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Abstract
The enumeration of finite models of first order logic formulas is an indispensable tool in computational
algebra. The task is hindered by the existence of isomorphic models, which are of no use to
mathematicians and therefore are typically filtered out a posteriori. This paper proposes a divide-
and-conquer approach to speed up and parallelize this process. We design a series of invariant
properties that enable us to partition existing models into mutually non-isomorphic blocks, which
are then tackled separately. The presented approach is integrated into the popular tool Mace4,
where it shows tremendous speed-ups for a variety of algebraic structures.
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1 Introduction

There are many types of relational algebras (groups, semigroups, quasigroups, fields, rings,
MV-algebras, lattices, etc.) using operations and relations of many arities, but the over-
whelming majority of the most popular only use operations of arity at most 2; in the words of
two famous algebraists, It is a curious fact that the algebras that have been most extensively
studied in conventional (albeit modern!) algebra do not have fundamental operations of arity
greater than two. (See page 26 of [4])

To study and get intuition on them, mathematicians resort to libraries of all order n

models of the algebra they are interested in (for small values of n). These libraries allow
experiments such as testing and/or forming conjectures etc., to gain insights. Therefore, it
comes as no surprise that GAP [8], the most popular computational algebra system, has
many such libraries. For groups it has the list of almost all small groups up to order a few
thousands and the list of all primitive groups up to degree a few thousands, among others;
for semigroups it has the list of all small models up to order 8 [6]; for quasigroups up to
order 6 [16]; there is also a library of Lie algebras and many others. These libraries are so
important that the search for them has a long history in mathematics predating for many
years the use of computers. For example, the search for libraries of degree n primitive groups
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started long ago: Jordan (1872) for n ≤ 7; Burnside (1897) for n ≤ 8; Manning (1906-1929)
for n ≤ 15; Sims (1970) for n ≤ 20, Pogorelov (1980) for n ≤ 50; Dixon and Mortimer (1988)
for n ≤ 1000. (See Appendix B of [7]; and for more recent results in OEIS [17]).

Many more such libraries are needed. For example, SMALLSEMI [6] has the list of
semigroups up to order 8 (there are too many semigroups of order 9 to be storable), but
if we impose extra properties on the semigroup (such as being inverse, a band, regular, or
Clifford, etc. – there are tens of classes of semigroups –) their numbers decrease and hence
libraries of models of higher orders could be produced and stored.

Many of these algebras can be defined in first order logic (FOL) and there are tools
to allow mathematicians to encode their algebras and produce a meaningful library. The
problem is that usually the tools that can be easily learned and used by mathematicians
generate too many isomorphic models, thus wasting time generating redundant models and
then wasting more time to get rid of them. For example, Mace4 [13], a very popular finite
model enumerator among mathematicians due to its very intuitive and user-friendly language,
would produce 28,947,734 inverse semigroups of order 8 when given the following simple
first-order formulas as input [1] (with binary operation ∗ and unary operation ′).

(x ∗ y) ∗ z = x ∗ (y ∗ z). (x ∗ x′) ∗ x = x. 0 ∗ 0 = 0.

((x ∗ x′) ∗ y) ∗ y′ = ((y ∗ y′) ∗ x) ∗ x′. x′′ = x.

During the search, the number of output models in this example is already greatly reduced
by the Least Number Heuristic (LNH) and the special symmetry breaking input clause
0 ∗ 0 = 0. Out of the almost 29 millions output models, only 4,637 (≈ 0.016%) are pairwise
non-isomorphic. The proportion of non-isomorphic models in the outputs tends to get smaller
very fast as the order of the algebraic structure goes higher.

Redundant models may either be eliminated during search or filtered out afterwards.
Guaranteeing that search never produces isomorphic models is a hard problem and is rarely
seen in modern solvers. This paper therefore tackles the second problem, i.e., the removal of
redundant models from an already enumerated set.

In our context, the complexity of checking whether two models are isomorphic is only
part of the problem. Another source of complexity is the large number of models that need
to be checked. If all pairs of models are checked, the performance degrades rapidly as the
total number of models increases (see Section 5).

To tackle this problem, we explored many different strategies eventually concluding that
the best one is to assign to every generated model a vector that is invariant under isomorphism.
This allows us to partition the output with all the isomorphic models living inside the same
block (or part). This splits the problem into substantially smaller sub-problems. Moreover,
processing inside each block can easily be done in parallel as models across blocks cannot
be isomorphic. This is an important facet of the approach since modern-day computers are
more often than not equipped with multiple cores.

What made this project take off was the identification of a large number of general
algebra properties invariant under isomorphism coupled with experiments to identify a small
subset of these properties without losing discriminating power. This approach will help
mathematicians on two levels: first, it provides them with a tool on their desktop that quickly
produces a library for the algebra they are working with; second, the tool may be run on a
cluster of computers to pre-compute libraries for the most famous classes of algebras, and
add them to GAP [8] or a similar system.
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Our contributions to the area of isomorphic model elimination are (see Section 3):
Devise an invariant-based algorithm that can be applied to algebras defined in FOL and
containing at least one binary operation.
Design a small set of invariant properties that in practice have high discriminating power,
and yet are inexpensive to compute.
Use a hash-map to store models partitioned by the invariant-based algorithm to allow
fast storage and retrieval of models in the same block.

We apply the proposed partitioning technique to Mace4’s isomorphic model filtering
programs, and observe orders of magnitude speed-up in its isomorphic model elimination
step (see Section 4).

2 Mathematical Background

Algebra is a pair (A, Ω), where A is a set and Ω is a set of operations, that is, functions
f : An → A (in this case f is said to be an operation of arity n). Let A = (D, ∗A) and
B = (D, ∗B) be two algebras, each with one binary operation on a finite domain (or universe)
D. An isomorphism of these two algebras is a bijective function f : A → B such that
f(a ∗A b) = f(a) ∗B f(b), for all a, b ∈ A. Two models are said to be isomorphic if there exists
an isomorphism between them. The relation A is isomorphic to B is clearly an equivalence
relation and hence induces a partition of the algebras considered. Only one representative
algebra in each block is needed.

The definition of isomorphism can easily be extended to cover algebras with multiple
binary operations. Formally, suppose A and B are algebras of type (2m, 1n), where m, n

are non-negative integers; then we can assume that the binary operations are (∗1, . . . , ∗m)
and the unary operations are (g1, . . . , gn). An isomorphism between them is a bijection
f : A → B such that f(a ∗i b) = f(a) ∗i f(b), for all a, b ∈ D and every binary operation ∗i,
and for any unary operation gi, we have f(gi(a)) = gi(f(a)), for all a ∈ D.

3 Invariant-based Algorithm

Let A and B be two algebras and f : A → B an isomorphism between them; in addition,
suppose e2 = e ∈ A is an idempotent. Then f(ee) = f(e) implies that f(e)f(e) = f(e), that
is, f(e) under an isomorphism is also an idempotent. As isomorphisms map idempotents onto
idempotents, it follows that the number of idempotents in A must be smaller or equal to the
number of idempotents on B. Since the inverse of an isomorphism is an isomorphism, A and
B must have the same number of idempotents. We call these properties that are preserved
by isomorphisms (such as the number of idempotents) invariant properties or invariants for
short. These invariant properties are the basis of our proposed algorithm.

Guided by fundamental concepts heavily appearing in different parts of mathematics,
we design 10 invariant properties that collectively have high discriminating powers, and yet
are inexpensive to compute. For a binary operation in a model with finite domain D, we
compute the invariant properties for each domain element x as:
1. The smallest integer n such that xn = xk, n > k >= 1 where we define xn to be

(. . . (x ∗ x) ∗ x) ∗ x) . . . for n x’s (periodicity).
2. The number of y ∈ D such that x = (xy)x (number of inverses).
3. The number of distinct xy for all y ∈ D (size of right ideal).
4. The number of distinct yx for all y ∈ D (size of left ideal).
5. 1 if xx = x, 0 otherwise (idempotency).

CP 2021



4:4 Filtering Isomorphic Models by Invariants

6. The number of y ∈ D such that x(yy) = (yy)x (number of commuting squares).
7. The number of y ∈ D such that x = yy (number of square roots).
8. The number of y ∈ D such that x(xy) = (xx)y (number of square associatizers).
9. The number of pairs of y, z ∈ D such that zy = yz = x (number of symmetries).

10. The number of y ∈ D such that there exists pairs of s, t ∈ D where x = st and y = ts

(number of conjugates).

Invariant 5 is the idempotent property of the domain element and is preserved by
isomorphisms as discussed before. The correctness of invariants in general hinges on the
following lemma (folklore). Let F be a FOL formula on the signature of the algebra and
M and M ′ two isomorphic models. It holds that the sets S and S′ defined by F in M and
M ′, respectively, are of the same cardinality. This is because the isomorphism induces a
bijection between the two sets (cf. Theorem 1.1.10 in [12]). In other words, invariants based
on solution counting are guaranteed to be correct.

We call the ordered list of invariant properties so calculated the invariant vector of that
domain element. Each model with n domain elements will be associated with n invariant
vectors. Isomorphic models must have the same set of invariant vectors.

To facilitate comparisons of invariant vectors, we sort the invariant vectors by the
lexicographical order of their elements (see the example below for more explanations). It
follows that models isomorphic to each other must have the same sorted invariant vectors. If
the model has multiple binary operations, then invariant vectors are calculated for each of the
binary operations, and all the invariant vectors of the same domain element are concatenated
to form a combo invariant vector for that domain element. The combo invariant vectors will
then be sorted to yield the final ordered list of invariants.

Often we are not only to compare 2 models for isomorphism, but to extract all non-
isomorphic models from a list of models. In that case, we set up a hash map to store the
blocks of the models. We use the invariant vectors for each model to send the model quickly
to the block (in the hash map) to which it belongs. That is, the keys in this hash map
are the invariant vectors, and the values are the blocks of the models. After all models are
hashed into the hash map, the blocks stored in the hash map can be processed separately,
and possibly in parallel, to extract one representative model from each isomorphism class.

Note that our invariant-based algorithm does not compare models for isomorphism. It
only cuts down the size of the problem to improve the speed of existing isomorphism filters
such as Mace4’s isofilter.

As an example to show how invariant vectors are constructed and used, suppose we want
to find all non-isomorphic models in a list of 3 quasigroups, A, B, and C, of order 4. Suppose
further that their domain is D = {0, 1, 2, 3} and their operation tables are given in Table 1.

Table 1 Operation tables of Quasigroups A, B and C.

∗A 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 1 0
3 3 2 0 1

∗B 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

∗C 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Model A Model B Model C

The 10 invariant properties can easily be calculated for each of the domain elements of
these models. Note that while the invariant vector for each domain element is calculated
separately, it is not important exactly which domain element gives a particular invariant
vector. It is the set of invariant vectors as a whole that matters.
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Invariant vectors of Model A

0: 2 1 4 4 1 4 2 4 4 1
1: 3 1 4 4 0 4 2 4 4 1
2: 5 1 4 4 0 4 0 4 4 1
3: 5 1 4 4 0 4 0 4 4 1

Invariant vectors of Model B

0: 2 1 4 4 1 4 2 4 4 1
2: 3 1 4 4 0 4 2 4 4 1
1: 5 1 4 4 0 4 0 4 4 1
3: 5 1 4 4 0 4 0 4 4 1

Invariant vectors of Model C

0: 2 1 4 4 1 4 4 4 4 1
1: 3 1 4 4 0 4 0 4 4 1
2: 3 1 4 4 0 4 0 4 4 1
3: 3 1 4 4 0 4 0 4 4 1

Figure 1 Lexicographically sorted invariant vectors with discerning properties highlighted.

Next we sort the invariant vectors of each model by their elements lexicographically.
Invariant vectors of models A and C need no change as they are already in the desired sort
order. Invariant vectors of model B will be in sort order by interchanging the invariant
vectors of elements 1 and 2, which are the second and third row. The final invariant vectors
are shown in the Figure 1. Note that the first column in the tables is the domain element,
and the next 10 columns are its invariant properties.

The highlighted numbers in the figure are the discerning invariant properties in the
example. All other invariant properties are the same from domain element to domain element.
For example, Invariant properties 3, size of right ideal, and 4, size of left ideal, always equal
to the size of the domain D because the operation table of a quasigroup is a Latin square.
This highlights the need for multiple invariant properties targeting different areas of algebraic
structures to increase their collective discriminating powers. In fact, our algorithm depends
more on the orthogonality of the invariants than on the splitting power of any one individual
invariant. See Table 2 for the top invariants in different algebras.

It should be easy to see that models A and B have the same sorted invariant vectors,
and thus are possibly isomorphic to each other. They are indeed isomorphic to each other
because applying the permutation (1, 2) to model B will give model A. However, invariant
vectors alone cannot prove that they are isomorphic models. It is also easy to see that the
invariant vectors of model C are different from those of the other 2 models, and from this
fact alone, we can conclude that model C is not isomorphic to any of A and B.

Finally, for ease of comparison and hashing, we concatenate the sorted invariant vectors
into a single string. The string representation of the invariant vectors for the models are:

A, B: 2,1,4,4,1,4,2,4,4,1,3,1,4,4,0,4,2,4,4,1,5,1,4,4,0,4,0,4,4,1,5,1,4,4,0,4,0,4,4,1
C: 2,1,4,4,1,4,4,4,4,1,3,1,4,4,0,4,0,4,4,1,3,1,4,4,0,4,0,4,4,1,3,1,4,4,0,4,0,4,4,1

Since we are to extract all non-isomorphic models from this list of models, we use the string
representations of the invariant vectors as the keys for the hash map. Both models A and B

will therefore go to the same block in the hash map, but C will go to a different block. Now
that all 3 models are deposited in their blocks in the hash map, each block can be processed
separately in parallel as we only need to compare models in the same block for isomorphism.
This step can be performed by many existing programs such as Mace4’s isomorphism filters
(see Section 4).

Finally, if the models have multiple binary operations, we compute the unsorted invariant
vectors for each binary operation as described above, then concatenate the invariant vectors
of the same domain element into one combo invariant vector, sort these combo invariant
vectors in lexicographical order, and finally concatenate the sorted invariant vectors into
their string format.

It is important to note that the hash map in our algorithm obviates the need to compare
invariant vectors among the models during the partitioning process. If we do pairwise
comparison of models by their invariant vectors in any step, we would end up with a O(n2)
worst-case scenario.

CP 2021
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4 Experimental Results

We have implemented an invariant-based pre-processor to the Mace4’s isomorphic models
filters. We run the experiments on a 6-core Intel® Core™ i7-9850H CPU computer. We
shall show results of tests on 3 algebraic structures, namely, quasigroup, inverse semigroup,
and quandle [1]. They are chosen because of their importance in the mathematical world.
Quasigroup is the most prominent non-associative algebra, inverse semigroup is probably
the most studied associative algebra with a unary operation, and quandles is probably most
important algebra with 2 binary operations.

The results show that when the size of the output models is more than just a few hundreds
of thousands, the invariant vectors often give an order or two magnitudes of improvements in
the speed of the isomorphism elimination process even without running them in parallel. A
very desirable feature of our algorithm is that the improvement increases dramatically as the
size of the problem grows. Furthermore, Mace4’s isofilter2 is not able to handle input size
beyond a few million quasigroups of order 6 (see Table 2), but our invariant-based algorithm
can partition the models into smaller blocks of sizes within Mace4’s limits.

Table 2 Isomorphism Eliminations.

Time (s)

Order # of Mace4 Outputs With Invariants Without Invariants

Quasigroups 5 10,944 1 1
6 11,543,040 1,182 N/A

Inverse Semigroups 5 2,151 <1 <1
6 38,828 3 2
7 929,923 73 81
8 28,947,734 2,873 150,703

Quandles 6 1,833 2 1
7 22,104 6 374
8 359,859 450 267,463

We show the results of the non-parallel runs to demonstrate the improvements due solely
to the invariant vectors. The performance can be improved further if the blocks are processed
in parallel. For example, the processing time for the biggest block for quandles of order 8 is
only 20 seconds, so if we have enough processors to process all the blocks in parallel, then
the processing time can theoretically be cut down close to 24 + 19.937 ≈ 44 seconds from
450 seconds, more than 90% reduction (see Table 3).

Table 3 Isomorphism Eliminations in Parallel.

Time (s)

Order #Blocks Generating Invariants Processing Biggest Block

Quasigroups 6 1,129,129 265 0.0106132
Inverse Semigroups 8 4,582 1,031 2.807
Quandles 8 1,143 24 19.937
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One reason for the dramatic improvement in the run-time by our invariant-based algorithm
is that the invariant vectors chosen have great discriminating power as shown by the fact
that the average number of non-isomorphic models per block is very close to 1 (see Table 4).
The top 4 contributing invariants for the highest order of each class are also listed in Table 4.

Table 4 Discriminating Power of Invariant Vectors.

Non-isomorphic Models

Order #Blocks Total Avg per Block Top 4 Invariants

Quasigroups 5 1,402 1,411 1.01
6 1,129,129 1,130,531 1.00 6, 1, 8, 10

Inverse Semigroups 5 52 52 1.00
6 208 208 1.00
7 908 911 1.02
8 4,582 4,637 1.01 9, 3, 2, 1

Quandles 6 66 73 1.11
7 250 298 1.19
8 1,143 1,581 1.38 8, 3, 6, 10

5 Related Work

The proposed approach falls into the class of divide-and-conquer algorithms; most notably
Heule et al. [10] recently applied the cube-and-conquer approach [9] to solve the Boolean
Pythagorean triples problem.

There are a large number of techniques to break symmetries during the search phase [5],
such as the Least Number Heuristic (LNH) [18] and the eXtended LNH (XLNH) [2]. The
LNH, for example, is a very popular dynamic symmetry breaker implemented in Mace4,
FALCON [18], and SEM [19], etc., to help reduce the number of isomorphic models. However,
these techniques do not guarantee isomorph-freeness. Systems that try to generate isomorph-
free models, such as SEMK [3, 14] and SEMD [11], are either yet to be complete, or are
better off allowing some isomorphic models in the outputs for some problem sets. Thus, post-
processing tools such as our invariant-based algorithm have an important role in isomorphism
elimination as total elimination of isomorphism in the model search phase may not always
be the best option.

Invariants are widely used under different guises in many branches of mathematics. For
example, in graph theory, node invariants can be used to help detect isomorphic graphs [15].
Interestingly, similar ideas can be seen in Mace4’s isomorphism filters. Indeed, Mace4’s
isofilter uses the numbers of occurrences of domain elements in the operation tables as the
lone invariant that serves 2 purposes: First is to do quick checks for non-isomorphism, as
models having different occurrences of domain elements cannot be isomorphic. Second is
to guide the construction of isomorphic functions between potential isomorphic models, as
domain elements can only map to domain elements having the same occurrences in the
operation tables. This reduces the number of permutations to try in the search of isomorphic
functions. However, the lone invariant in isofilter would fail miserably if the models are
quasigroups for which each domain element would appear the same of times in the operation
table. To mitigate this problem, Mace4 provides another isomorphism filter, isofilter2, which

CP 2021
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transforms the models to their canonical forms based on the same algorithm [14] given by
McKay as mentioned above in SEMK. Compared to isofilter, isofilter2 performs much better
for quasigroups, but worse on other algebraic structures such as semigroups due to its high
overheads in computing canonical forms. Nevertheless, both filters compare every model
against the list of non-isomorphic models found so far, and hence their performances degrade
rapidly as the number of models increases. Therefore, both filters benefit immensely from
the reduced number of models in the blocks created by our invariant-based algorithm.

The loops package [16] in GAP [8] uses invariant vectors of 9 invariants in many of its
isomorphism-related functions. Like Mace4’s isofilter, it uses invariant vectors to check for
non-isomorphism, and to help guide the construction of isomorphic function between models
using sophisticated algorithms that take advantage of other GAP functions. Their invariant
vectors work on only one operation table, and exploit heavily specific properties of quasigroups
and loops, which may be ineffective in other kinds of algebras. Our invariant-based algorithm
targets different aspects of all algebraic structures including quasigroups, semigroups, and
more. It also works with multiple binary operations, and does not rely on any built-in
functionality of GAP. Moreover, given a list of models to find non-isomorphic models, the
loops package would compare the invariant vector of every model against those of the list of
all non-isomorphic models found so far to get the list of potential isomorphic models. Our
hash map-based organization of models eliminates the need to compare invariant vectors
repeatedly because all models having the same invariant vectors are already grouped into
the same block in the hash map.

6 Future Work and Conclusions

Currently, we only compute invariants based on binary operations, which are by far the most
prevalent operations in algebraic structures [4]. However, unary operations are also quite
common, and may be even less expensive to manipulate. The discriminating power of the
invariant vectors of the model can be enhanced with the addition of invariant vectors based
on unary operations, and will be part of our future focus.

The results of our research open a whole new line of research into using invariant properties
to eliminate isomorphism in finite model enumeration:

Identify more invariant properties and the cases for which each of them may be useful.
Allow dynamic, and preferably automatic, selection of invariant properties to use in any
given algebraic structure because different invariants work best for different algebraic
structures (see example in Section 3, and also Table 4), so we need to allow dynamic,
and preferably automatic, selection of invariant properties.
Find the best sets of invariant properties to use for various sizes and types of models. A
larger set of algebras (usually of higher orders) may need more invariants in the invariant
vectors to provide enough discriminating power to separate the models into smaller blocks,
but a smaller set of algebras may incur too much overhead in computing the invariant
vectors with many invariant properties.

We observe that the invariant-based algorithm is efficient, scalable, and parallelizable.
It is also compatible with most, if not all, existing finite model enumerators. The focus of
future research will be on finding more good invariant properties, in binary and in unary
operations, to be used as partitioning keys, and on adding the capability of dynamic and
automatic selection of invariant properties to use.
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