which matches the earliest start e1 = 2 of job 1, are T = {t1

1, t2
2}, both tasks compete

for machine 1, and we have to inspect their priorities to decide whether to process t1
1 or t2

2.
As displayed in Figure 1a, it is feasible to finish both tasks within their common deadline
d1 = d2 = 4, so that we have to consider the gap days and workdays needed for successor tasks:
f1

1 = 0 + 1 = 1 and f2
2 = 1 + 1 = 2 in view of t1

2 or t2
3, respectively. Together with the weights

w1 = 3 and w2 = 2, this yields priority(t1
1, 2) = 3 · (ω +ω′)/e ≤ 2 · (ω +ω′)/1 = priority(t2

2, 2),
where the priority of t2

2 for day 2 is strictly greater whenever ω + ω′ ̸= 0. Hence, we greedily
schedule t2

2 to day 2, and then the remaining tasks t1
1, t1

2, and t2
3 to the next days on which

they can be processed w.r.t. the availability of machine 1 and the gap day required before t2
3.

This reproduces the schedule shown in Figure 1b by means of our greedy scheduling strategy.

3.2 ILP model
In order to fix a feasible scheduling horizon to be investigated by means of constraint-
based optimization techniques, we take advantage of the greedy solution determined by
our heuristic strategy. For each job j ∈ J , we restrict the processing of its tasks to the
latest day rj = a(tj

nj
) + b, where a(tj

nj
) is the completion day of j in the greedy solution

and b ∈ N is some constant. This yields the range from the earliest start day ej until rj

as period of workdays to which tasks of j can possibly be scheduled, and globally leads to
h = max{rj | j ∈ J} as sufficient scheduling horizon. For our experiments in Section 4,
we use b = 10 to admit up to 10 days later job completion than in the greedy solution,
with the hope that any such local degradations allow for schedules of better overall quality.
Notably, restricting the range of days for performing jobs based on the greedy solution
avoids infeasibility due to enforcing too tight deadlines and may also benefit optimization
performance by not overstretching the scheduling horizon in view of potentially far deadlines.
Moreover, the derived range rj implies lj = max{0, rj − dj} as limit on the number of days
by which a job j can be delayed beyond its deadline dj in the worst case.

Our ILP model for task scheduling is shown in Figure 2, starting with a summary of
instance parameters as introduced in Section 2, augmented by auxiliary functions um mapping
a day k to the number of days up to k on which the machine m ∈ M is available, the range
rj for job j ∈ J derived from a greedy solution, and its limit lj on delayed completion. The
decision variables include Booleans atj

i
,k to indicate that the task tj

i is scheduled to a day k

in the period from the earliest start ej to the range rj of its job j, a numerical variable zj

whose natural value up to lj provides the delay days of j, and a Boolean z′
j signaling that

the completion of j is delayed by at least one day. Hence, the objective function (7) matches
the weighted sum

∑
j∈J,a(tj

nj
)>dj

wj ·
(
ω · (a(tj

nj
) − dj) + ω′) subject to penalties ω, ω′ ∈ N.

The first constraint (1) expresses that each task tj
i must be scheduled to exactly one day

between the earliest start ej and range rj of j. Daily machine capacities qm,k are checked by
the constraint (2), making sure that the sum of processing times pt over all tasks t processed
by machine m on day k does not exceed qm,k. The constraint (3) addresses the gap days gtj

i

that must lie in-between the predecessor tj
i−1 and a task tj

i with 1 < i. For example, we obtain∑
1≤k≤5 k · at2

2,k + 1 <
∑

1≤k≤5 k · at2
3,k for the tasks t2

2 and t2
3 of the instance discussed in

Section 2.1, where gt2
3

= 1 indicates that t2
3 cannot be scheduled directly to the next day after

performing t2
2. Coupled tasks tj

i−1 and tj
i are handled by the constraint (4), requiring that tj

i is
processed on the next day such that its allocated machine mtj

i
is available, where coefficients

um
t

j
i

(k) map the availability days k of mtj
i

to consecutive natural numbers. Regarding
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Parameters

k ∈ D \ {0} day / set of days
m ∈M machine / set of machines

qm,k ∈ Q+ ∪ {0} capacity of machine m for day k

j ∈ J job / set of jobs
ej ∈ D \ {0} earliest start day of job j

dj ∈ D deadline of job j

wj ∈ N weight of job j in objective function

tj
i ∈ T i-th task of job j / set of tasks

mt ∈M allocated machine of task t

pt ∈ Q+ processing time of task t

gt ∈ N gap days of task t

ct ∈ {0, 1} coupling flag of task t

ω, ω′ penalty for each delay day / each delayed job
um : D → D function defined by k 7→ |{1 ≤ k′ ≤ k | qm,k′ ̸= 0}|
rj ∈ D \ {0} range specifying the latest day to complete job j

lj ∈ N limit on the delay days of job j beyond its deadline dj

Decision variables

a
t

j
i

,k
∈ {0, 1} 1 if task tj

i is scheduled to day k with ej ≤ k ≤ rj , 0 otherwise

zj ∈ {0, . . . , lj} delay days of job j, limited by lj

z′
j ∈ {0, 1} 1 if job j is delayed, 0 otherwise

Constraints∑
k∈D\{0} a

t
j
i

,k
= 1 ∀tj

i ∈ T task assignment (1)∑
t∈T,mt=m

pt · at,k ≤ qm,k ∀m ∈M,∀k ∈ D \ {0} machine capacities (2)∑
k∈D\{0} k · a

t
j
i−1,k

+ g
t

j
i

<
∑

k∈D\{0} k · a
t

j
i

,k
∀tj

i ∈ T, 1 < i gap days (3)∑
k∈D\{0} um

t
j
i

(k) · a
t

j
i−1,k

+ 1 =
∑

k∈D\{0} um
t

j
i

(k) · a
t

j
i

,k
∀tj

i ∈ T, c
t

j
i

= 1 coupled tasks (4)∑
k∈D\{0} k · a

t
j
nj

,k
− dj ≤ zj ∀j ∈ J delay days (5)

zj ≤ lj · z′
j ∀j ∈ J delayed jobs (6)

Objective function

min ω ·
∑

j∈J
wj · zj + ω′ ·

∑
j∈J

wj · z′
j weighted sum of delay days and delayed jobs (7)

Figure 2 ILP model for task scheduling.

the coupled tasks t1
1 and t1

2 of our example in Section 2.1, this scheme gives the constraint
1 ·at1

1,1 +2 ·at1
1,2 +2 ·at1

1,3 +3 ·at1
1,4 +4 ·at1

1,5 +1 = 1 ·at1
2,1 +2 ·at1

2,2 +2 ·at1
2,3 +3 ·at1

2,4 +4 ·at1
2,5,

in which the coefficients do not increase for day 3 in view of the unavailability of machine
mt1

2
= mt1

1
= 1. The remaining constraints (5) and (6) impose lower bounds on the variables

zj and z′
j , reflecting the delay days or delayed completion, respectively, of a job j. For

the first job of the instance in Section 2.1 with its deadline d1 = 4, we obtain the specific
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constraints
∑

1≤k≤5 k · at1
2,k − 4 ≤ z1 and z1 ≤ 1 · z′

1. This necessitates z1 = z′
1 = 1 when

at1
2,5 signals that the last task t1

2 of the job is processed on day 5, as done according to the
schedule in Figure 1b, so that the cost 3 · (ω + ω′) is included in the objective function (7).
Any further constraints imposing upper bounds and thus fixing the values of zj and z′

j would
be redundant, since minimization of the objective function also aims at assigning smallest
feasible values and optimal solutions for the ILP model in Figure 2 readily give best schedules.

Recalling the role of a greedy solution, we use it for restricting the days to process
jobs, thus reducing the representation size of our ILP model and targeting solvers towards
better schedules in the neighborhood of the greedy solution, while even better schedules
that entirely differ may be excluded. Given the high complexity of our industrial scheduling
domain with thousands of tasks to be scheduled over several weeks, as empirically studied in
Section 4, we make this trade-off and do not insist on schedules of theoretically best quality.
However, we observed that admitting up to 10 days later job completion than in the greedy
solution gives loose ranges for our instances, where constraint optimization yields schedules
such that by far most jobs are completed earlier than in the greedy solution. The quality
of schedules obtainable in reasonable solving time is also higher than with further relaxed
ranges that increase likewise the representation size and the search space of instances. That
is, we could not empirically confirm potential theoretical advantages due to extended limits
on the completion of jobs, and thus up to 10 more days than in the greedy solution appear
sufficiently cautious to us. Moreover, our experiments demonstrate that warm-starting solvers
with a greedy solution, giving an initial hint on promising task assignments, significantly
improves their optimization performance.

3.3 CP model

Given that linear constraints over finite-domain variables are supported by CP solvers (and
rational coefficients can be scaled to integers without loss of precision), our CP model for task
scheduling is primarily a syntactic reformulation of the constraints and objective function in
Figure 2. However, rather than taking Booleans atj

i
,k to represent that a task tj

i is scheduled
to day k, we use interval variables atj

i
with associated duration 1 within the period from

the earliest start ej to the range rj of the job j. This enables a convenient modeling of the
constraint (2) for machine capacities in terms of the cumulative global constraint [12]. Since
cumulative assumes the capacity qm,k of a machine m ∈ M to be the same on each day k in
the scheduling horizon, we use the uniform positive capacity on availability days of m as
constant threshold, and model unavailability on a day k by adding a fixed task t taking the
full capacity of m as processing time pt. The solutions and objective function values then
correspond one-to-one between our ILP and CP models, where either a Boolean atj

i
,k or a

variable assignment atj
i

= k indicates the day k for performing a task tj
i .

Our motivation for devising two models of similar functionality is that decision variables,
linear constraints, and objective functions can be conveniently expressed in both formats, so
the extra effort for modeling is modest, while the respective state-of-the-art solvers feature
complementary constraint-based optimization techniques. A major advantage of ILP solvers
is the estimation of solution quality based on the duality gap to relaxed real-valued solutions
for a model [1]. Support of global constraints with dedicated propagation methods is a
particular strength of CP solvers, where we make use of cumulative to limit machine capacities
more compactly than by separate linear constraints for each day in the scheduling horizon.
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4 Experimental analysis

We empirically evaluate the optimization performance and solution quality achieved with
our scheduling methods on problem instances extracted from production data by Kostwein
Holding GmbH, operating in the build-to-print business. The used instance sets and solver
settings are described first, and then we present the results of our empirical evaluation.

4.1 Experimental setup
The production data supplied by Kostwein Holding GmbH contains a complete list of customer
orders taken as snapshot from the company’s ERP system. While these orders may have
substantial lead times with planned delivery dates several months ahead, the workflows can
possibly change during the production process due to customer requests, and new orders
regularly come in between one data export and another. Hence, a production schedule
incorporating all present orders will have a horizon of several months, yet be subject to
revision in a few days at latest, so that filtering orders and their planned workflows to focus
on a shorter scheduling horizon up to a few weeks is advisable in practice. A list of daily
machine capacities constitutes the second kind of input, which usually follow a weekly pattern
apart from bank holidays, planned maintenance, and occasionally extra shifts on weekends to
manage peak loads. This matches our current assumption of uniform machine capacities on
availability days in order to split long tasks into coupled parts occupying a machine for days.

The problem instances for our experiments are based on six customer order lists along
with production workflows exported at different weeks. Following the idea that schedules
should focus on the near to mid-term future, we extracted the jobs whose earliest start days
lie within the next two, four, or six weeks, respectively, thus obtaining three instance sets
with six realistic scenarios of roughly same size in each. In fact, the extracted jobs amount
to about 6000 tasks per 2-weeks period, so that the average number of tasks to be scheduled
is around 6000, 12000, or 18000 depending on the instance set.

In preliminary experiments, we compared the ILP solvers Gurobi1 and IBM CPLEX
Optimizer3 as well as the CP solvers Google OR-tools2 and IBM ILOG CP Optimizer4.
Both the two ILP and the two CP solvers showed comparable performance on small problem
instances, with a slight tendency in favor of Gurobi or Google OR-tools, respectively, when the
instance size grows. We thus run Gurobi and Google OR-tools in our systematic experiments.

We conducted our experiments on a machine equipped with two Intel Xeon 6138 CPUs,
providing 40 cores and offering 80 parallel threads. While Google OR-tools (version 8.2.8710)
is configured to exploit all 80 threads, Gurobi (version 9.1.1) runs 32 threads, which is the
default recommended by the developers, as more threads can in some cases deteriorate the
optimization performance. The penalties for each delay day or delayed job, respectively, are
fixed to ω = 1 and ω′ = 3, so that entirely avoiding a delay counts more than reducing the
delay length just by single days. Aiming at few delayed jobs makes practical sense because
the delays point out bottlenecks that may a posteriori be resolved by including extra shifts
or delegating critical production tasks to external suppliers. We report average objective
function values along with the standard deviation relative to greedy solutions, determined by
means of the heuristic algorithm in Section 3.1, for time limits of 120, 600, and 1800 seconds
when the solvers are warm-started with greedy solutions. Without warm-start, we restrict

3 https://www.ibm.com/analytics/cplex-optimizer/
4 https://www.ibm.com/analytics/cplex-cp-optimizer/
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Table 2 Objective function values relative to the greedy solution for warm-started solvers with
120s, 600s, and 1800s solving time limit, based on six instances per number of weeks, where respective
gaps are additionally given for ILP. Results without warm-start, for 1800s solving time limit, include
the number of instances for which a solution was found. No run terminated before the time limit.

Weeks
Greedy CP (solved by Google OR-tools)

Time limit, start N/A 120s, warm 600s, warm 1800s, warm 1800s, no warm
Number of tasks Objective Objective Objective Solved

2 6543 ± 1020 1.00 0.84 ± 0.04 0.65 ± 0.08 0.53 ± 0.11 0.59 ± 0.11 5
4 12204 ± 1128 1.00 0.96 ± 0.01 0.87 ± 0.03 0.78 ± 0.03 - 0
6 17387 ± 455 1.00 0.98 ± 0.00 0.94 ± 0.01 0.89 ± 0.02 - 0

Weeks
ILP (solved by Gurobi)

120s, warm 600s, warm 1800s, warm 1800s, no warm
Objective Gap Objective Gap Objective Gap Objective Solved

2 0.55 ± 0.11 0.40 ± 0.18 0.41 ± 0.16 0.25 ± 0.10 0.35 ± 0.18 0.18 ± 0.08 2.00 ± 0.00 1
4 0.88 ± 0.08 0.55 ± 0.13 0.73 ± 0.03 0.43 ± 0.09 0.66 ± 0.07 0.25 ± 0.10 - 0
6 1.00 ± 0.02 0.60 ± 0.05 0.99 ± 0.03 0.55 ± 0.05 0.99 ± 0.03 0.52 ± 0.05 - 0

the comparison to 1800 seconds because the optimization performance declines dramatically
and plenty runs do not even return a feasible solution within the solving time limit. For the
ILP solver Gurobi, which reports the duality gap to relaxed real-valued solutions, we also
indicate average gaps and the standard deviation relative to the quality of greedy solutions.
Our instance sets and instructions for running the compared solvers are available in the
supplementary material.

4.2 Experimental results
Table 2 summarizes the results of our empirical evaluation. The instance sets based on jobs
with the earliest start day up to two, four, or six weeks in the future are listed in separate
rows, and average objective function values together with further measurements (where
applicable) for solvers and their setups are given in respective columns. The average number
of tasks for the instance sets including jobs starting differently many weeks ahead is provided
first, and the normalized quality 1.00 of greedy solutions is then indicated for reference.

For both the CP solver Google OR-tools and the ILP solver Gurobi, where results for
the latter are displayed below the former, we observe that the solution quality improves
substantially with increasing solving time limit when the solvers are warm-started with
greedy solutions. However, Gurobi has a significant edge on Google OR-tools for the instance
sets with jobs starting up to two or four weeks ahead, yielding 18% and 12% better quality
of schedules relative to the greedy solution with 1800s time limit for both solvers. These
percentages increase even more when shorter solving time limits are taken, such as 29%
difference between the best solutions of Gurobi and Google OR-tools in 120s for the 2-weeks
instances, and still 14% in 600s for the 4-weeks instances. Unlike that, Google OR-tools
performs better than Gurobi on the 6-weeks instances, where its solutions are of 10% better
quality with 1800s time limit. We checked that Gurobi here deals with roughly 500,000
linear constraints, and we conjecture that the handling of the cumulative global constraint
by Google OR-tools is advantageous for instances of such large size. The box plot of average
objective function values in Figure 3 also illustrates these clear trends visually.

Regarding the duality gaps provided by Gurobi, they range from 18% for 2-weeks instances
to 52% for 6-weeks instances, so that the best schedules found within 1800s solving time
limit cannot be claimed optimal, but constitute a trade-off between solving time and solution
quality. This indicates that provably optimal schedules for our instances of industrial size
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2 weeks 4 weeks 6 weeks

Figure 3 Plotted objective function values for ILP and CP solvers relative to the greedy solution.

are beyond reach, and compromises have to be made. Limiting the considered jobs to those
starting at most two to four weeks in the future already yields substantial improvements by
the ILP solver Gurobi in comparison to greedy solutions deemed sensible. Moreover, the
poor results of Gurobi and Google OR-tools without warm-start in Table 2, whose runs fail
to return any feasible solution except for some 2-weeks instances, emphasize that a heuristic
algorithm and constraint-based optimization techniques form a worthwhile combination to
come to high-quality schedules in reasonable solving time.

5 Web interface

The presented scheduling methods are integrated as back-ends of a web application, whose
user interface is illustrated in Figure 4, supporting the analysis of production planning
scenarios at Kostwein Holding GmbH. To this end, production managers can upload customer
order lists including the workflows of manufacturing processes exported from the company’s
ERP system. A second file provides the daily machine capacities by calendar dates, and the
screenshot in Figure 4a indicates such input files in the upper left menu.

Before running solvers to compute schedules, the jobs can be filtered based on their
earliest start days or deadlines to restrict the scope of the considered problem instance. As
displayed in Figure 4a, our web interface allows for visually inspecting instance properties like
the length distribution of tasks to be scheduled and the accumulated workloads of machines,
which is helpful to spot critical resources and potential bottlenecks independently of specific
production schedules. For example, peak loads of the allocated machines may be rebalanced
by modifying the planned workflows and delegating tasks to alternative resources able to
process them, or extra shifts on weekends may be included to temporarily increase the
machine capacity and compensate the additional working hours by free days at another time.
Taking appropriate measures to rebalance high workloads requires specific human experience
about the involved manufacturing processes and can thus not be performed automatically in
a meaningful way, yet our web application aims to support decision making by facilitating
the exploration of possible scenarios like, e.g., the effects of increasing machine capacities.

Once a problem instance has been configured, the main functionality, however, consists
of picking back-end solvers and settings to perform the task scheduling. In particular, the
penalties ω and ω′ for delay days or delayed jobs, respectively, can be adjusted, solving time
limits be fixed, and for Gurobi also a duality gap below which the optimization is stopped can
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(a) Machine loads. (b) Visualization of greedy schedule.

Figure 4 User interface of the web application.

be given. As the experiments in Section 4 show, warm-starting Gurobi or Google OR-tools
with a greedy solution virtually always benefits their optimization performance, so that the
list of solver settings to launch one after the other, which can be compiled through the web
interface, should usually include the warm-start option in each of its entries.

While solvers are run, our interface provides feedback about the optimization progress,
including the objective function value of the best solution found so far and also the current
duality gap for Gurobi. When a run is finished, the best schedule found can be visualized by
a day chart, as exemplarily shown for a greedy solution in Figure 4b. Here the machines are
sorted in decreasing order of their workloads, recurring idle periods of two days represent
weekends, yet idleness of highly loaded machines on other days is presumably due to
shortcomings of our greedy strategy and can be improved by constraint-based optimization.
While the day charts give an overview of the distribution of machine workloads, the detailed
schedules with the days for performing each task are available as editable spreadsheets.

We are currently about to deploy the web application at Kostwein Holding GmbH on a
regular basis, with two main use cases in mind: strategic production scheduling for several
weeks, resembling the scopes of the 2-weeks and 4-weeks instance sets in Section 4, to be run
over night as well as reactive rescheduling during a day, where the number of jobs to consider
will be much smaller to give quick feedback and possibly even optimal short-term schedules.

6 Conclusion

Our paper presents an industrial production scheduling problem and proposes three dedicated
solving methods. We have devised a greedy algorithm to come up with a feasible custom
solution quickly. Constraint optimization by state-of-the-art solvers can benefit the production
scheduling process based on the provided ILP and CP models. Notably, we consult greedy
solutions to derive feasible ranges of days for performing production tasks, while the deadlines
given for jobs may be too tight for allocating all tasks within the available machine capacities.
The deadlines are used to assess the quality of schedules in terms of delay days and delayed
jobs, where production managers can then decide on measures to resolve resource bottlenecks.

Regarding the optimization performance, our experiments on problem instances of indus-
trial size and relevance indicate that provably optimal schedules for thousands of production
tasks are beyond reach. Nevertheless, the ILP solver Gurobi and the CP solver Google
OR-tools successfully exploit the hints by greedy solutions taken to warm-start them and
then manage to substantially improve the solution quality in reasonable solving time. While
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some care must be taken about the representation size of instances, where around 12000
tasks in our 4-weeks instance set constitute a limit that should better not be exceeded, our
empirical results demonstrate the clear advantages of combining a greedy algorithm with
constraint-based optimization techniques. The synergy of the greedy and constraint-based
methods thus proves to be a practically successful approach. Also taking into account that
customer orders and production schedules are frequently subject to revision in our application
scenario, longer scheduling horizons than considered in our experiments are of little practical
interest, so that the developed scheduling methods scale well to realistic problem sizes.

For applying our scheduling methods in industrial practice, we have developed a user-
friendly web interface through which production data and machine capacity profiles can be
uploaded and filtered to conveniently specify problem instances. The interface also allows
for configuring the penalties used within the objective function for assessing the quality
of solutions as well as parameterizing the solvers to run for the optimization of schedules.
Both instance properties and returned production schedules can be visually inspected for an
accumulated overview of their key features. Since appropriate measures to resolve resource
bottlenecks, such as increasing machine capacities, reallocating or delegating tasks, require
expert knowledge that is beyond the scope of production scheduling, the web interface is
meant to support production managers in exploring possible scenarios and making decisions.

We are currently in the trial phase of confronting our web application regularly with
the real production data at Kostwein Holding GmbH, where the evaluation is performed
by business experts who are not supposed to need in-depth understanding of the supplied
solving methods. The goal is to gather user experience and practical feedback whether the
provided functionality and performance are serviceable in the production scheduling process
and help to complete customer orders without running into resource bottlenecks. In this
respect, our scheduling methods and the encapsulating web application contribute prototypes
for experimentation and the further refinement of requirements, where a few immediately
compelling directions of future work are discussed in the remainder of this paper.

6.1 Future work
There are a number of opportunities to improve the performance and extend the applicability
of the presented scheduling methods. The first consideration is that our greedy algorithm is
still ad hoc and based on limited experiments with a handful of heuristics. Arguably, the
instances of our scheduling problem are related to each other, as rescheduling with partially
overlapping jobs is frequently needed in practice. Hence, there is a good chance that machine
learning methods can be trained to typical resource demands and availabilities, and thus
lead to better custom solutions than our greedy algorithm with manually selected heuristics.
As one particularly promising approach, we are investigating natural evolution strategies [26]
for training neural networks to provide the priority for greedy task scheduling. It is then an
interesting question we did not explore yet whether warm-starting ILP and CP solvers with
feasible solutions of better quality further improves their optimization performance.

Long production tasks that occupy a machine for several days are currently split into
coupled parts with fixed processing times, based on the assumption of uniform machine
capacities on availability days. This working hypothesis has been adopted to keep the initial
modeling approaches simple, yet sacrifices flexibility regarding the machine capacity profiles
that can be handled properly. Extending our constraint models to support a dynamic splitting
mechanism, where the number and processing times of coupled tasks adjust to the available
machine capacities, may allow for addressing richer application scenarios. For example, such

CP 2021



36:16 Constraint Optimization for Workload Balancing

features would enable an automatic allocation of extra shifts declared as optional in the
input, e.g., for switching between one- and two-shift operation modes based on demands,
which at the moment requires the separate inspection of eligible machine capacity profiles.

A third direction of future work for tuning the optimization performance and achieving
tighter (near-)optimality guarantees in terms of a small duality gap is to study worthwhile
problem decompositions. For example, we may narrow down constraint-based optimization
to tasks processed by highly loaded machines and use gap days as abstractions of skipped
tasks. The abstracted tasks would then be inserted again in a post-processing phase.
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