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—— Abstract

When designing a new symmetric block cipher, it is necessary to evaluate its robustness against
differential attacks. This is done by computing Truncated Differential Characteristics (TDCs) that
provide bounds on the complexity of these attacks. TDCs are often computed by using declarative
approaches such as CP (Constraint Programming), SAT, or ILP (Integer Linear Programming).
However, designing accurate and efficient models for these solvers is a difficult, error-prone and
time-consuming task, and it requires advanced skills on both symmetric cryptography and solvers.

In this paper, we describe a tool for automatically generating these models, called TAGADA (Tool
for Automatic Generation of Abstraction-based Differential Attacks). The input of TAGADA is an
operational description of the cipher by means of black-box operators and bipartite Directed Acyclic
Graphs (DAGs). Given this description, we show how to automatically generate constraints that
model operator semantics, and how to generate MiniZinc models. We experimentally evaluate our
approach on two different kinds of differential attacks (e.g., single-key and related-key) and four
different symmetric block ciphers (e.g., the AES (Advanced Encryption Standard), Craft, Midori,
and Skinny). We show that our automatically generated models are competitive with state-of-the-art
approaches. These automatically generated models constitute a new benchmark composed of eight
optimization problems and eight enumeration problems, with instances of increasing size in each
problem. We experimentally compare CP, SAT, and ILP solvers on this new benchmark.
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1 Introduction

Symmetric cryptography provides algorithms for ciphering a text given a secret key. Differ-
ential cryptanalysis is a well-known attack technique that aims at checking if the key can
be guessed by introducing differences and studying their propagation during the ciphering
process [6]. To evaluate the robustness of a new ciphering algorithm towards differential
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attacks, we compute Truncated Differential Characteristics (TDCs) as initially proposed by
Knudsen in [20], where sequences of bits are abstracted by Boolean values in order to locate
differences (without computing their exact values). We first solve an optimization problem
(called Stepl-opt) that aims at finding a TDC that has a minimal number of differences that
pass through non-linear operators. This provides bounds on the complexity of differential
attacks, and in some cases these bounds are large enough to ensure security. When bounds
are not large enough, we have to solve an enumeration problem (called Stepl-enum) that
aims at finding all TDCs that have a given number of differences that pass through non-linear
operators. Finally, for each enumerated TDC, we have to compute a Mazimum Differential
Characteristic (MDC), i.e., find difference values that have the largest probability given their
positions identified in the TDC. MDCs are then used to design attacks. Computing an
MDC given a TDC is a problem that is efficiently tackled by CP solvers (thanks to table
constraints) [16]. Stepl-opt and Stepl-enum are much more challenging problems. They
may be solved by using declarative approaches such as CP (Constraint Programming), SAT,
or ILP (Integer Linear Programming) [11]. However, designing accurate and efficient models
for these solvers is a difficult, error-prone and time-consuming task, and it requires advanced
skills in both symmetric cryptography and combinatorial optimization.

Contributions and Overview of the Paper

In this paper, we describe a tool (called TAGADA) that automatically generates MiniZinc
models for solving Stepl-opt and Stepl-enum problems given a cipher description. In
Section 2, we introduce a unifying framework for describing symmetric block ciphers by
means of elementary operators and bipartite Directed Acyclic Graphs (DAGs) that specify
how these operators are combined. In Section 3, we formally define Stepl-opt and Stepl-enum
problems, and we describe existing approaches for solving these problems.

In Section 4, we describe the input format of TAGADA which is based on the framework
introduced in Section 2. Operator semantics are specified by functions which may be black
boxes extracted from an existing implementation of the cipher. The DAG is specified in a
JSON file. As the creation of this file may be tedious, TAGADA includes a set of functions
for easing its generation. TAGADA also includes a function for automatically transforming
the input description into an operational cipher. Hence, the correctness of the description is
tested by comparing the outputs of the automatically generated cipher with the outputs of
the original implementation of the cipher.

In Section 5, we describe how TAGADA automatically generates MiniZinc [21] models for
computing TDCs. One key point is to define constraints associated with operators. In existing
models, these constraints have been crafted by researchers, and some of these constraints
require to have advanced knowledge on both symmetric cryptography and mathematical
modelling. We show how to automatically generate these constraints from the functions that
describe operator semantics. We also automatically improve models by both enriching and
shaving the DAG.

In Section 6, we experimentally evaluate these models for two kinds of differential attacks,
i.e., single-key and related-key, and four ciphering algorithms, i.e., the AES, Craft, Midori
and Skinny. We report results obtained with ILP, SAT and CP solvers. We also compare the
automatically generated models with state-of-the-art hand-crafted models, and we show that
TAGADA models are competitive with them.
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Notations

We denote [n,m] the set of all integer values ranging from n to m. Sequences of bits are

denoted by z,v, z,... (possibly sub-scripted). The length of a sequence x is denoted #uz.

The bitwise XOR operator is denoted @. Tuples are denoted ¢ (possibly sub-scripted), and
the arity of a tuple ¢ is denoted #t. We denote [0, 1]%*P the set of all possible tuples of k-bit
sequences of arity p. Given two tuples of bit sequences t = (y1,...,yn) and t' = (yi,...,y}),
we denote ¢t @ t’ the tuple corresponding to (y1 ® Yi, ..., Yn D Y.,)-

2  Unifying Description of Symmetric Block Ciphers

The best-known symmetric block cipher is the AES (Advanced Encryption Standard),
which is the standard for block ciphers since 2001 [12]. There exist many other symmetric
block ciphers, that have been designed for previous competitions or the ongoing lightweight
cryptography standardization competition organized by the NIST (National Institute of
Standards and Technology). Some ciphers are designed for devices with limited computational
resources, for example: Craft [5], Deoxys [19], Gift [2], Midori [1], Present [8], Skinny [4],
Simon and Speck [3].

As our goal is to design a generic tool that automatically generates a model for computing
TDCs from the description of a cipher, we describe these ciphers in a unified way, by means of

DAGs. This unifying description is our first step towards automatic differential cryptanalysis.

2.1 Ciphering Operators

The encryption of a plaintext is achieved by applying elementary ciphering operators. Each
operator o has a tuple of input parameters denoted t;,(0) and a tuple of output parameters
denoted t,,¢(0) such that each parameter is a bit sequence, i.e., ti(0) = (21,...,Zut, (o))
and £out(0) = (Y1, s Yttou(0)) = O(T1,5 -+, Ty, (o)) Without loss of generality, we assume
that all bit sequences have the same length & (if this is not the case, we may split sequences
so that they all have the same length). Typically, k = 8 (resp. k = 4) and k-bit sequences
correspond to bytes (resp. nibbles).

» Example 1. The AES uses four elementary operators that operate on bytes (i.e., k = 8):
XOR, such that t;,(zor) = (z1,z2), teu(ror) = (y1), and y1 = x1 ® xo;
ShiftRows, denoted SR, with s € [0, 3], such that ¢;,(SRs) = (z1, x2, T3, Z4), tout(SRs) =
(Y1,Y2,Y3,ya), and Vi € [1,4],y; = T14 (i4+s)%a Where % is the modulo operation (in other
words, SR, simply shifts the positions of the four input bytes);
MixColumns, denoted M C| such that t;,(MC) = (21, x2,x3,24), towt(MC) = (y1,y2,ys,
y4), and Vi € [1, 4], Y; = (M,'J ® Il) &) (M@Q & .’,EQ) %) (M,'73 ® Ig) D (Mi,4 X I4) where Mi,j
are constant coefficients, and ® is a finite field multiplication;
SubBytes, denoted S, such that t;,(S) = (z1), tout(S) = (y1), and y; is obtained from x4
by using a substitution that is represented by a look-up table, called S-Box.

More generally, there are two main categories of operators that ensure two main concepts
identified by Shannon in [24]: Non-linear operators that ensure confusion, and linear operators
that ensure diffusion. Non-linear operators are either S-Boxes (like the AES SubBytes) or
non-linear arithmetic operations (like in ARX' structures). The most common linear

1 ARX schemes use only modular Addition, Rotation and XOR.
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operations used in symmetric ciphers are: multiplication by a MDS (Maximum Distance
Separable) matrix (like the AES MixColumns), bit permutations, XOR and rotation (like
the AES ShiftRows). Every linear operator o satisfies the following property: Vi, t' €
[0, 1]F#tin(0) o(t) @ o(t') = o(t & t').

2.2 Description of a Cipher with a DAG

Given a plaintext and a key, a cipher returns a ciphertext. The plaintext and the key are
bit-sequences, and we assume that they have been split into k-bit sequences. The ciphertext
is computed by applying operators, and this process may be described by a DAG that
contains two different kinds of vertices denoted P and O, respectively: each vertex in P
corresponds to a parameter and is a k-bit sequence, whereas each vertex in O corresponds to
an operator. Arcs connect operators to their input and output parameters: the predecessors
(resp. successors) of an operator o are denoted pred(o) (resp. succ(0)) and they correspond
to input (resp. output) parameters. As parameters are ordered, pred(o) and succ(o) are
tuples (instead of sets) and the order is represented by arc labels: an incoming arc (z, o)
(resp. outgoing arc (o, x)) is labelled with i € [1, #ts,(0)] (resp. @ € [1, #tout(0)]), meaning
that z is the i*" input (resp. output) parameter in pred(o) (resp. succ(o)).

Some input parameters have no predecessor in the DAG. These input parameters either
correspond to k-bit sequences that are resulting from the plaintext or the key, or to constant
values. The set of input parameters that are constant values is denoted C'.

Most ciphers are iterative processes composed of r rounds. This round decomposition
does not appear in the DAG as it is not necessary for automatically generating models.

» Example 2. We display in Fig. 1 the DAG that describes the first AES round.

3 Optimization and Enumeration of TDCs

We first define MDCs in Section 3.1; then we define TDCs in Section 3.2; and finally, we
define the two problems addressed in this paper, Stepl-opt and Stepl-enum, in Section 3.3.

3.1 Maximum Differential Characteristics

To design differential attacks, we study the propagation of differences during the ciphering
process. To introduce differences in a k-bit sequence x, we XOR it with another k-bit sequence
7', and we denote dx the resulting differential sequence, i.e., dz = z & 2. When dz = 0,
there is no difference (i.e., x = 2’) whereas when dz # 0 there are differences (i.e., z # z').
Similarly, we denote dt the differential tuple obtained by XORing the elements of the two
tuples t and t/, i.e., 6t = t ®t'. By abuse of language, we say that a tuple dt is equal to 0
whenever all its elements are equal to 0, i.e., ¢t does not contain differences.

Given an operator o, some input/output differences are more likely to occur than others,
and this is quantified by means of differential probabilities.

» Definition 3 (Differential probability of an operator). The probability that an operator o
transforms an input difference §t;, into an output difference 5t yys is

#{(t,t") € [0,1)F*#tin(@) 5 [0, 1] #in(0) - Gty = t D' A St ous = 0(t) @ o(t')}
Qkx#tin (o)

po(étoutwtin) =

This probability is equal to 0 or 1 for linear operators. More precisely, for any linear
operator 0, po(0tout|dtsy,) = 1 if 0(dtyn) = 0towt and po(dteut|dtsy) = 0 otherwise. This
comes from the fact that for any linear operator o and any input parameters ¢ and t/,
o(t) Do(t')y=o(tdt).



L. Libralesso, F. Delobel, P. Lafourcade, and C. Solnon

Figure 1 DAG of the first round of the AES for 128-bit keys. Bytes are represented with squares,
and operators with circles. The input key and plaintext have 128 bits and are split into 16 bytes
colored in blue and green, respectively. Yellow squares correspond to the text state after one
encryption round. Pink squares correspond to the first round sub-key and are obtained from the
blue squares by applying operations which are not displayed to avoid overloading the figure (these
operations are: 16 XORs, 4 SubBytes, and 1 XOR with a constant).

When an operator o is not linear, p, may be different from 0 and 1 and the only case
where po (0t put|0ts,) =1 is when 6t;, =0t,,: =0. In all other cases, it is strictly smaller than 1.

» Example 4. For the AES, all operators but SubBytes are linear. For SubBytes, the
probability ps(dt,u:|dts,) belongs to {0,276,277 1},

Let us now formally define what is an MDC.

» Definition 5 (MDC). Given a DAG that describes a cipher, a differential characteristic
is a function § : P\ C — [0,1]* that associates a differential sequence dx; with every non-
constant parameter x; € P\ C. The probability of a differential characteristic is obtained by
multiplying, for each operator o € O, the probability p,(dsucc(o)|dpred(o)) where §t denotes
the tuple obtained by replacing every parameter x; that occurs in t by déx; if x; € P\ C, and
by 0 if x; € C.

An MDC is a differential characteristic with maximum probability.

3.2 Truncated Differential Characteristics

MDCs are usually computed in two steps, as initially proposed by Knudsen in [20]: First, we
search for TDCs, and then we compute MDCs associated with TDCs.

A TDC is a solution to an abstract problem. More precisely, the abstraction of a k-bit
differential sequence dx is a Boolean value denoted AX such that AX = 1 iff 0x contains a
difference, i.e., 0x # 0. Similarly, the abstraction of a differential tuple 6t = (0x1,...,0x;)
is the Boolean tuple At = (Ax1,...,Ax;) such that Az; is the abstraction of dz; for each
Jjel,il.

40:5
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» Definition 6 (TDC). Given a bipartite DAG that describes a cipher, a TDC is a function
A: P\ C — {0,1} that associates a Boolean value Ax; with every non-constant parameter

A concretization of a TDC A is a differential characteristic § such that, for each non-
constant parameter x € P\ C, Az =0 & dx = 0. A is concretizable if it has at least one
concretization, the probability of which is different from 0.

Finding a concretization of a TDC that has a maximal probability (or proving that the
TDC cannot be concretized) is efficiently tackled by CP solvers thanks to table constraints
(see, e.g., [16]). However, there exists an exponential number of candidate TDCs with respect
to the number of non-constant parameters in P\ C. Hence, the key point for an efficient
solution process is to reduce as much as possible the number of candidate TDCs. This is
done by adding constraints that prevent the generation of non concretizable TDCs as much
as possible, without removing any concretizable TDC.

» Example 7 (xOR). If dy; = dx1 @ dx2, then it is not possible to have only one sequence
in {0x1,0x2,dy; } which contains a difference. Therefore, we can add the constraint Az; +
Axg + Ay; # 1 for each XOR operator.

» Example 8 (M (). There is no straightforward constraint that may be associated with
MC' as knowing which input parameters contain differences is not enough to know which
output parameters contain differences: To answer this question, we must know the exact
values of the input differences. However, M C usually satisfies the MDS property [25] that
relates the number of input differences with the number of output differences. The exact
definition of this relation depends on the constant coefficients M; ;. For the AES, this relation
is: among the four input differences dx1, ..., dx4 and the four output differences dy1, ..., dya,
either all differences are equal to 0, or at least five of them are different from 0. Hence, we
can add the constraint 2?21 AX; + AY; € {0,5,6,7,8} for each MC operator.

» Example 9 (SR;). SR, simply moves bytes. Therefore, we can add an equality constraint
between the corresponding Boolean variables, i.e., Vi € [1,4], Ay; = Az (i45)%4-

» Example 10 (S). S is not linear, and we cannot deterministically compute the output
difference dy; given the input difference dx1. However, as the look-up table is a bijection, we
know that dx; = 0 < dy; = 0. Therefore, we can add the constraint Axz; = Ay for each S
operator.

3.3 Definition of Stepl-opt and Stepl-enum Problems

As the probability p,(0t,ut|dti,) associated with a non-linear operator o is equal to 1 whenever
dtout = Ot = 0 whereas it is very small otherwise (e.g., smaller than or equal to 276 for
the AES Sbox), we can compute an upper bound on an MDC by computing a lower bound
on the number of active non-linear operators in a TDC, where an operator is said to be
active whenever its input/output differential tuples are different from 0. More precisely, let
s(A) be the number of active non-linear operators in a TDC A (i.e., s(A) = #{o € O :
o is not linear A dpred(o) # 0}), and let s* be the minimal value of s(A) for all possible
TDCs A. If the maximal probability of an active non-linear operator is equal to p, then
the probability of an MDC is upper bounded by p* . For example, for the AES this upper
bound is 279", In some cases, this upper bound is small enough to ensure the security of
the cipher with respect to differential attacks, and it is not necessary to actually compute
MDCs. Most papers that introduce new ciphering algorithms demonstrate the security of
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their cipher with respect to differential attacks only by computing this upper bound (e.g., [5]).

When the upper bound p*~ is large enough to allow mounting differential attacks, we have to
enumerate all possible TDCs that have a given number of active non-linear operators, and
we have to search for an MDC for each of these TDCs.

Step1-opt is the problem that aims at computing s* whereas StepI-enum is the problem

that aims at enumerating all TDCs that have a given number of active non-linear operators.

There exist different kinds of differential attacks, depending on where differences can be
injected. In this paper, we consider Single-key attacks, where differences are only injected in
the clear text (i.e., for each k-bit sequence x; coming from the input key, we have Ax; = 0),

and Related-key attacks, where differences can be injected in both the plaintext and the key.

3.4 Existing Approaches for Solving Stepl-opt and Stepl-enum

Two dedicated approaches have been proposed to solve these problems: An approach based
on dynamic programming (e.g., for AES [13] and Skinny [11]), and an approach based on
Branch & Bound (e.g., for AES [7]). The dynamic programming approach is rather efficient,
but it runs out of memory for large instances (e.g., when the key has more than 128 bits
for the AES); the Branch & Bound approach has no memory issue but needs weeks to solve
middle size instances and cannot be used to solve all instances within a reasonable amount
of time.

Also, ILP, CP, or SAT are commonly used to solve Stepl-opt and Stepl-enum: on
Skinny [11], Craft [18], Deoxys [26, 10], AES [23, 16], and Midori [15], for example.

While ILP/CP/SAT approaches require less programming work than dedicated ones,
they still require designing mathematical models. In particular, it is necessary to find
constraints that limit the number of non concretizable TDCs as much as possible, and this
can be time-consuming. In this paper, we present an automatic way to generate models for
Stepl-opt and Stepl-enum.

4 Description of a Symmetric Block Cipher with Tagada

The DAG associated with a cipher (see Section 2) must be described in a JSON file. This
file first specifies a list of parameters such that each parameter has one attribute, i.e., its
name (which must be unique). Then, it specifies a list of operators such that each operator
has three attributes, i.e., its list of input parameters, its list of output parameters, and its
UID (a unique identifier) that must correspond to an executable function.

» Example 11 (JSON representation of a XOR followed by a SubBytes).

{ "parameters": [ {"name": "X00"}, {"name": "K00"}, {"name: "ARK0O"}, {"name": "S00"} 1,
"operators": [ {"uid": "xor_2_1", "in": ["X00", "K00"], "out": ["ARK00"1},
{"uid": "S_l_l", "in": ["ARKOO"], "out": [usoou]}] }
The UIDs xor_2_1 and s_1_1 correspond to computable functions: xor_2_1 reads two k-bit
sequences and outputs their XOR, and s_1_1 reads one k-bit sequence and returns the
substitution associated with it according to the S-Box.

Some patterns may be repeated in the DAG. For example, let us consider the DAG describing
the first round of the AES displayed in Fig. 1. At the top level of this DAG, there are 16 XORs
which correspond to the AddRoundKey (ARK) step, where each byte of the text (in blue) is
XORed with the corresponding byte of the key (in green). As it is tedious to write 16 times
the JSON representation of one XOR operation, TAGADA provides functions corresponding to
meta-operators, where a meta-operator is a classical combination of operators.

40:7
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» Example 12 (ARK meta-operator). The ARK meta-operator has 3 groups of parameters:
the first group corresponds to the 16 input text bytes; the second to the 16 input key
bytes; and the third to the 16 output parameters. This meta-operator generates the JSON
description of 16 XORs such that each XOR has two input parameters coming from the first
and the second group, and one output parameter from the third group.

These meta-operators strongly simplify the definition of the JSON file. For example, the
JSON file corresponding to 4 rounds of the AES contains 364 parameters and 288 operators.
This file is generated by approximately 100 lines of code when using meta-operators.

To test the JSON file, TAGADA provides a function that has three input parameters,
i.e., a JSON file F' describing a cipher, a plaintext X and a key K, and that returns the
ciphertext obtained when ciphering X with K according to F' (this computation is done by
performing a topological sort to order DAG operators, and applying operators in this order).
This function allows us to test the correctness of the JSON file with the initialization vectors,
i.e., a set of (key, plaintext, ciphertext) triples that are usually provided by cipher authors to
validate that implementations are correct. Moreover, these vectors are mandatory for the
authors of all candidates to NIST’s competitions.

5 Automatic Generation of Models with Tagada

We show how TAGADA automatically generates state-of-the-art MiniZinc models for solving
Stepl-opt and Stepl-enum problems given JSON files that describe ciphers. This is done
in four steps: (i) generation of constraints from the black boxes associated with operators
(Section 5.1); (ii) simplification of the DAG (Section 5.2); (iii) extension of the DAG
(Section 5.3); and (iv) generation of the model from the DAG and the constraints (Section 5.4).

5.1 Automatic Generation of Constraints

As pointed out in Section 3.2, the key point for an efficient process is to tighten the abstraction
to prevent as much as possible the generation of non concretizable TDCs. For non-linear
operators, we add a constraint to ensure that Az; = Ay; where x; is the input parameter
and y; is the output parameter because dx1 = 0 < dy; = 0 for all non-linear operators.

For linear operators, we have to add constraints and, in all existing works, these constraints
have been manually derived from a careful analysis of operators, as illustrated in Ex. 7 to 9.
While this has lead to efficient models, this was also time-consuming and error-prone. Hence,
we propose to automatically generate table constraints for which domain consistency can be
efficiently achieved. Tables are generated by using the functions that provide operational
definitions of these operators. More precisely, the constraint associated with an operator o is
the relation R, of arity #t;,(0) + #t,ut(0) which contains every boolean tuple corresponding
to possible difference positions for the input/output parameters of 0. As o(t) Do(t') = o(t Ht)
for any t,t’ € [0, 1]¥*#%n(°) we can build R, from the black-box definition of o as follows.

» Definition 13 (Relation R, associated with an operator o).

Ro={(A@1)s -, A@pt,,(0))s AW1)s ooy AWt (o)) 2 @1, Tty (o)) € [0, 1]#tin (o),
(Y15 > Ytyu(0)) = 0(T1, -+ s Ty, (o))} where Vo € [0, 1]%, A(x) denotes the Boolean abstrac-
tion of x, i.e., A(x) =0z =0.

To compute this relation, we must (i) enumerate every possible k-bit sequence for
every input parameter of o; (ii) for each enumerated combination of input parameters,
call o to compute output parameter values; and (iii) compute the abstract Boolean values
A(z;) and A(y;) from their corresponding concrete values x; and y;. Hence, the time
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complexity for building R, is O(t - 28 #tn(©)) where t is the time complexity of 0. Moreover,
k is either equal to 4 or 8, and the number of input parameters, #t;,(0), is usually very
small: #t;,(0) is always smaller than or equal to four for all ciphers we are aware of.
Hence, the relation is rather quickly computed. In the worst case, the relation contains all
possible binary tuples of arity #t:,(0) + #tout(0). Hence, the space complexity of R, is
O((#tin(0) + Htous(0)) - 2#tm(O)+ o (0))

Note that the relation is computed only once for each black box (identified by its UID),
even if the operator is used more than once in the DAG. Also, some operators are shared by
multiple ciphers (such as XOR which is used by all ciphers). In this case, we only need to
compute the relation once, and we can memorize it for future usage.

» Example 14 (R,). The relation associated with XOR contains all triples (A(x1), A(z2),
A(z1 D x2)) such that 21, x5 € [0,1]¥. We obtain the following relation: R0 = {0,0,0), (0, 1,
1),(1,0,1),(1,1,0),(1,1,1)}. Note that the constraint (Ax;, Axe, Ay;) € Ryor has exactly
the same semantics as the constraint Azy + Azs + Ay; # 1 which is usually added to model
XORs in Stepl-opt and Stepl-enum models.

» Example 15 (R);¢). The relation associated with M C contains all tuples (A(x1), A(za),
A(zs), A(za), A(y1), Aly2), A(ys), A(ys)) such that Vi € [1,4],y; = (M;1 @ z1) ® (M2 ®
x2) ® (M; 3@ x3) ® (M; 4 ® x4). This relation, for the AES MixColumns, contains 102 tuples
and has exactly the same semantics as the constraint associated with the famous MDS
property, i.e., it contains only tuples such that the number of 1s belongs to {0, 5, 6,7, 8}.

5.2 Simplification of the DAG

Before generating a MiniZinc model from the DAG, we simplify it by applying shaving rules
that are described in this section. Each rule removes one or more vertices (and their incident
edges), and rules are iteratively applied until reaching a fixed point.

Rule 1: Merging Equal Parameters

When building a relation R, from the black box that defines o, we can search for every couple
of input/output parameters (x;,y;) with ¢ € [1, #t;,(0)] and j € [1, #t,ut(0)] such that z; is
always equal to y;: before starting the construction of the relation, we initialize a Boolean
variable €y, y, to true; then, for each generated tuple of input parameters, if z; # y; we set
€qy, ,, to false. This does not change the time complexity for building the relation.

We use a list L, to store all couples of parameter vertices that are related by an equality
relation. Before starting the shaving process, Le, is initialized by traversing the DAG: for
each operator vertex o and each couple of parameter vertices (z;,y;) € pred(o) x succ(o), if
€y, y, = true, we add (z;,y;) to Leg. Rule 1 is triggered whenever Le, is not empty, and it
is defined as follows.

» Definition 16 (Rule 1). If L., # 0, then (i) compute equivalence classes corresponding
to all binary equality relations contained in L.y (using a union-find data structure) and
reinitialize Leq to the empty set, (i) merge all vertices of the DAG that belong to a same
equivalence class, and (iii) remove every operator vertex that is no longer connected to a
parameter vertex.

» Example 17 (SR;). When building the relation Rgg,, we infer that €y, 4, IS tTUe whenever
j =1+ (i+ s)%4. When considering the DAG displayed in Fig. 1, this allows us to merge
each of the four predecessors of SRy vertices with its corresponding successor and, finally, to
remove each SR, vertex.
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Rule 2: Suppressing Constant Parameters

When an operator vertex o has an input parameter x; that has a constant value ¢, then this
parameter is replaced with 0 in the differential characteristic because ¢ @ ¢ = 0 (see Def. 3)
and, therefore, it can be removed from the DAG. Moreover, if all input parameters of o are
constants, its outputs are also constants and o can be removed from the DAG.

We use a list Lo to store all parameter vertices that have constant values. Before starting
the shaving process, L¢ is initialized with the set C of constant parameters. Rule 2 is
triggered whenever L¢ is not empty, and it is defined as follows.

» Definition 18 (Rule 2). If Lo # 0, then repeat the three following steps until Lo = ():
(i) choose one operator vertex o such that pred(o) N L. # 0;
(ii) remove from the DAG and from L¢ every parameter vertex x; € Lo N pred(o);
(iii) if pred(o) = 0, then remove o from the DAG and add every parameter vertez in succ(o)
to Lc, else update the relation R, and update L., if new equality relations can be
inferred;

» Example 19 (XOR with a constant value). Let us consider a XOR operator with one output
parameter y; and two input parameters z; and xo such that z; is a constant (i.e., 1 € C).
This operator is used in the key schedule of the AES, for example. In this case, x; is removed
from the DAG, the relation associated with this operator becomes {(0,0), (1,1)}, and we
add the couple (x2,y1) to the list L.

Rule 3: Suppressing Free Parameters

When an output parameter vertex x has no successor and its predecessor o is a linear operator,
then we can remove both o and = from the DAG because we can deterministically compute
the output difference dzx of o given the differences of all input parameters of o.

Similarly, when an input parameter vertex x has no predecessor, and it has only one
successor which is a linear operator, we can also remove both o and x from the DAG because
we can deterministically compute the input difference dx of o given the differences of all
other input parameters of o and the difference of its output parameter.

More formally, Rule 3 is defined as follows.

» Definition 20 (Rule 3). If there exists a parameter vertex x such that the out-degree of x
is equal to 0 and the predecessor of x is a linear operator, then remove x and the predecessor
of x from the DAG.

If there exists a parameter vertex x such that the in-degree of x is equal to 0, the out-degree
of x is equal to 1, and the successor of x is a linear operator, then remove x and the successor
of x from the DAG.

» Example 21. Let us consider the DAG displayed in Fig. 1. Every yellow vertex has no
successor and its predecessor is a linear operator (i.e., a XOR). Hence, we can remove all
yellow vertices, and all XOR operators that are predecessors of yellow vertices.

Also, every green vertex (corresponding to one byte of the plaintext) has no predecessor
and one successor which is a linear operator (i.e., a XOR). Hence, we can remove all green
vertices, and all XOR operators that are successors of green vertices.

Note that we cannot remove vertices that precede S operators, though they have no more
predecessors once we have removed XOR operators that succeeded green vertices, because S
is not linear. The shaved DAG obtained from the DAG of Fig. 1 after applying Rules 1, 2,
and 3 is displayed in Fig. 2. We do not apply the shaving rules on vertices associated with
the key vertices (in blue and pink) as we have not displayed the operator vertices that are
used to compute pink vertices from blue ones in Fig. 1.
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Figure 2 Shaved DAG obtained from the DAG of Fig. 1 after applying Rules 1, 2, and 3.

5.3 Extension of the DAG

A basic CP model may be generated from the shaved DAG (this will be explained in
Section 5.4). However, the resulting model is often not tight enough, i.e., the bound provided
by Stepl-opt is smaller than the actual value and/or many solutions of Stepl-enum cannot
be concretized into differential characteristics with strictly positive probabilities. In this
section, we show how to tighten this model by extending the DAG.

5.3.1 Generation of New Vertices and Edges from Existing Operators

In [17, 16, 23], Stepl-opt and Stepl-enum models are tightened by exploiting the fact that,
if t1 = MC(t2) and t3 = MC(t4) (where 1, ta, t3, and t4 are tuples of arity 4), then
t1 ®ts = MC(ta Bty). As a consequence, the MDS property also holds on ¢ @ t5 and to By,
i.e., the number of k-bit sequences in t; @ t3 and ty P t4 that are different from 0 is either
equal to 0 or strictly greater than 4. Hence, a new variable (called diff variable in [16]) is
added for each parameter of each couple of M C operators. These diff variables are related
with initial parameters by adding XOR constraints. Finally, constraints that ensure the MDS
property are added for these new diff variables.

In TAGADA, we generalize this idea to all linear operators. Indeed, for any kind of linear
operator identified by its UID wu, we have u(t1) @ u(te) = u(t; @ t2). Therefore, for each
pair of operator vertices 01,02 € O such that the UID of 0; and o3 is u, we can add a new
operator vertex whose UID is u and whose input and output parameter vertices are obtained
by XORing input and output parameter vertices of 01 and o0y. More precisely, let pred(o) =
(@115 T, (w))s SuCC(01) = (Y1,05 -+ Y1 #to(u)), PTEd(02) = (T2,1,. .., To 44, (u)), and
succ(02) = (Y2,1, - - - » Y2,4t,..(uw))- We extend the DAG as follows:

For each i € [1, #t;,(u)], we add a new parameter vertex xs; corresponding to the result

of XORing z1,; and x4, i.e., we add a new XOR vertex whose predecessors are x1,; and

x2,; and whose successor is x3 ;;

For each j € [1, #tout(v)], we add a new parameter vertex ys ; corresponding to the result

of XORing y1,; and y» ;, i.e., we add a new XOR vertex whose predecessors are x1,; and

z2,; and whose successor is x3 ;;

We add a new operator vertex oz such that the UID of o3 is u, the predecessors of o3 are

X315 T3 41, (u), and the successors of 03 are Y3 1, .., Y3 #¢,..(u)-

This may be done for each kind of linear operator except XOR (as this is useless in this case).
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As this step may drastically increase the size of the DAG, it is optional, and the user can
choose the kind of linear operator that should be considered for this step.

5.3.2 Generation of New XORs

XOR equations may be combined to generate new equations. For example, consider two XOR
equations: a ®b@Pc =0, and bP cPd d = 0. By XORing these two equations, we obtain a
new equation ¢ & d = 0. This new equation is redundant when computing MDCs, but it
tightens the abstraction when computing TDCs. Indeed, let Ai be the boolean abstraction of
each k-bit sequence i € {a,b,c,d}. If we only post the two constraints (Aa, Ab, Ac) € Ryor
and (Ab, Ac, Ad) € Ryor (Where Ry is the relation defined in Ex. 14), then it is possible
to assign Aa, Ab, and Ac to 1, and Ad to 0 because (1,1,1) € Ryor and (1,1,0) € Ryor-
However, if we add the constraint (Aa, Ad) € {(0,0),(1,1)}, then this assignment is no
longer consistent.

This trick was introduced in [16] for the AES, but it has been limited to XORs that occur
in the key schedule. In TAGADA, we generalize it to all XORs. Let adj(o) = pred(o) U succ(0)
be the set of input and output parameters of an operator vertex o. For each couple of operator
vertices (01, 02) such that both 0; and o are XORs that share at least one common parameter
(i.e., adj(os) Nadj(oz) # B), we compute the set S = (adj(o1) U adj(02)) \ (adj(o1) Nadj(oz2))
(corresponding to parameters that are adjacent to o; or op but not to both 01 and o0y). If
S does not contain more than ny,,, parameters, then we add a new operator vertex oz to
the DAG, and we add an edge between each parameter vertex in S and o. This process is
recursively applied, until no more vertex can be added.

Nmax 1S @ given integer value that is used to control the growth of the DAG: when ny,,x = 0,
no new XOR operator is added to the DAG; the larger npy,x, the more XOR operators are
added.

For all possible values of #5' € [0, nmax], we have to generate the relation associated with
a XOR of #S parameters, as described in Section 5.1. Also, we infer equality relations and
apply Rule 1 (as described in Section 5.2) to merge vertices of the DAG that belong to a
same equivalence class.

5.4 Generation of the MiniZinc Model from the DAG

Given a DAG, we generate a MiniZinc model as follows:
We declare a Boolean variable Az for each parameter vertex x of the DAG;

We add a constraint A(prec(o0), succ(o)) € R, for each operator vertex o (where A(prec(o),
succ(0)) is the tuple of Boolean variables associated with parameters in prec(o) and
succ(0));

We declare an integer variable s which corresponds to the number of active non-linear
operators in the TDC, and we add a constraint s = )y, Az where NL contains the
set of parameter vertices that are predecessors of a non-linear operator vertex.
For Stepl-opt, the goal is to minimize s, and we add the constraint s > 1 because TDCs
must contain at least one active non-linear operator. For Stepl-enum, s is assigned to the
number of active non-linear operators, and the goal is to enumerate all solutions.
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Table 1 Model performance summary of Picat-SAT on the 35 Midori instances, 25 AES instances,
56 SKINNY instances and 38 CRAFT instances, for different values of nmaq. ranging from 0 to 5.
The 6 first (resp. last) rows give results without (resp. with) selecting MC. #d corresponds to the
number of instances where the model is not tight enough. When #d=0, we report the number of
instances that are solved within 1 hour for Stepl-opt (#0) and Stepl-enum (#e), and we highlight

the best values. We report — when models have not been generated because DAGs are too large.

Midori (35) AES (25) SKINNY (56) CRAFT (38)
model #d #o He | #d Ho He | #d FHo He | #d Ho He
Nmaz=0 18 12 0 24 122 |0 38 38
Nmaz=1 18 12 0 25 22 |0 38 38
Nmaz=2 18 12 0 25 22 |0 38 38
Nmaz=3 18 12 0 25 22 |0 38 38
Nmar=4 18 12 0 24 122 |0 38 38
Nmaz =0 - - - 12 - - - - - -
Nmaz=0 MC | 18 12 - - - 0 38 38
Nmaz=1 MC | 18 12 - - - 0 38 38
Nmaz=2 MC | 18 12 - - - 0 38 38
Nmaz=3 MC | 18 12 - - - 0 38 38
Nmaz=4 MC | 0 35 34 |0 23 121 | - - - 0 37 37
Nmaz=5 MC | — - - 0 24 21 | - — - - -

6 Experimental Results

We performed all experiments on a PC with a Xeon Gold 5118 (2.30 GHz) with 24 cores and
32 GB of RAM. Each experiment used only one thread, and we ran 20 of them in parallel to
speed up the computations. All the source-code and results are available online 2 3.

We consider four symmetric block ciphers for which there exist recent differential crypt-
analysis results, i.e., the AES [16], Midori [14], Skinny [11], and Craft [18]. For each cipher,
there are different instances that are obtained by considering either single-key or related-key
attacks, by changing the size of the key for related-key attacks of ciphers that have different
key lengths (i.e., 64 and 128 for Midori, 128, 192, and 256 for the AES), and by changing the
number 7 of rounds of the ciphering process, starting from r = 3 up to the largest value for r
considered in the literature. We obtain 35 (resp. 25, 56, and 38) instances for Midori (resp.
the AES, Skinny, and Craft). Finally, for each instance, we solve two different problems, i.e.,
Stepl-opt and Stepl-enum. Hence, our benchmark contains 308 instances.

TAGADA has a parameter n,,,, that is used to control the maximum size of new generated
XOR equations (see Section 5.3.2). It is also possible to select the linear operators for which
we infer new vertices and edges as explained in Section 5.3.1. In the four considered ciphers,
the only linear operator that can be selected is MC as SR is removed during the DAG
shaving step. Increasing n,,q., and/or selecting MC tightens the abstraction, but it also
increases the number of variables and constraints in the generated model.

In Table 1, we report the number of instances for which the generated model is not tight
enough (i.e., the bound computed by Stepl-opt is smaller than the best known bound) for
different values of n,,4,; and with or without selecting M C. This shows us that the best

2 Tagada: https://gitlab.limos.fr/iia_lulibral/tagada/
3 models and results: https://gitlab.limos.fr/iia_lulibral/experiment-results
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Figure 3 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by TAGADA for
Midori instances when nmqes = 4 and MC is selected (top plot for Stepl-opt and bottom plot for
Stepl-enum). State-of-the art is the handcrafted model of [14] run with Picat-SAT.
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Figure 4 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by TAGADA for
AES instances when nmqe; = 5 and MC is selected (top plot for Stepl-opt and bottom plot for
Stepl-enum). State-of-the art is the handcrafted model of [16] run with Picat-SAT.

parameter setting depends on the cipher: For Midori and the AES, it is necessary to select
MC' and to set nyq; to a value larger than or equal to 4 to generate a model that is tight
enough for all instances; For Skinny and Craft, the generated model is tight enough even
when 1,4, = 0 and MC is not selected.

In Table 1, we also report the number of instances that are solved within one hour of
CPU time by Picat-SAT [27] whenever the model is tight enough (it is meaningless to report
these results when models are not tight enough, as they do not solve the same problem).
When increasing n.,,q., the model has more constraints, and the number of new constraints
grows exponentially with n,,4,. In [16] and [14], this parameter has been fixed to 4 for the
handcrafted models, and this seems to be a rather good setting. However, for the AES,
one more instance is solved when increasing 7,4, to 5, and for Skinny one more instance
is solved when decreasing n,,q, to 3. For Midori, Skinny and Craft, when n,,,,, = 5 the
number of new constraints is so large that we have not run the resulting models. As models
are automatically generated by TAGADA, the user can easily fiddle with parameters to find
the settings that generate the tightest and most efficient models for a cipher.

In Fig. 3 to 6, we display results, on a per-instance basis, and for three different kinds of
solvers, i.e. Picat-SAT [27] (that generates a SAT instance from the MiniZinc model and
uses Lingeling to solve it), Gurobi [22] (which is an ILP solver), and Chuffed [9] (which is
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a CP solver with lazy clause generation). For these figures, we report results for the best
parameter setting for each cipher, i.e., N4, = 4 and MC is selected for Midori, n,y,q: = 5
and MC is selected for the AES, 1,4, = 0 and M C is not selected for Skinny and Craft.
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Figure 5 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by TAGADA
for Skinny when nmae = 0 and MC' is not selected (top plot for Stepl-opt and bottom plot for
Stepl-enum).
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Figure 6 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by TAGADA
for Craft when nmaz = 0 and MC is not selected (top plot for Stepl-opt and bottom plot for
Stepl-enum).

Picat-SAT is usually more efficient than Chuffed and Gurobi. However, Chuffed is often

faster on small instances, and Gurobi is the best performing solver on many Craft instances.

The MiniZine models for the AES and Midori described in [16] and [14] are publicly
available, and we compare our automatically generated models with these handcrafted models

(we only report results with Picat-SAT in this case as this is the best performing solver).

However, for instances of AES-192 we do not report results obtained with the model of [16]
because it does not solve the same problem: for these instances, the model of [16] does not
integrate in the objective function the S-boxes of the last round, which is an error of this
model for this particular case. For both Midori and the AES, models automatically generated
with TAGADA are competitive with state-of-the-art handcrafted models. The largest Midori
instances (when the key has 128 bits and the number of rounds is greater than 17) cannot be
solved within one hour by the model of [14] whereas the TAGADA model solves them. This
is remarkable because it takes weeks/months for a researcher to design these handcrafted
models. Moreover, with TAGADA we can check that the description of the cipher is correct
(as explained in Section 4), and the model is automatically generated from this description
without any human action (except parameter selection).
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For Skinny, the most efficient approach is a dedicated dynamic program [11]. However,
this approach consumes huge amounts of memory (more than 700 GB of RAM). In [11], a
MiniZinc model is also described, and results obtained with Picat-SAT are reported. The
number of instances solved by this approach within one hour on a server composed of 2x AMD
EPYC7742 64-Core is the same as with our TAGADA model when using Picat-SAT, i.e., 22.

Finally, for Craft, [5] only reports optimal solutions of Stepl-opt and does not report
CPU times. Our TAGADA model has found the same solutions as those of [5].

7 Conclusion

In this article, we present TAGADA, a tool for automatically generating MiniZinc models for
solving differential cryptanalysis problems given the description of a symmetric block cipher.
The description is based on a unifying framework, i.e., a DAG that describes how operators
are combined and black-boxes that give an operational definition of operators.

This description allows us to perform a correctness verification using initialization vectors
and comparing the behavior of our implementation with reference implementations found in
the literature, limiting the possible bugs.

Then, for each black box operator, we perform an exhaustive search of its input and output
values to infer a relation that represents a provably optimal abstraction for this operator.
The DAG is further modified by removing some parts that are not useful for differential
attacks, and by adding new operators that tighten the model. Finally, the MiniZinc model is
generated from the relations and the DAG.

We experimentally compare automatically generated models with state-of-the-art ap-
proaches on four ciphers (Midori, AES, Skinny, Craft) and on two types of attacks (Single-Key
and Related-Key). For all scenarios, our models find the same solutions as hand-crafted
models, and they have similar running times.

While the models generated by TAGADA have the same tightness and performance as
state-of-the-art hand-crafted models, MIP/CP/SAT solvers still struggle to solve the largest
instances. Recently, some ad-hoc dynamic programming algorithms have been proposed (for
instance, on Skinny [11]), and show better scale-up properties though they have high space
complexities. Hence, we plan to study the possibility of integrating dynamic programming
approaches within TAGADA.

Also, we plan to integrate other differential attacks than single-key and related-key (i.e.,
related-tweak, related-tweakey and boomerang attacks), and to extend TAGADA so that it
also generates models for computing MDCs given TDCs. Of course, we will use TAGADA to
analyze the recent ten finalists of NIST’s competition, as there is a need to provide quickly
differential attacks (or prove the robustness of the cipher against these attacks).
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