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Abstract
The minimum weighted connected dominating set (MWCDS) problem is an important variant of
connected dominating set problems with wide applications, especially in heterogenous networks
and gene regulatory networks. In the paper, we develop a nested local search algorithm called
NestedLS for solving MWCDS on classic benchmarks and massive graphs. In this local search
framework, we propose two novel ideas to make it effective by utilizing previous search information.
First, we design the restart based smoothing mechanism as a diversification method to escape from
local optimal. Second, we propose a novel inner-layer local search method to enlarge the candidate
removal set, which can be modelled as an optimized version of spanning tree problem. Moreover,
inner-layer local search method is a general method for maintaining the connectivity constraint when
dealing with massive graphs. Experimental results show that NestedLS outperforms state-of-the-art
meta-heuristic algorithms on most instances.
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1 Introduction

Given an undirected connected graph G = (V, E), a set D ⊆ V forming a connected subgraph
in G is called a connected dominating set (CDS) if each vertex in V either belongs to D or
is adjacent to at least one vertex in D. The minimum connected dominating set (MCDS)
problem is to find a CDS with the minimum size. MCDS is a well-known combinatorial
optimization problem with important applications [1, 14].

MCDS assumes that vertices are equally important. However, this assumption fails to
hold in many real world scenarios where each vertex is associated with various types of
weights. A specific application is to model heterogenous networks [22] where each vertex
generates different cost (e.g., energy consumption and communication delay). The paradigm
of handling such vertex weighted graph refers to an important generalization of MCDS, i.e.,
minimum weighted connected dominating set (MWCDS) problem, aiming to find a CDS with
the minimum total weight. The MWCDS is used to form a low-cost network backbone for
communication applications where the cost usually represents the power consumption rate
or corresponding security coefficient of backbones [27, 28]. Moreover, MWCDS has other
applications in biological networks [16] and generating pictorial storylines [23]

1.1 Related Work
MWCDS is a classic NP-hard problem, meaning that there are no polynomial-time algorithms
for the MWCDS problem, unless NP=P. Although MCDS is widely studied and many
specialized algorithms have already been proposed to solve MCDS on graphs with different
sizes, these MCDS algorithms [9, 18, 11, 13] cannot be directly used to deal with the MWCDS
problem because they fail to consider the weight information and structure characteristics.

Because of its NP-hardness, much of the research effort in the past decade has focused
on obtaining a good MWCDS solution within a reasonable time. In the literature, two types
of algorithms are mainly distinguished for MWCDS, i.e., approximation algorithms and
meta-heuristic algorithms. The approximation algorithms can find approximate solutions
with provable guaranteed approximation ratio, but they usually have poor performance in
practice, especially in massive graphs. Representative approximation algorithms for MWCDS
mainly used centralized methods [2, 29] or distributed methods [5, 21]. According to the
literature, the current best meta-heuristic algorithm for MWCDS is ACO-RVNS [3] based on
ant colony optimization and reduced variable neighborhood search.

1.2 Our Contributions
Previous MWCDS algorithms performed well for classic benchmarks, but they had poor
performance on massive graphs. In this paper, to further improve the performance of
MWCDS on both classic and massive graphs, we propose a nested local search framework
called NestedLS, including three phases, i.e., vertices swapping phase, tree reconstruction
phase and solution restart phase. Based on the framework, we design two novel ideas by
utilizing previous search information.

First, we propose the restart based smoothing mechanism (ReSmooth), which can be
viewed as a diversification method. In order to escape from a local optima, ReSmooth

restarts the algorithm by reconstructing a new solution during the solution restart phase.
During the reconstruction process, two kinds of previous search information (w.r.t, non-
dominated information and best solution information) are inherited to guide the algorithm
to the promising search space, resulting in a new inheriting scoring function, denoted as
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scoreinher. Moreover, after a few restart operations, the initial solution may converge. To
address this, we propose a smoothing mechanism based on the repeating rate of solution to
further diversify the search spaces.

The second and more important idea is the inner-layer local search method (InnerSearch).
Although an efficient tree-based connectivity maintenance method (TBC) proposed by Li [13]
used the spanning tree to maintain the candidate removal set, it cannot utilize search
information when constructing the spanning tree. In order to enlarge the candidate removal
set, the InnerSearch is applied to reconstruct the spanning tree by modelling it as a weighted
max-leaf spanning tree problem (WMST). Meanwhile, based on three novel intuitions of
WMST, the corresponding vertex selection rule is proposed to guide the InnerSearch to
construct the spanning tree and further improve it by a local search procedure.

These proposed ideas can be generally applied to other heuristic algorithms. Specifically,
InnerSearch is a general method for maintaining the connectivity constraint when dealing
with massive graphs, and ReSmooth provides a novel diversification scheme for restart-based
heuristic algorithms.

Extensive experiments are carried out to evaluate NestedLS on classic benchmarks and
massive graphs. Experimental results indicate that NestedLS outperforms other state-of-the-
art MWCDS heuristic algorithms on most instances, and confirm the effectiveness of two
novel ideas.

2 Preliminaries

Let G = (V, E, w) be a weighted graph where V is the set of vertices, E is the set of edges and
each vertex v ∈ V is associated with a positive weight w(v). For a vertex v, its neighborhood
is NG(v) = {u ∈ V |{u, v} ∈ E}, and its closed neighborhood is NG[v] = NG(v) ∪ {v}. The
degree of a vertex v, denoted as dG(v), is defined as |NG(v)|, and ∆G is the maximum
number of dG(v) for ∀v ∈ V . Given a vertex set S ⊆ V , NG(S) =

⋃
v∈S NG(v) \ S and

NG[S] =
⋃

v∈S NG[v] stands for the neighborhood and closed neighborhood of S, respectively.
G[S] = (VS , ES) is a subgraph in G induced by S such that VS = S and ES consists of all
the edges in E whose endpoints are in S. A weighted graph G is connected when it has at
least one vertex and there is a path between every pair of vertices.

▶ Definition 1. Given a weighted connected graph G, a vertex in G is an articulation vertex
iff removing it, together with the edges connected to it, disconnects the graph. The articulation
vertex set of G is denoted as art(G).

Given a vertex set D ⊆ V , a vertex v ∈ V is dominated by D if v ∈ NG[D], and is
non-dominated otherwise. We use D ⊆ V to denote a candidate solution and the weight
of D is w(D) =

∑
v∈D w(v). unDomG(D) = V \ NG[D] denotes a subset of vertices in

G non-dominated by D. If G[D] is connected and D dominates all vertices in V , D is a
connected dominating set (CDS). The minimum weighted connected dominating set problem
(MWCDS) is to find a CDS with the minimum total weight.

2.1 Review of Scoring Function for MWCDS
The frequency based scoring function scoref is recently proposed by Wang et al. [26]. Each
vertex v ∈ V has a property: frequency, denoted as freq[v]. It works as follows: 1) at first,
freq[v]=1 for ∀v ∈ V ; 2) at the end of each iteration of local search, freq[v]=freq[v] + 1 for
each non-dominated vertex. If u ∈ D, scoref (u)=−

∑
v∈C1(u) freq[v]/w(u), and otherwise

scoref (u)=
∑

v∈C2(u) freq[v]/w(u), where C1(u) is the set of dominated vertices that would
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become non-dominated by removing u from D and C2(u) is the set of non-dominated vertices
that would become dominated by adding u to D. Moreover, considering that age 2 is usually
used to break ties for diversification, the selection rule is described as follows.

Selection Rule: Select the added or removed vertex with the greatest scoref , breaking ties
by preferring the one with the greatest age.

2.2 Review of TBC
For combinatorial optimization problem with connectivity constraint, a key factor to the
performance is the connectivity maintenance methods, especially for massive graphs. To
tackle it, a tree-based connectivity maintenance called TBC method was proposed [13],
inspired by spanning trees. Given a candidate solution D, a spanning tree T of G[D] and
its corresponding leaf set LS(T ) are maintained during the search process. Each vertex
v ∈ LS(T ) is allowed to be removed from D, while all other vertices are forbidden to be
removed. Details for TBC can refer to [13].

3 The NestedLS Algorithm

In this section, we propose an algorithm for solving MWCDS called NestedLS.
The pseudo code of NestedLS is presented in Algorithm 1. On a top level, NestedLS

works as follows. After the initialization, a loop (lines 3–18) is executed until a given time
limit is reached, and the best solution is finally returned (line 19). Each iteration of the
loop consists of three phases, namely vertices swapping phase, tree reconstruction phase and
solution restart phase. At the first phase (lines 4–12), the candidate solution is updated
by swapping vertices. In the second phase (lines 13–14), the spanning tree is periodically
updated for diversification. During the third phase (lines 15–18), the candidate solution and
corresponding spanning tree are rebuilt if the algorithm falls into the local optima.

Before detailed description, we first introduce some notations and definitions. In
NestedLS, NoImproveStep denotes the number of consecutive iterations without improve-
ment. MaxNoImprove and TreeNoImprove denote the parameters for reconstructing the
solution and the spanning tree respectively. D, D∗ and Dlast denote the current candidate
solution, the best solution and the previous solution after last construction, respectively.
During the search process, two candidate selection subsets are maintained as follows.

(1) The candidate subset for addition is defined as candAdd(D) = NG(D) ∩
NG(unDomG(D)), where NG(D) contains vertices maintaining connectivity and
NG(unDomG(D)) is adjacent to the non-dominated vertex set. To avoid visiting previous
candidate solutions, we use the CC2 strategy [26] to further restrain candAdd(D).

(2) The candidate subset for removal is denoted as candRem(D). If |D| < κ, candRem(D) =
D \ art(G[D]) where art(G[D]) is calculated by Tarjan’s algorithm [10]. Otherwise, TBC
is adopted and candRem(D) = LS(T ). To overcome the cycling problem, the tabu
method [8] is applied to exclude those just added vertices from candRem(D) for the
next tt iterations. In our work, tt = 5 + rand(10) and κ = 100.

Now we describe the NestedLS algorithm in detail.

2 The age of a vertex v is the number of steps that have occurred since v last changed its state.
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Algorithm 1 The NestedLS algorithm.

Input: A weighted graph G = (V, E, w), the cutoff time
Output: The best obtained solution D∗

1 D := D∗ := Dlast := ReSmooth(∅, V );
2 T := InnerSearch(G[D]) and NoImproveStep := 1;
3 while timeElapse < cutoff do
4 for i := 1 to neighborSize do
5 choose vertex u ∈ candRem(D) using selection rule and D := D \ {u};
6 while |unDomG(D)| ≠ 0 and w(D) < w(D∗) do
7 choose vertex v ∈ candAdd(D) using selection rule and D := D ∪ {v};
8 if D is a feasible solution then
9 D∗ := D and NoImproveStep := 1;

10 else
11 freq[v] := freq[v] + 1, for ∀v ∈ unDomG(D);
12 NoImproveStep := NoImproveStep + 1;
13 if NoImproveStep%TreeNoImprove == 0 then
14 T := InnerSearch(G[D]);
15 if NoImproveStep > MaxNoImprove then
16 NoImproveStep := 1;
17 D := Dlast := ReSmooth(Dlast, D∗);
18 T := InnerSearch(G[D]);

19 return D∗;

In the beginning, D, D∗ and Dlast are initialized by the ReSmooth procedure (line 1)
which will be discussed in Section 4. The corresponding spanning tree T is built by a novel
inner-layer local search, which will be introduced in Section 5, and NoImproveStep is set to
1 (line 2).

In the vertices swapping phase, neighborSize vertices are first chosen from candRem(D)
using the selection rule. Then, vertices v ∈ candAdd(D) are added via the selection rule,
until there are no non-dominated vertices or w(D) ≥ w(D∗). During this process, the total
weight of current candidate solution stays below the best value.

Thus, after swapping vertices, if a feasible solution is obtained, indicating that a better
solution is found, then D∗ and NoImproveStep are updated (line 9). Otherwise, the
corresponding freq values and NoImproveStep are increased by one (lines 10–12).

In the tree reconstruction phase, if the condition is satisfied (line 13), then T will be
reconstructed accordingly (line 14).

In the solution restart phase, when NoImproveStep exceeds MaxNoImprove, meaning
that the algorithm falls into the local optima, NoImproveStep is reset and the candidate
solution D and Dlast are reconstructed (lines 16–17). Then, the spanning tree T is rebuilt
accordingly (line 18).

4 Restart Based Smoothing Mechanism

In the solution restart phase of NestedLS, an important component is called restart based
smoothing mechanism (ReSmooth), which restarts the algorithm by constructing a new
solution when falling into the local optima.

CP 2021
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4.1 Inheriting Scoring Function

In the solution restart phase, starting from an empty candidate set, vertices are iteratively
added to the candidate solution by some strategy, until its weight exceeds the best solution
or all vertices are dominated. During this phase, if a pure random procedure is applied to
generate an initial solution, the initial solution will fail to inherit previous search information.
This may make the algorithm deviate from the promising search space and thus degrade the
convergence rate of local search.

To hand this issue, two kinds of search information need to be considered.
The first information is the accumulated non-dominated information, represented by

scoref . The second essential information is “the high-quality solution”, from which the
vertices should be selected with higher priority than others. To make full use of the two
kinds of search information above, we define a novel scoring function called inheriting scoring
function, denoted as scoreinher as follows.

scoreinher(v) =
{

scoref (v) × β, v /∈ D∗ ∪ Dlast_best

scoref (v), v ∈ D∗ ∪ Dlast_best

In the above equation, “the high-quality solution” refers to D∗ and Dlast_best which denotes
the solution dominating most vertices since last solution restart phase. If all vertices are
dominated by Dlast_best, then Dlast_best is equal to D∗. Parameter β denotes the penalty
coefficient. Based on this scoring function, we propose the novel selection rule.
Inheriting-Based Selection Rule: Choose the vertex with the greatest scoreinher value,

breaking ties randomly.

4.2 Smoothing Mechanism

We observe that the initial candidate solution may converge after several solution restart
phases. The main reason is that freq values of some vertices accumulate to a large amount,
leading the algorithm to follow the previous search trajectory and then explore some recently
visited search spaces.

To avoid such phenomenon, freq should be smoothed when the initial solutions converge.
Thus, NestedLS employs a weight smoothing scheme which resembles SWT [4] in some
respect. First, we introduce the Jaccard index [12] to illustrate the repeating rate of solutions.

▶ Definition 2. The repeating rate between the initial solution of last restart Dlast and D is
defined by the Jaccard index: J(D, Dlast) = |D ∩ Dlast|/|D ∪ Dlast|.

When J(D, Dlast) exceeds a threshold MaxRepeat, indicating that the initial solutions
converge, the freq values of all vertices are smoothed as follows.

freq[v] = ρ · freq[v] + (1 − ρ) · freq, ∀v ∈ V

where freq is the average value of freq and ρ is the smoothing parameter. After smoothing
all freq values, score values will be updated accordingly. Experiments on classic benchmark
show that the average repeating rate without smoothing is on average 0.69 after calling
the ReSmooth 100 times, which confirms that without the smoothing method, the initial
candidate solution may converge.
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Algorithm 2 ReSmooth(Dlast,D∗).

Input: The solution after last construction Dlast, D∗

Output: A restart candidate solution D

1 choose a random node v ∈ V and D := {v};
2 while |unDomG(D)| ≠ 0 and w(D) < w(D∗) do
3 choose v ∈ candAdd(D) based on Inheriting-based Selection Rule and

D := D ∪ {v};
4 if J(D, Dlast) > MaxRepeat then
5 freq[v] = ρ · freq[v] + (1 − ρ) · freq, for ∀v ∈ V ;
6 return D;

4.3 The ReSmooth Algorithm
The ReSmooth is described in Algorithm 2. A random vertex is first added into the empty
candidate solution (line 1). Then, vertices are chosen to the candidate solution D based
on the inheriting-based selection rule, until all vertices are dominated, or the weight of D

exceeds that of the best solution ever (lines 2–3). The freq values are smoothed if the
repeating rate exceeds the threshold MaxRepeat (lines 4–5). Finally, the restart candidate
solution D is returned (line 6).

5 Inner-layer local search

In the tree reconstruction and solution restart phases when handling massive graphs, in order
to enlarge candRem, an important component called inner-layer local search InnerSearch

is proposed to rebuild a corresponding spanning tree. Also, it can be modelled as a weighted
max-leaf spanning tree problem, which is an interesting version of classic spanning tree
problem [7].

For current solution D, G[D]=(VD, ED) and T denote its subgraph and corresponding
spanning tree. LS(T ) is the leaf set of T , which serves as candRem(D), while TS(T ) =
D \ LS(T ) denotes the trunk set where vertices are forbidden to be removed during the
vertices swapping phase.

5.1 Motivation for Inner-layer Local Search
Before constructing a new spanning tree, we first formally define the weighted max-leaf
spanning tree problem (WMST).

▶ Definition 3. Given a graph G = (V, E, w), the weighted max-leaf spanning tree problem is
to find a spanning tree of G with the maximum total weight of leaf set, that is, the minimum
total weight of trunk set.

For any spanning tree T of solution D, its trunk set TS(T ) is connected and connects
to all leaf vertices in LS(T ). Thus, WMST can be converted to find a MWCDS of G[D],
serving as the trunk set TS(T ). We propose an InnerSearch method to construct a CDS
as TS(T ), and then further improve its quality by the local search procedure. To define
the scoring function for obtaining TS(T ), we propose three intuitions whose importance is
displayed in descending order.

CP 2021
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(1) The first intuition is that there should be more candidate removal vertices to enlarge
the search space. Moreover, vertices with large weight value should be more likely to be
removed to lower w(D). During the vertices swapping phase, CandRem(D) = LS(T )
when solving massive graphs. In order to implement the above intuition, there should
be more leaf vertices, and vertices with large weight values should be maintained in
LS(T ). Specifically, we employ a simplified version of scoref as the main scoring function
of solving WMST, denoted as score

′

f with respect to TS(T ). Given a graph G[D], if
u ∈ TS(T ), score

′

f (u) = −|C1(u)|/w(u) and otherwise score
′

f (u) = |C2(u)|/w(u), where
C1(u) and C2(u) have already been defined in Section 2.2.

(2) Our second intuition is that vertices which intensively degrade the quality of D if deleted,
should be forbidden to be removed, and thus they should be excluded from leaf set. To
achieve it, the direct way is that the scoref of leaf vertices should be higher, while the
scoref of trunk vertices should be lower. This means that vertices with lower scoref are
preferred to be left in TS(T ).

(3) The third intuition is that the leaf set should differ from previous ones, so that the
algorithm can have more different removing options. To achieve this, vertices with higher
exchanging frequency of operations (i.e., to be moved during the vertices swapping),
denoted as scoree, are preferred to be left in the trunk set. Since those vertices are
frequently set as leaf vertices since last construction, leaving them in the trunk set can
make the leaf set differ from the previous one.

It is important to notice that during the InnerSearch procedure, the score
′

f values will
be dynamically updated, while the corresponding scoref values keep unchanged because the
corresponding scoref is based on D that remains unchanged in this procedure. For v ∈ D,
scoref (v) is always no larger than 0. Based on these three intuitions, we propose the novel
selection rule for constructing TS(T ) as follows.
WMST Selection Rule: Select an added (or removed) vertex with the greatest score

′

f ,
breaking ties by picking one with the highest (or lowest) |scoref | value. Further ties are
broken by choosing one with the highest (or lowest) scoree.

5.2 The InnerSearch Algorithm

The pseudo code of InnerSearch is shown in Algorithm 3. The algorithm first constructs a
CDS of G[D] called D′, serving as the trunk set of G[D], by greedily adding vertices until it
becomes a feasible solution (lines 1–3), similar to the ReSmooth procedure, and then the
spanning tree T ′ of D′ is built by breadth first search (line 5). The loop iterates until it
fails to find a better solution within MaxNoImproveInner steps (line 6). During each loop,
local search is applied by iteratively swapping vertices based on the WMST selection rule to
improve D′ (lines 7–10). At the end of each loop, the corresponding spanning tree T ′ needs
to be updated (line 11). After the loop, the spanning tree T of D is constructed by adding
the remaining vertices in D \ D′ to T ′ by using the adding rule of TBC method [13] (line 15).
At last, the new spanning tree T is returned (line 16).

Note that to lower the complexity, the best solution during InnerSearch is not recorded,
and an approximated best solution D′ is obtained by setting MaxNoImproveInner to a small
value. In InnerSearch, the complexity of each iteration (lines 6–14) is O(neighborSize ∗
∆G[D]), while the complexity of remaining parts is O(|VD| ∗ ∆G[D] + |ED|). Since D only
accounts for 13.07% of vertices of the original graph on average, InnerSearch can be seen
as a lightweight local search procedure, compared to Algorithm 1.



B. Li, K. Wang, Y. Wang, and S. Cai 39:9

Algorithm 3 InnerSearch(G[D]).

Input: a subgraph G[D] induced by candidate solution D

Output: a spanning tree T of G[D]
1 choose a random vertex v ∈ G[D] and D′ := {v};
2 while |unDomG[D](D′)| ≠ 0 do
3 choose vertex v ∈ NG[D](D′) using WMST selection rule and D′ := D′ ∪ {v};
4 MinWeight := w(D′) and InnerStep := 1;
5 construct a spanning tree T ′ of D′;
6 while InnerStep < MaxNoImproveInner do
7 for i := 1 to neighborSize do
8 choose vertex u ∈ LS(T ′) using WMST selection rule and D′ := D′ \ {u};
9 while |unDomG[D](D′)| ≠ 0 do

10 choose vertex v ∈ candAdd(D′) using WMST selection rule and
D′ := D′ ∪ {v};

11 update the spanning tree T ′ based on D′;
12 if w(D′) < MinWeight then
13 MinWeight := w(D′) and InnerStep := 1;
14 else InnerStep := InnerStep + 1 ;
15 construct T where TS(T ) = T ′ and LS(T ) = D \ D′;
16 return T ;

6 Experimental Results

6.1 Experiment Preliminaries

Extensive experiments are carried out to evaluate the performance of NestedLS, compared
with four state-of-the-art heuristic algorithms, including HGA [6], PBIG [6], ACO-RVNS [3]
and ACO-e, which was modified by the author of ACO-RVNS, specialized for massive graphs.
Since the source or binary codes of HGA and PBIG were not available, we reimplemented and
then compared to them. The source code of ACO-RVNS and ACO-e were kindly provided by
authors. The data structure of all competitors was modified for massive graphs. Specifically,
the adjacency list are applied to store the graph information. NestedLS and its competitors
were implemented in C++ and compiled by g++ with ‘-O3’. All experiments were run on a
server with Intel Xeon CPU E7-8850 v2 2.30GHz with 2048GB RAM under Ubuntu 16.04.5.
All algorithms were executed 10 times with random seeds from 1 to 10 on each instance
independently. The cutoff time was set to 1000 seconds for the classic benchmarks, and 5000
seconds for massive graphs. We report the best size (min) and average size (avg) of the
solution found by each algorithm. The bold values indicate the best solution among all the
algorithms.

The parameters of NestedLS are tuned by irace [15]. We select 40 graphs randomly
from all benchmarks, and irace was applied for 5000 s with a budget of 10000 applications.
The chosen values of parameters are presented in Table 1. Moreover, the parameters of all
competitors are also tuned by irace, and our re-implementation versions can obtain similar
performance as the original papers, which confirms their effectiveness and efficiency.

We evaluate NestedLS on 5 benchmarks, including 2 classic benchmarks in the literature
and 3 massive benchmarks.
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Table 1 Parameter tuning.

Parameter Domain Chosen value

neighborSize {1,3,5} 3
MaxNoImprove {10000,50000,100000} 100000
MaxNoImproveInner {1000,5000} 1000
T reeNoImprove {5000,10000} 10000
MaxRepeat {0.1,0.3,0.5} 0.3
ρ {0.3,0.7} 0.7
β {0.5,0.7,0.9} 0.7

Table 2 Experiment results on the first classic benchmark. The averaged value of min (min)
and the number of connected instances with the same size (#inst) are reported for each family.

Instance #inst NestedLS PBIG ACO-e ACO-RVNS HGA Instance #inst NestedLS PBIG ACO-e ACO-RVNS HGA
Family min min min min min Family min min min min min

TYPEI V800E10000 1 2059 2080 2111 2076 2442
V250E750 7 2833 2850.3 2836.4 2833 3068.1 V1000E5000 1 6538 6762 6652 6668 7281
V250E1000 9 2038 2056.8 2039.1 2038 2227.8 V1000E10000 1 2989 3013 3052 3029 3531
V250E2000 10 965.9 974 968.7 965.9 1090.3 V1000E15000 1 2164 2178 2189 2189 2434
V250E3000 10 650.4 653.1 653 650.4 744.3 V1000E20000 1 1612 1639 1645 1616 1800
V250E5000 10 390.2 392.3 391.5 390.9 433.9 TYPEII
V300E750 2 4272.5 4242.4 4283.5 4272.5 4449.5 V250E750 6 877.5 896.5 877.5 876.8 924.7
V300E1000 9 3067.9 3111 3076.2 3068.2 3315.4 V250E1000 9 953.7 956.2 958 953.9 1014.6
V300E2000 10 1439.4 1457.5 1444.7 1439.4 1639.4 V250E2000 10 1159.9 1161.7 1163.6 1159.9 1272.9
V300E3000 10 936.1 942.2 939.5 936.3 1066.4 V250E5000 10 1469.8 1471.9 1471.8 1469.8 1601.5
V300E5000 10 555.1 561.1 557.6 556.9 634.9 V300E750 1 974 981 979 974 999
V500E2000 1 4179 4239 4183 4182 4579 V300E1000 9 1037.7 1054.6 1040.6 1037.7 1092.6
V500E5000 1 1565 1571 1580 1565 1748 V300E2000 10 1276.3 1287.6 1279.4 1276.4 1395.6
V500E10000 1 852 852 868 852 922 V300E5000 10 1612.9 1618.9 1613 1612.9 1882.5
V800E5000 1 4178 4321 4223 4205 4740

The first classic benchmark originally from [19] is classified into Type I (96 instances)
and Type II (65 instances). There are a few unconnected graphs in the benchmark, and we
choose to ignore them. The second classic benchmark (20 instances) is originally generated
in [6]. To save space, we do not report the results on graphs with less than 250 vertices
where NestedLS always performs best. In total, we selected 181 classic instances.

A total of 118 massive real-world graphs are selected from the Network Data Repository
(NDR) [17] and Stanford Large Network Dataset Collection (SNAP)3, as well as large
instances from the 10th DIMACS implementation challenge (DIMACS10)4. Due to space
limitations, we only report results on graphs from the SNAP and DIMACS10 benchmarks
with at least 30,000 vertices and graphs from the NDR benchmark with more than 100,000
vertices and more than 1,000,000 edges. Hence, we picked 22, 31 and 65 graphs in SNAP,
DIMACS10, and NDR, respectively. To obtain the corresponding weighted instances, we
used the same method as in previous works [24, 25]: for the ith vertex vi, w(vi)=(i mod
200)+1.

3 http://snap.stanford.edu/data
4 https://www.cc.gatech.edu/dimacs10/

http://snap.stanford.edu/data
https://www.cc.gatech.edu/dimacs10/
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Table 3 Experiment results on the second classic benchmark.

Instance NestedLS PBIG ACO-e ACO-RVNS HGA
min(avg) min min(avg) min(avg) min

V250E500 4464(4464) 4585 4464(4479.6) 4464(4469.2) 4716.1
V250E1000 2203.5(2203.5) 2228 2227.4(2227.5) 2211.8(2213.1) 2389
V250E1500 1365.7(1365.7) 1384 1365.7(1365.7) 1365.7(1365.7) 1548.1
V250E2000 1020.3(1020.3) 1044.9 1020.3(1026.7) 1020.3(1020.3) 1104.9
V250E2500 822.1(822.1) 822.1 822.1(822.1) 822.1(822.1) 960.3
V500E1000 8636.7(8637.1) 8837.3 8646.69(8679.2) 8637.2(8648) 9444.3
V500E2000 4256(4256) 4352 4296.1(4340) 4277.9(4294.4) 4693.7
V500E3000 2867.2(2867.3) 2915.8 2895.1(2927.8) 2875.7(2875.7) 3256.9
V500E4000 2145.7(2145.7) 2164.3 2157.1(2176.6) 2157.1(2170.2) 2434.5
V500E5000 1531.6(1531.6) 1538 1531.6(1541.8) 1531.6(1531.6) 1766.5
V750E1500 13894.9(13903.7) 14298.5 14042.2(14101.7) 13984.6(14031.4) 15491.2
V750E3000 6106.7(6110.9) 6250.9 6209.7(6252.7) 6154.6(6173.3) 6979.4
V750E4500 4244.4(4244.4) 4383.5 4330.6(4398.8) 4308.7(4328.1) 4674.7
V750E6000 3151.7(3152.9) 3188.9 3167.7(3180.1) 3163.1(3163.1) 3505.6
V750E7500 2401.8(2402.5) 2435 2451.2(2469) 2434.1(2434.7) 2744.8
V1000E2000 17745.5(17768.1) 18235.3 17838.3(17922.3) 17845(17889.3) 19786.5
V1000E4000 8222.8(8222.8) 8453.3 8328.6(8360.6) 8319.7(8335.8) 9532
V1000E6000 5247.9(5250.4) 5341.9 5332(5372.1) 5301.2(5319.2) 5938.7
V1000E8000 3906.2(3910.7) 3983.5 3955.5(4012.7) 3931.1(3956.5) 4465.1
V1000E10000 3106.6(3108.7) 3154.8 3187.2(3201.3) 3119.2(3150.9) 3683.4

6.2 Results on Classic Benchmarks

Results on classic benchmarks are reported in Tables 2 and 3. NestedLS is better than
all competitors, except for V250E750, indicating its robustness. The average run time of
NestedLS on some instances where it can generate the same solution quality (i.e., same
minimal and average values) as PBIG, ACO-e and ACO-RVNS is 16.3 s, 27.3 s and 11.6 s,
respectively, while that of competitors is 5.2 s, 87 s and 15 s.

6.3 Results on Massive Graphs

Note that ACO-RVNS and HGA fail to find a solution on most massive instances, mainly due
to their high complexity heuristics (i.e., RVNS and Minimize functions). Thus, we mainly
report the results of NestedLS, PBIG and ACO-e on Tables 4 and 5. NestedLS significantly
outperforms all competitors on most instances, with only 8 exceptions. Moreover, NestedLS
can solve all the 118 instances within the time limit, while PBIG, ACO-e, ACO-RVNS and
HGA can only solve 103, 47, 19 and 13 instances, respectively. Among all the instances
solvable by NestedLS and a corresponding competitor, the best solution obtained by NestedLS
is on average 4.18%, 1.37%, 1.08% and 1.39% better than that found by PBIG, ACO-e,
ACO-RVNS and HGA, respectively. Since the weight value can amount to 108 on some
massive graphs, they are significant improvements.
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Table 4 Experiment results on SNAP and DIMACS10 benchmarks. If an algorithm fails to find
a solution within the cutoff time, it is indicated by “N/A”.

Instance NestedLS PBIG ACO-e
min(avg) min(avg) min(avg)

Amazon0302 3607951(3628251.9) 3898308(3903172) 3702466(3702466)
Amazon0312 4201432(4215293.4) 4397464(4402398.5) N/A
Amazon0505 4383032(4393754.3) 4576088(4579237) N/A
Amazon0601 3780727(3792534.5) 3987798(3989201.8) N/A
Cit-HepPh 247185(247337.8) 255517(255731) 253099(253493.8)
Cit-HepTh 256033(256647.4) 263235(263496.3) 260885(261364)
cit-Patents 59497255(59657281.8) 64161977(64167456) N/A
Email-EuAll 228890(228936.4) 228935(228954) 228951(228975.5)
p2p-Gnutella04 210746(210813.7) 211570(211610.5) 211153(211304.3)
p2p-Gnutella25 451125(451178.5) 451333(451426.5) 451056(451208.4)
p2p-Gnutella30 711958(712177.5) 712094(712192.5) 711915(712066.5)
p2p-Gnutella31 1262834(1263059.3) 1262095(1262181.3) 1262676(1262869.1)
Slashdot0811 1460128(1460346.5) 1461470(1461546.8) 1461427(1461427)
Slashdot0902 1580606(1580816.2) 1583119(1583276.5) 1582395(1582395)
soc-Epinions1 1663107(1663222.1) 1663776(1663911.3) 1664085(1664085)
web-BerkStan 2936734(2939268.8) 2987292(2989303.8) 2934995(2934995)
web-Google 7864164(7868993.6) 7985154(7985584) N/A
web-NotreDame 2495507(2496448.9) 2519655(2520284) 2497288(2497288)
web-Stanford 980121(980582.7) 1007522(1008040.5) 987255(987255)
Wiki-Vote 107222(107227.9) 107222(107223.5) 107234(107249.3)
WikiTalk 3478539(3478544.5) 3478560(3478579) N/A
333SP 95311299(96023116.9) 104222969(104222969) N/A
as-22july06 193529(193542.3) 193557(193560.8) 193562(193581.1)
audikw1 544788(546375.8) 645510(646619.3) 561656(561656)
belgium.osm 117292752(117713316.1) N/A N/A
cage15 18904266(18939673.7) 22288856(22296289.5) N/A
caidaRouterLevel 4324957(4327477.8) 4376005(4377893.3) N/A
citationCiteseer 4434164(4439087.7) 4525350(4527033.5) 4466529(4466529)
cnr-2000 2443499(2444996) 2457027(2457309.8) 2449713(2449713)
coAuthorsCiteseer 3701461(3702751.2) 3717505(3718382.5) N/A
coAuthorsDBLP 4738187(4739697.2) 4765060(4765668.3) 4749845(4749845)
cond-mat-2005 482173(482484.3) 487804(488072) 486812(487278.3)
coPapersCiteseer 2840116(2848253.2) 2928376(2929221) N/A
coPapersDBLP 3779813(3790462.5) 3883208(3885354) N/A
ecology1 37169194(37512291.1) 40995892(41068701.3) N/A
eu-2005 3186216(3187215.3) 3212190(3212849.5) 3193332(3193332)
G_n_pin_pout 706058(707810.3) 793613(797417.8) 745885(745885)
in-2004 8493855(8495948.8) 8540255(8542346.3) N/A
kron...logn16 369629(369629) 370490(370553.5) 370386(370495.5)
ldoor 2130615(2131629.9) 2607563(2615331.8) N/A
luxembourg.osm 9954051(9955957.2) 10123554(10232006.8) N/A
pref...Attachment 544964(545494.2) 582867(583472.8) 564066(564066)
rgg_n_2_17_s0 1143351(1145682.7) 1411146(1422660.5) 1194638(1194638)
rgg_n_2_19_s0 3619945(3623934.4) 4882585(4902738) N/A
rgg_n_2_20_s0 6597646(6612833.5) 9305396(9391407.5) N/A
rgg_n_2_21_s0 12315149(12359474.8) 17639374(17775821.8) N/A
rgg_n_2_22_s0 27505305(27607164.4) 33784024(34175561.5) N/A
rgg_n_2_23_s0 50168656(63767170.7) N/A N/A
smallworld 1218021(1221583.3) 1311258(1312652.3) 1281937(1281937)
uk-2002 114212809(117625999.3) 113849945(113854708.5) N/A
wave 975601(978701.5) 1082203(1083760) 999481(999481)
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Table 5 Experiment results on NDR benchmark. If an algorithm fails to find a solution within
the cutoff time, it is indicated by “N/A”.

Instance NestedLS PBIG ACO-e
min(avg) min(avg) min(avg)

bn-human...1-bg 231444(232173.4) 248647(248983.5) 234886(234886)
bn-human...2-bg 193908(194530.6) 206436(206702) 197614(197614)
ca-coauthors-dblp 3780154(3790227.3) 3883208(3885354) N/A
ca-dblp-2012 4898659(4900170.1) 4931550(4932246.8) 4912016(4912016)
ca-hollywood-2009 4196974(4208205.8) 4484581(4485353.5) N/A
channel...b050 33862787(33944666) 37854483(37974114) N/A
dbpedia-link 153458727(153739853.3) 154088350(154089188) N/A
delaunay_n22 95435272(95559053.8) 104855386(105650155.3) N/A
delaunay_n23 188365284(188544203.8) N/A N/A
delaunay_n24 379521881(408693281.8) N/A N/A
friendster 63527982(63557140.7) 64653832(64656091.5) N/A
hugebubbles-00020 970833598(1202159141.6) N/A N/A
hugetrace-00010 554859414(566474478.5) N/A N/A
hugetrace-00020 731497084(792040454.8) N/A N/A
inf-europe_osm 5092357075(5094787915.4) N/A N/A
inf-germany_osm 941456751(942923953.3) N/A N/A
inf-road-usa 2375849346(2377787146.5) N/A N/A
inf-roadNet-CA 92151724(92854875.3) 98142433(98369828.5) N/A
inf-roadNet-PA 50457051(50693249.2) 54112058(54182813.5) N/A
rec-dating 1137467(1137484.5) 1138910(1139023.8) 1138531(1138531)
rec-epinions 826618(826642.9) 831768(832227) 829707(829707)
rec-libimseti-dir 1209219(1209288.3) 1213842(1214225) 1212387(1212387)
rgg_n_2_23_s0 50329249(50441454.7) N/A N/A
rgg_n_2_24_s0 518533632(713025008.5) N/A N/A
rt-retweet-crawl 8119952(8120894.8) 8112459(8112605.3) N/A
sc-ldoor 2148767(2153395.2) 2608260(2628863.8) N/A
sc-msdoor 853236(854334.5) 1006625(1011167) N/A
sc-pwtk 441580(442377.9) 602802(605173.5) 451326(451326)
sc-rel9 12466895(12494110.1) 13371415(13373856.3) N/A
sc-shipsec1 587596(589711.3) 673591(675410.8) 607640(607640)
sc-shipsec5 737132(741136.8) 840811(849266) 762199(762199)
soc-buzznet 8275(8275) 8373(8381.5) 8337(8386.8)
soc-delicious 5684064(5685039.5) 5689449(5689994.5) 5683212(5683212)
soc-digg 6884347(6888681.2) 6906274(6906978.3) N/A
soc-dogster 2343228(2344555.2) 2373262(2373356) 2352360(2352360)
soc-flickr-und 29310795(29333534) 29701624(29702432) N/A
soc-flixster 9190111(9190239.9) 9189919(9190039.3) N/A
soc-FourSquare 6055451(6058625.3) 6063201(6064206) 6062299(6062299)
soc-lastfm 6747994(6748217.7) 6748666(6748975.3) N/A
soc-livejournal 80381637(80396298.8) 83450152(83455918.8) N/A
soc-...-user-groups 109130362(109143584) 109708034(109708334) N/A
soc-LiveMocha 106551(106560.2) 108182(108286.5) 107712(107846.8)
soc-ljournal-2008 103641550(103684264.4) 105872796(105877923.8) N/A
soc-orkut 8377576(8436848.5) 9246155(9249442.5) N/A
soc-orkut-dir 7371792(7388939.2) 8257778(8260096.8) N/A
soc-pokec 18650680(18678287.5) 19938844(19941250) N/A
soc-sinaweibo 5894908130(5894908130) N/A N/A
soc-twitter-higgs 1160854(1161304) 1184020(1185051.3) 1170510(1170510)
soc-youtube 9898687(9900778.7) 9936591(9937572.8) N/A
soc-youtube-snap 23382235(23384447.6) 23408462(23585903.3) N/A
socfb-A-anon 19919414(19952815.8) 20350881(20351694.5) N/A
socfb-B-anon 18669945(18697816.9) 18997889(18999053) N/A
socfb-uci-uni 5866001161(5866001161) N/A N/A
tech-as-skitter 17726432(17747980.9) 18668301(18669829) N/A
tech-ip 2283(2283.5) 2986(3010) 2484(2484)
twitter_mpi 56327895(56337886.8) 56435803(56436632) N/A
web-arabic-2005 2017151(2017601.7) 2021106(2022620) 2021129(2021129)
web-baidu-baike 25951517(25969911.1) 26457056(26457712.3) N/A
web-it-2004 3464760(3464814.9) 3465855(3465914) N/A
web-uk-2005 170958(170958) 170958(170958.8) 170958(170958)
web-wikipedia_link 17428644(17452302.6) 17888836(17889610.3) N/A
web-wikipedia-growth 10192627(10212490.8) 10592826(10594605.3) N/A
web-wikipedia2009 37603865(37659492.6) 38742158(38746820.3) N/A
wikipedia_link_en 21240536(21242706.8) 21362465(21363129.3) N/A
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6.4 Effectiveness of Proposed Strategies

To confirm the effectiveness of ReSmooth, we compare NestedLS with its modified versions
where NoSmooth does not use this strategy and adopt previous weight smoothing mechanisms
SWT and PAWS from [4] and [20], respectively.

The excellent results of NestedLS on massive graphs are mainly due to the inner-layer
local search. To confirm its effectiveness, five modified versions are proposed for comparison
as follows.

To confirm the overall effectiveness of inner-layer local search, Alg1 replaces inner-layer
local search with breadth first search to construct the spanning tree for the current
candidate solution, as the traditional construction method in [13].

To confirm the effectiveness of the scoring function in inner-layer local search, Alg2
and Alg3 modifies inner-layer local search by not applying the second and third scoring
criterion respectively.

To confirm the effectiveness of WMST selection rule, Alg4 adopts the same selection rule
mentioned as in Section 2.

To confirm that local search can improve the quality of the spanning tree, Alg5 constructs
the spanning tree without improving it by local search.

The results are shown in Tables 6 and 7. We report the number of instances where
NestedLS finds better (worse) solutions than its modified versions, denoted as #better
(#worse). The results shown in Table 6 confirm that ReSmooth is effective on both classic
and massive graphs, and the results shown in Table 7 validate the effectiveness of inner-layer
local search on massive graphs.

Table 6 Effectiveness of ReSmooth.

Classic SNAP DIMACS NDR

vs. NoSmooth #better 59 16 20 37
#worse 0 3 5 21

vs. SWT #better 50 17 19 43
#worse 0 0 5 14

vs. PAWS #better 14 15 25 52
#worse 3 6 5 10

Table 7 Effectiveness of InnerSearch.

vs. Alg1 vs. Alg2 vs. Alg3 vs. Alg4 vs. Alg5

SNAP #better 17 16 15 19 15
#worse 4 5 0 2 6

DIMACS #better 27 22 18 26 23
#worse 2 8 11 3 6

NDR #better 41 41 50 56 48
#worse 17 20 11 5 12
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7 Conclusion

We proposed a local search algorithm NestedLS for MWCDS based on two main ideas,
including the restart based smoothing mechanism and the inner-layer local search method.
Experiments on classic benchmarks and massive graphs showed its superiority over previous
algorithms for MWCDS.

Two proposed ideas can be generally applied to other heuristic algorithms. Specifically,
the inner-layer local search method is a general method for maintaining the connectivity
constraint when dealing with massive graphs. It contributes to constraint programming by
providing not only a better strategy of maintaining the connectivity constraint when dealing
with massive instances, but also insights for future study on the connectivity constraints. In
addition, the restart based smoothing mechanism provides a novel diversification scheme for
restart-based heuristic algorithms.
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