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Abstract
Complete search algorithms are important methods for solving Distributed Constraint Optimization
Problems (DCOPs), which generally utilize bounds to prune the search space. However, obtaining
high-quality lower bounds is quite expensive since it requires each agent to collect more information
aside from its local knowledge, which would cause tremendous traffic overheads. Instead of bothering
for bounds, we propose a Bound-Independent Pruning (BIP) technique for existing tree-based
complete search algorithms, which can independently reduce the search space only by exploiting
local knowledge. Specifically, BIP enables each agent to determine a subspace containing the optimal
solution only from its local constraints along with running contexts, which can be further exploited
by any search strategies. Furthermore, we present an acceptability testing mechanism to tailor
existing tree-based complete search algorithms to search the remaining space returned by BIP
when they hold inconsistent contexts. Finally, we prove the correctness of our technique and the
experimental results show that BIP can significantly speed up state-of-the-art tree-based complete
search algorithms on various standard benchmarks.
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1 Introduction

Distributed Constraint Optimization Problems (DCOPs) [14, 10] are a fundamental framework
for coordinated and cooperative multi-agent systems. They have been widely deployed in
many real applications such as sensor network [8], task scheduling [18, 26], smart grid [11]
and many others.
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41:2 A Bound-Independent Pruning Technique

Incomplete algorithms for DCOPs [18, 28, 17, 9, 22, 21] aim to rapidly find a good solution
at an acceptable overhead, while complete algorithms guarantee to find the optimal one
by employing either inference or search to systematically explore the entire solution space.
DPOP [23] and Action−GDL [27] are typical inference-based complete algorithms which
perform dynamic-programming to solve a DCOP. However, they require a linear number
of messages of exponential size. MB-DPOP and its variant [25, 5] proposed to trade the
number of messages for smaller size of message. DPOP with function filtering [3] exploits
utility bounds to reduce the size of message, where agents need to collect projected utilities
to establish utility bounds.

On the other hand, search-based complete algorithms perform distributed backtrack
searches and have a linear size of messages but an exponential number of messages. Tree-
based complete search algorithms are the most popular ones among them and normally utilize
bounds to prune the search space. Some work has been done to tailor centralized pruning
techniques such as soft arc consistency [6] to tighten lower bounds in a distributed setting.
BnB-ADOPT+-AC/FDAC [12] proposed to get strong lower bounds via arc consistency
(AC) and full directional arc consistency (FDAC) levels of soft arc consistency. However,
stronger consistency levels require agents to know more information about other agents to
plan sequences of soft arc consistency operations, which would compromise privacy and cause
tremendous communication overheads. Besides, PT-FB [16] builds tight lower bounds via a
forward bounding procedure which requires cost estimates from neighbors. ADOPT-BDP [1],
DJAO [15] and PT-ISABB [7] came out to perform an approximation inference to acquire
tighter lower bounds in the preprocessing phase. Recently, HS-CAI [4] was proposed to
tighten lower bounds by executing the context-based inference iteratively. Like soft arc
consistency, these methods also need to collect more information aside from local knowledge
and thus lead to traffic overheads inevitably.

In a nutshell, the existing pruning techniques for DCOPs are bound-dependent and
require collecting more information to obtain tight bounds. Different from them, we present a
novel pruning technique independent of bounds and dispensing with information collection to
accelerate existing tree-based complete search algorithms. More specifically, our contributions
are listed as follows.

We present a Bound-Independent Pruning (BIP) technique for existing tree-based complete
search algorithms, which utilizes local constraints and running contexts to cut down the
search space independently.
We further introduce an acceptability testing mechanism (ATM) to filter out unacceptable
search results produced by existing tree-based complete search algorithms when enforcing
BIP under the inconsistent contexts.
We theoretically show the correctness of BIP and ATM, and the experimental results
demonstrate that BIP substantially improves state-of-the-art tree-based complete search
algorithms on all the metrics in most cases.

2 Background

In this section, we introduce the preliminaries including DCOPs, pseudo tree and tree-based
complete search algorithms.

2.1 Distributed Constraint Optimization Problems
A distributed constraint optimization problem [19] can be formalized by a tuple ⟨A, X, D, F ⟩
where
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(a) Constraint graph.

xi

xj 0 1 2

0 2 3 0
1 3 2 1
2 5 5 6

(b) Constraint matrix. (c) Pseudo tree.

Figure 1 An example of a DCOP and its pseudo tree.

A = {a1, a2, ..., an} is a set of agents.
X = {x1, x2, ..., xm} is a set of variables.
D = {D1, D2, ..., Dm} is a set of finite and discrete domains, where each variable xi takes a
value assignment in Di. Here, we denote the maximal domain size as dmax = maxai∈A |Di|.
F = {f1, f2, ..., fq} is a set of constraint functions, where each constraint fi : Di1 ×
· · ·Dik

→ R⩾0 specifies the non-negative cost for each combination of xi1 , ..., xik
.

For the sake of simplicity, we assume that each agent controls exactly one variable (i.e.,
n = m) and all constraint functions are binary (i.e., fij : Di ×Dj → R⩾0). Thus, the term
agent and variable can be used interchangeably. An optimal solution to a DCOP is an
assignment to all the variables such that the total cost is minimized. That is,

X∗ = arg min
di∈Di,dj∈Dj

∑
fij∈F

fij(xi = di, xj = dj)

A DCOP can be visualized by a constraint graph where the nodes denote agents and the
edges denote constraints. Figure 1 (a) gives a DCOP with four variables and four constraints.
For simplicity, the domain size of each variable is three and all the constraints are identical
as shown in Fig. 1 (b) where i < j.

2.2 Pseudo Tree
A pseudo tree is a partial ordered arrangement to a constraint graph and can be generated by
depth-first search traversal, where different branches are independent from each other and its
constraints are categorized into tree edges and pseudo edges (i.e., non-tree edges). According
to the relative positions in a pseudo tree, the neighbors of an agent ai connected by tree
edges are categorized into its parent P (ai) and children C(ai), while the ones connected by
pseudo edges are denoted as its pseudo parents PP (ai) and pseudo children PC(ai). For
succinctness, we also denote all its (pseudo) parents as AP (ai) = PP (ai) ∪ {P (ai)}, all its
(pseudo) children as CD(ai) = C(ai) ∪ PC(ai), its ancestors as Anc(ai) and its descendants
as Desc(ai). Besides, we denote the set of ancestors who share constraints with ai and its
descendants as Sep(ai) [24]. Figure 1 (c) gives a possible pseudo tree deriving from Fig. 1 (a)
where tree edges and pseudo edges are denoted by solid and dashed lines, respectively.

2.3 Tree-based Complete Search Algorithms
Tree-based complete search algorithms perform a systematic search on a pseudo tree. Specific-
ally, each agent ai traverses the subtree rooted at itself under the running context Contexti

(i.e., the assignment to Sep(ai)) and avoids expanding suboptimal branches by exploiting
the bounds including the lower and upper bounds of its subproblem (i.e., LBi and UBi), the
ones of its subproblem given its value di ∈ Di (i.e., LBi(di) and UBi(di)) and the ones of its
subproblem given its value di ∈ Di for its child ac ∈ C(ai) (i.e., lbc

i (di) and ubc
i (di)).

CP 2021



41:4 A Bound-Independent Pruning Technique

According to the way that agents update their assignments, tree-based complete search
algorithms can be classified as synchronous or asynchronous. Synchronous algorithms
constrain the agents’ decisions to follow a particular order. As a result, only when ai

and its descendants have thoroughly explored its subproblem given Contexti, it reports its
search results including LBi and UBi (here, LBi = UBi = opti if Contexti is feasible and
LBi = UBi =∞ otherwise, and opti is the optimal solution cost of the subproblem) if it is a
non-root agent; otherwise, it finds the optimal solution. In contrast, asynchronous ones allow
agents to update their assignments solely based on their local view of their subproblems and
report their search results including LBi and UBi (here, LBi ≤ opti ≤ UBi) continually.
Once the root agent ai has LBi = UBi, the optimal solution is found.

Next, we will take PT-FB and BnB-ADOPT for example to describe the concrete
implementation of synchronous and asynchronous tree-based complete search algorithms,
respectively. In PT-FB, each agent ai explores its subproblem by sequentially expanding
Contexti via sending CPA messages2 to its children, and reports its search results via a
UB message3 once exhausting its domain. When receiving a UB message including LBc

and UBc from ac, ai updates lbc
i (di) and ubc

i (di) with LBc and UBc, respectively. As for
BnB-ADOPT, each agent ai explores its subproblem by constantly informing its current
value to its constrained descendants via VALUE messages4 and reporting its search results
including LBi and UBi to its parent via a COST message2. Similarly to PT-FB, once
receiving a COST message including LBc and UBc from ac, ai updates lbc

i (di) and ubc
i (di)

with LBc and UBc, respectively. Afterwards, it updates LBi(di) and UBi(di), and then
updates LBi and UBi according to the following equations.

LBi = min
di∈Di

{LBi(di)} (1)

UBi = min
di∈Di

{UBi(di)} (2)

3 Proposed Method

In this section, we propose a Bound-Independent Pruning (BIP) technique for existing
tree-based complete search algorithms, where each agent solely exploits its local constraints
and running contexts to confirm a subspace containing the optimal solution and thereby
obtains pruned domains for itself and its children under the current context. We further
introduce an acceptability testing mechanism to tailor existing tree-based complete search
algorithms to match BIP when they hold inconsistent contexts. Before elaborating on BIP,
we first introduce some terms, definitions and their related properties used in this paper.

▶ Definition 1 (dims). Let U be a cost table, dims(U) is the set of variables involved in U .

DU = ×xi∈dims(U)Di is the set of all value combinations of dims(U). Given xi ∈
dims(U), DU

−i = ×xj∈dims(U)\{xi}Dj is the set of all value combinations of dims(U) except
xi. Particularly, we specify DU

−i = {∅} when dims(U)\ {xi} = ∅.
Take f12 in Fig. 1(b) for example. We have dims(f12) = {x1, x2} and Df12

−2 =
{((x1, 0)), ((x1, 1)), ((x1, 2))}.

2 A CPA message contains the Current Partial Assignment of the sending agent and all its ancestors.
3 A UB (COST) message contains the results of a solution found to the sending agent’s sub-problem.
4 A VALUE message contains the value assignment of the sending agent.
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▶ Definition 2 (POS). Given d−i ∈ DU
−i, di ∈ Di is a Primary Optimal Support (POS)

for d−i on U , denoted by posU (d−i), iff U(di, d−i) = mind′
i
∈Di

U(d′
i, d−i) (ties are broken

alphabetically).

Consider f12. When d−2 = ((x1, 2)), we have posf12(d−2)=0 since f12(d−2, x2 = 0) =
f12(d−2, x2 = 1) < f12(d−2, x2 = 2) and 0 precedes 1.

According to Definition 2, we can obtain a subset of DU , denoted by SU
i , by Eq. (3).

SU
i =

{
(di, d−i)

∣∣di = posU (d−i),∀d−i ∈ DU
−i

}
(3)

Considering f12 again, we have Sf12
2 = {((x2, 2), (x1, 0)), ((x2, 2), (x1, 1)), ((x2, 0), (x1, 2))}.

▶ Definition 3 (Join). Let U, U ′ be two cost tables, the join of U and U ′, denoted by U ⊗U ′,
is a relation defined over DU⊗U ′ = ×xi∈dims(U)∪dims(U ′)Di such that

(U ⊗ U ′) (d) = U
(
d[dims(U)]

)
+ U ′ (

d[dims(U ′)]
)

,∀d ∈ DU⊗U ′

where d[dims(U)] and d[dims(U ′)] are slices of d along dims(U) and dims(U ′), respectively.

Next, we give the following properties of SU
i , based on which BIP is presented.

▶ Property 4. There exists at least one element in SU
i leading to the optimal cost in U .

That is, ∃d ∈ SU
i , s.t. U(d) = mind′∈DU U(d′).

Proof. Assume that ∀d ∈ SU
i , U(d) > U(d∗) where d∗ = (d∗

i , d∗
−i) is the optimal solution.

According to Definition 2, we have ∃d′
i ∈ Di, s.t. d′

i = posU (d∗
−i) and thus U(d′

i, d∗
−i) =

U (d∗). Furthermore, we have (d′
i, d∗

−i) ∈ SU
i by Eq. (3). That is, (d′

i, d∗
−i) ∈ SU

i and
U(d′

i, d∗
−i) = U(d∗) which contradicts the assumption. Thus, Property 4 is proved. ◀

▶ Property 5. Given two cost tables U and U ′, SU
i = SU ′

i if

U = U ′ ⊗ U ′′ (4)

where dims(U ′′) ⊆ dims(U ′)\ {xi} and xi ∈ dims(U ′).

Proof. Firstly, we prove that U(di, d−i) − U(d′
i, d−i) = U ′(di, d−i) − U ′(d′

i, d−i),∀di, d′
i ∈

Di, d−i ∈ DU
−i.

According to Eq. (4), we have dims(U ′) = dims(U) and xi ∈ dims(U). Thus, for all
di, d′

i ∈ Di and d−i ∈ DU
−i, we have

U(di, d−i)− U(d′
i, d−i)

= (U ′(di, d−i) + U ′′(d−i[dims(U ′′)]))− (U ′(d′
i, d−i) + U ′′(d−i[dims(U ′′)]))

= U ′(di, d−i)− U ′(d′
i, d−i) (5)

Next, we prove that given d−i ∈ DU
−i and di ∈ Di, U(di, d−i) = mind′

i
∈Di

U(d′
i, d−i) if

U ′(di, d−i) = mind′
i
∈Di

U ′(d′
i, d−i).

Assume that ∃d′
i ∈ Di, s.t. U(di, d−i) > U(d′

i, d−i). Since U ′(di, d−i) = mind′
i
∈Di

U ′(d′
i,

d−i), we have U ′(di, d−i) ⩽ U ′(d′
i, d−i), ∀d′

i ∈ Di. Further, we have U(di, d−i) ⩽ U(d′
i, d−i),

∀d′
i ∈ Di by Eq. (5), which is contradictory to the assumption. Thus, the conclusion holds.
Based on the above conclusion and Definition 2, we have

posU (d−i) = posU ′(d−i) (6)

Therefore, we can conclude SU
i = SU ′

i based on Eqs. (3) and (6), and thereby Property 5 is
proved. ◀
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41:6 A Bound-Independent Pruning Technique

According to Property 5, we can readily obtain SU
i from U ′ if U and U ′ satisfy Eq. (4).

Namely, we can derive the desired subspace of a table from its subtable which includes its
partial information if they satisfy Eq. (4). Look into a DCOP. Given its pseudo tree and
a running context, if U ′ and U are respectively instantiated to the combination cost table
of local constraints at an agent ai and the combination cost table of all constraints in the
subproblem rooted at itself after eliminating Desc(ai)\CD(ai), we find that they still satisfy
Eq. (4) (see Lemma 7 for detail). Accordingly, each agent ai can confirm the subspace
containing the optimal solution like SU

i from its local constraints under the running context.
Hereby, we propose BIP for tree-based complete search algorithms.

3.1 Bound-Independent Pruning(BIP) Technique
BIP aims to enable each agent ai to exclude some elements in DUi\SUi

i to prune the search
space as possible under the current context in light of Property 4 and 5. Here, Ui is the
combination of all local constraints at ai under Contexti. Formally,

Ui = cd−costi ⊗ ap−costi (7)

cd−costi = ⊗aj∈CD(ai)fij (8)

ap−costi =
∑

aj∈AP (ai)fij (Contexti(xj)) (9)

where cd−costi is the combination of all constraints between ai and CD(ai) and ap−costi is
the sum of all constraints between ai and AP (ai) under the current context.

Theoretically, all the elements in DUi\SUi
i should be pruned. However, it is hard to

do since pruning some elements requires the joint implementation by CD(ai) at different
branches which search their subspace independently in existing tree-based complete search
algorithms. Therefore, we choose to prune some elements from DUi\SUi

i , which only involves
ai or the joint implementation by ai and its child. Specifically, ai removes DVi computed
by Eq. (10) from its domain (i.e., Di). For each value di ∈ Di\DVi, ai suggests its child
ac ∈ C(ai) to remove DV c

i (di) computed by Eq. (11) from the domain of ac (i.e., Dc).

DVi = {di ∈ Di|(di, d−i) ∈ DUi\SUi
i ,∀d−i ∈ DUi

−i} (10)

DV c
i (di) = {dc ∈ Dc|(di, dc, d−(i,c)) ∈ DUi\SUi

i ,∀d−(i,c) ∈ DUi

−(i,c)}, ac ∈ C(ai) (11)

Here, DUi

−(i,c) = ×xj∈dims(Ui)\{xi,xc}Dj .
Take a2 in Fig. 1(c) for example. Given Context2 = {(x1, 0)}, we have U2 = f12(x1 =

0) ⊗ f23 ⊗ f24 as shown in Fig. 2 where all the elements in SU2
2 are highlighted in bold.

We have DV2 = {2} according to Eq. (10), and DV 3
2 (1) = {0, 2} according to Eq. (11).

Similarly, we have DV 3
2 (0) = ∅, DV 4

2 (0) = ∅ and DV 4
2 (1) = {0, 2}. Accordingly, a2 obtains

all the removed elements shown in gray.
Since DV i

P (ai)(Contexti(P (ai))) can be piggybacked by a CPA or VALUE message from
P (ai) and DVi is computed by itself, ai can obtain the pruned domain Domi by:

Domi = Di\(DVi ∪DV i
P (ai)(Contexti(P (ai)))) (12)

Algorithm 1 gives the sketch of calculating Domi for both synchronous and asynchronous
tree-based complete search algorithms when enforcing BIP. Each agent ai computes cd−costi

firstly (line 1). Afterwards, it calculates DVi and DV c
i (di) by calling Compute−DV s() and
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(a) x2 = 0. (b) x2 = 1. (c) x2 = 2.

Figure 2 U2 under Context2 = {(x1, 0)}.

Algorithm 1 Calculating Domi for ai.

When Initialization:
1 compute cd−costi according to Eq. (7)
2 if ai is the root then
3 Compute−DVs()
4 compute Domi according to Eq. (12)

When received a CPA or VALUE from P (ai):
5 Compute−DVs()
6 compute Domi according to Eq. (12)

When sending a CPA or VALUE to ac ∈ C(ai):
7 attach DV c

i (di) to the CPA or VALUE message
Function Compute−DVs():

8 DVi ← Di

9 DV c
i (di)← Dc ,∀ di ∈ Di, ac ∈ C(ai)

10 foreach d−i ∈ DUi
−i do

11 di = posUi
(d−i)

12 DVi ← DVi\{di}
13 DV c

i (di)← DV c
i (di)\d−i[xc], ∀ac ∈ C(ai)

Domi according to Eq. (12) if it is the root (lines 2–4, 8–13) or receiving a CPA or VALUE
message from P (ai) (line 5–6), and attaches DV c

i (di) to the message when forwarding a CPA
or VALUE message to ac (line 7). Compute−DV s() performs the following steps to obtain
DVi and DV c

i (di). Firstly, each agent ai initializes DVi to Di and DV c
i (di) to Dc for each

di ∈ Di and ac ∈ Dc (lines 8-9). Then, ai traverses Ui to filter out elements from DVi and
DV c

i (di) if they do not satisfy Eq. (10) and (11) (lines 10–13), respectively.

3.2 An Example for BIP
We take Fig. 1 as an example to trace BIP runing on a tree-based synchronous search
algorithm. Table 1 shows the variable update for BIP in the first three cycles. For the sake
of simplicity, we omit the variable update for the search algorithm.

Cycle 1: After constructing a pseudo tree shown in Fig. 1(c), the root agent a1 computes
U1 = f12 ⊗ f13, and then calls Compute−DV s() to get DV1 and DV 2

1 (d1) for itself and
its child a2, respectively. Afterwards, it computes Dom1 = D1\DV1 = {0, 1} and sends
{(x1, 0)} and DV 2

1 (0) = ∅ to its child a2 via a CPA message. (Assume that a1 takes its
feasible assignment(x1, 0).)

a1 → a2 : CPA({(x1, 0)}, DV 2
1 (0))

CP 2021
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Table 1 The trace of assignments to the variables of BIP.
 

      

      

      

      

      

Cycle 2: When a2 receives the CPA message from a1, it computes U2 = f12(x1 = 0) ⊗
f23⊗ f24, calls Compute−DV s() to get DV2, DV 3

2 (d2) and DV 4
2 (d2) for itself, a3 and a4,

respectively, and then computes Dom2 = D2\(DV2 ∪DV 2
1 (0)) = {0, 1}. Next, a2 takes

its feasible assignment(x2, 1) and sends a CPA message containing {(x1, 0), (x2, 1)} and
DV 3

2 (1) to a3 and a CPA message containing {(x1, 0), (x2, 1)} and DV 4
2 (1) to a4.

a2 → a3 : CPA({(x1, 0), (x2, 1)}, DV 3
2 (1))

a2 → a4 : CPA({(x1, 0), (x2, 1)}, DV 4
2 (1))

Cycle 3: Upon receipt of the CPA message from a2, a3 computes DV3 by calling
Compute−DV s() 5, and gets Dom3 = D3\(DV3 ∪DV 3

2 (1)) = ∅ which means Context3
can not lead to the optimal solution and should be changed. Therefore, it backtracks to
its parent a2 with an infinity cost. a4 performs the same as a3.

3.3 Acceptability Testing Mechanism(ATM)
For existing tree-based complete search algorithms, each agent ai explores its subproblem
conditioned on Contexti. When enforcing BIP, ai needs to exploit Domi which is computed
under the assignments to AP (ai) and AP (P (ai)) according to Eqs. (10) - (12). However, the
assignment to AP (P (ai))\Sep(ai) is not contained in Contexti. Consequently, ai is searching
under its running context while AP (P (ai))\Sep(ai) may change their values, which is very
common in asynchronous algorithms. In the case, ai’s search results might be unacceptable.
There exist two naïve solutions to the issue. The one is to expand the running context of ai

from the assignment of Sep(ai) to the ones of Sep(ai) ∪AP (P (ai)). The other is to remove
DV i

P (ai)(Contexti(P (ai))) from Eq. (12). Unfortunately, the former could result in more
frequent changes of running contexts and thus severely degrade the original algorithms while
the latter could lead to missing opportunities to prune the search space.

Instead of changing the running context or BIP, we propose ATM to filter out unacceptable
search results to ensure the completeness of the original algorithms when the inconsistent
contexts happen. Specifically, for ai and its child ac, when AP (ai)\Sep(ac) change their
values, ac has to exploit new Domc, which puts ac’s search results under its old Domc at
risk of unacceptability. For clarity, we denote the old Domc and the new Domc as Domc(di)
and Dom′

c(di) for a given di, respectively. We introduce the following rules to determine if
ac’s search results under Domc(di) (i.e., lbc

i (di) and ubc
i (di)) are acceptable or not.

5 Note that Compute−DV s() is also applied to leaves since we specify DU
−i = {∅} when dims(U)\ {xi} = ∅.
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Rule 1: lbc
i (di) is acceptable under Dom′

c(di) if Dom′
c(di) ⊆ Domc(di); otherwise,

discarded.
Rule 2: ubc

i (di) is acceptable under Dom′
c(di) if Dom′

c(di) ⊇ Domc(di); otherwise,
discarded.

Next, we will prove the correction of the two rules.

▶ Proposition 6. Given di, lbc
i (di) produced under Domc(di) is acceptable under Dom′

i(di) if
Dom′

c(di) ⊆ Domc(di), and ubc
i (di) produced under Domc(di) is acceptable under Dom′

i(di)
if Dom′

c(di) ⊇ Domc(di).

Proof. Let LB′
c and UB′

c be the search results of ac under Dom′
c(di), and opt′

c be the optimal
cost of ac’s subproblem under Dom′

c(di). To prove the proposition, we only need to prove
that lbc

i (di) ≤ LB′
c if Dom′

c(di) ⊆ Domc(di) and ubc
i (di) ≥ UB′

c if Dom′
c(di) ⊇ Domc(di)

since LB′
c ≤ opt′

c ≤ UB′
c. Next, we will firstly prove lbc

i (di) ≤ LB′
c if Dom′

c(di) ⊆ Domc(di).
As LB′

c is the search result under Dom′
c(di), according to Eq. (1), we have

LB′
c = mindc∈Dom′

c(di) {LBc(dc)}

Since lbc
i (di) = LBc (LBc is actually obtained under Domc(di)) and Dom′

c(di) ⊆
Domc(di), we have

lbc
i (di) = mindc∈Domc(di) {LBc(dc)}

= mindc∈(Domc(di)\Dom′
c(di))∪Dom′

c(di) {LBc(dc)}
= min( min

dc∈Dom′
c(di)

LBc(dc), min
dc∈Domc(di)\Dom′

c(di)
LBc(dc))

= min(LB′
c, min

dc∈Domc(di)\Dom′
c(di)

LBc(dc)) ⩽ LB′
c

Similarly, we can conclude ubc
i (di) ≥ UB′

c if Domc(di) ⊆ Dom′
c(di). Thus, Proposition 6

is proved. ◀

To execute Rule 1 and 2, ai needs to obtain Domc(di) and Dom′
c(di). Here, Domc(di)

can be piggybacked by a COST message from ac and Dom′
c(di) can be obtained by:

Dom′
c(di) = Dc\(DVc ∪DV c

i (di))

where DV c
i (di) is computed by ai based on Eq. (11) and DVc can also be piggybacked by a

COST message from ac. When the search results are unacceptable, ai attaches a Boolean
variable ReqCostc

i (di) to the VALUE message to request a COST message from ac.

VALUE(ai, di, ID, TH, DV c
i (di), ReqCostc

i (di))
COST(ai, contexti, LBi, UBi, ThReq, Domi, DVi)

Figure 3 Messages of BnB-ADOPT+ when enforcing BIP.

Algorithm 2 presents the sketch of acceptability testing mechanism for BnB-ADOPT+ [13]
(i.e., a version of BnB-ADOPT which removes most of the redundant messages) when enforcing
BIP. Here, we attach Domi and DVi to a COST message, and DV c

i (di) and ReqCostc
i (di) to

a VALUE message. Figure 3 shows the modified messages where the attached items are bold.
Accordingly, we make the following adjustment in processing VALUE and COST messages.
Upon receipt of a COST message from its child or a VALUE message from its parent, ai

needs to check if the search results LBc and UBc are acceptable by Rule 1 and 2 (lines 14–24,
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Algorithm 2 Acceptability testing mechanism for ai.

When received a COST from ac ∈ C(ai):
14 if Contexti is compatible with Contextc then
15 di = Contextc(ai)
16 if meet Rule 1 for ac then
17 lbc

i (di)← max{lbc
i (di), LBc}

18 if meet Rule 2 for ac then
19 if Domc = ∅ then
20 ubc

i (di)←∞
21 else
22 ubc

i (di)← min{ubc
i (di), UBc}

23 if not meet Rule 1 or Rule 2 for ac then
24 ReqCostc

i (di)← true

When received a VALUE from P (ai):
25 if Contexti is compatible with Contextc then
26 foreach ac ∈ C(ai), di ∈ Di do
27 if not meet Rule 1 for ac then
28 lbc

i (di)← 0,
29 if not meet Rule 2 for ac then
30 ubc

i (di)←∞,
31 if not meet Rule 1 or Rule 2 for ac then
32 ReqCostc

i (di)← true

When sending a VALUE to ac ∈ C(ai):
33 if ReqCostc

i (di) = true then
34 attach ReqCostc

i (di) to the VALUE to request a COST from ac

35 ReqCostc
i (di)← false

When sending a COST to P(ai):
36 if Domi = ∅ then
37 LBi ←∞
38 UBi ←∞

25–32). If LBc and UBc are unacceptable, ai sets ReqCostc
i (di) to true to request the latest

search results of ac by a VALUE message to ac (lines 33–35). Besides, ai sets its lower and
upper bounds to infinity and sends them to its parent by a COST message if Domi = ∅
(lines 36-38).

3.4 Tradeoff

When deploying BIP into existing tree-based complete search algorithms, each agent ai

needs to store its cost table cd−costi which requires the memory consumption of d
|CD(ai)|+1
max .

Thus, we introduce a parameter k to specify the maximum memory budget (i.e., dk
max) for

each agent and only the agents with |CD(ai)|+ 1 < k can perform BIP. Hereby, we trade
pruning efficiency for memory consumption. In addition, we allocate the remaining memory
(i.e., d

k−|CD(ai)|−1
max ) to store DVi and DV c

i (di) to avoid repeated computation, where least
recently used (LRU) policy is used to replace the old entry with the lasted one.
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3.5 Complexity
When applied to existing tree-based complete search algorithms, BIP does not introduce any
new messages, and only adds some extra attachments which only require linear memory to
forwarding messages. Specifically, we attach DV c

i (di) to a CPA message for synchronous
tree-based algorithms, DV c

i (di) and ReqCostc
i (di) to a VALUE message and Domi and DVi

to a COST message for asynchronous tree-based algorithms.
As for the memory consumption of each agent ai, it is O(|Di|) if |CD(ai)|+ 1 > k since

ai does not need to perform BIP and thus only stores Domi. Otherwise, it is O(dk
max) for

synchronous tree-based algorithms and O(dk
max + |C(ai)|d2

max) for asynchronous tree-based
algorithms. Here, dk

max is the memory consumption as mentioned in Subsection 3.4 and the
memory of |C(ai)|d2

max is used for storing Dom′
c(di) and DVc(di) when performing ATM.

For each agent ai, it needs to traverse Ui whose size is O(d|CD(ai)|+1
max ) to compute

SUi
i . Then, it can obtain DVi and DV c

i (di) for each ac ∈ C(ai) by enumerating each
element in SUi

i whose size is d
|CD(ai)|
max . Thus, the overall computational complexity of ai is

O(d|CD(ai)|+1
max + (1 + |C(ai)|)d|CD(ai)|

max )

4 Theoretical Results

In the section, we prove the correction of BIP. Firstly, we will prove Eq. (4) can be suitable
for DCOPs.

Given a DCOP and its pseudo tree, let us consider the following three cost tables regarding
the subproblem rooted at ai under the current context Contexti. Ui is the combination of
all local constraints with ai and computed by Eq. (7). U irr

i is the combination cost table of
all constraints without ai in the subproblem. That is,

U irr
i = ⊗aj∈Desc(ai)(⊗ak∈AP (aj)\(Sep(ai)∪{ai})fjk

⊗(⊗ak∈AP (aj)∩Sep(ai)fjk(Contexti(xk)))) (13)

Usub
i is the combination cost table of all constraints in ai’s subproblem after eliminating

Desc(ai)\CD(ai). That is,

Usub
i = minDesc(ai)\CD(ai)(Ui ⊗ U irr

i ) (14)

▶ Lemma 7. U ′′ = minDesc(ai)\CD(ai) U irr
i is a cost table such that Usub

i = Ui ⊗ U ′′ and
dims(U ′′) ⊆ dims(Ui)\ {xi}.

Proof. According to Eq. (14), we have

Usub
i = minDesc(ai)\CD(ai)(Ui ⊗ U irr

i )
= Ui ⊗minDesc(ai)\CD(ai)U

irr
i

The equation from the first step to the second step holds since dims(Ui) = CD(xi) ∪ {xi}
according to Eq. (7) and (CD(xi) ∪ {xi}) ∩ (Desc(ai)\CD(ai)) = ∅. Further, according to
Eq. (13), we have dims(U irr

i ) = Desc(ai) and thus dims(U ′′) ⊆ dims(Ui)\ {xi}. Therefore,
Lemma 7 is proved. ◀

▶ Lemma 8. There exists at least one element in SUi
i that can be extended to the optimal

solution of ai’s subproblem.
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Proof. According to Property 4, we have ∃d ∈ S
Usub

i
i , s.t. Usub

i (d) = min
d′∈D

Usub
i

Usub
i (d′).

Further, according to Lemma 7 and Property 5, we have SUi
i = S

Usub
i

i and ∃d ∈ SUi
i , s.t.

Usub
i (d) = min

d′∈D
Usub

i
Usub

i (d′). Therefore, we can conclude that the optimal solution of
the subproblem rooted at ai is the join of d and the optimal assignment to Desc(ai)\CD(ai)
from Eq. (14). Thus, Lemma 8 is proved. ◀

▶ Theorem 9. There exists an optimal solution in the remaining space returned by BIP.

Proof. For any given context Contexti, there exists one element in SUi
i that can be extended

to the optimal solution of the subproblem rooted at ai according to Lemma 8, and BIP
does not prune any elements in SUi

i according to Eqs. (10) and (11). Thus, Theorem 9 is
proved. ◀

5 Empirical Evaluation

5.1 Experimental Configuration
In order to demonstrate its effect on distributed search, BIP is applied to BnB-ADOPT+-
FDAC, PT-FB and HS-CAI, named BnB-ADOPT+-FDAC+BIP, PT-FB+BIP and HS-
CAI+BIP, respectively. In our experiments, we will compare these BIP-based algorithms
with their originals and RMB-DPOP [5] on two types of problems, i.e., random DCOPs
and scale-free networks. RMB-DPOP is the latest best-performing algorithm in the DPOP
family. We consider four configurations, and the first two are sparse and dense configurations
for ramdom DCOPs. In more detail, we set the graph density to 0.2, the domain size to 3
and the number of agents varying from 22 to 32 for the sparse configuration, and the graph
density to 0.5, the domain size to 3 and the number of agents varying from 14 to 24 for
the dense configuration. The third configuration is the random DCOPs with 22 agents, the
graph density of 0.2 and the domain size varying from 3 to 8. In the fourth configuration, we
consider the scale-free networks whose degree distribution follows a power law. We generate
the instances by BA model [2], where we set the number of agents to 26, the domain size to
3 and m0 to 10, and vary m1 from 2 to 8.

In our experiments, we use the number of messages (Msgs) and network load (NL, i.e., the
size of total information exchanged) to measure the traffic overheads, and the NCLOs [20] to
measure the hardware-independent runtime where the logical operations in the inference and
the search are accesses to utilities and constraint checks, respectively. In order to capture
the computation overhead introduced by BIP, the accesses to Ui, DVi and DV c

i (di) are also
counted into the NCLOs for the BIP-based algorithms. For each experiment, we generate 50
instances randomly with the integer constraint costs in the range of 0 to 100, and report the
average over all instances. Moreover, we choose k = 4 and k = 8 as the low and high memory
budget for HS-CAI, RMB-DPOP and BIP, respectively. For fairness, we set the memory
for BIP to be the same as the one for HS-CAI (i.e., O(|C (ai) |dk

max) ). The experiments are
conducted on an i7-7820x workstation with 32GB of memory and we set the timeout to 30
minutes for each algorithm.

5.2 Experimental Results
Figure 4 presents the experimental results under different numbers of agents on the sparse
configuration, and the corresponding improvement over the originals is displayed in the first
two rows of Table 2 where the numbers greater than zero are shown in bold. It can be seen
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Figure 4 Performance comparison under different numbers of agents on the sparse configuration.

Table 2 The improvement of the BIP-based algorithms over their respective originals.

that the BIP-based algorithms exhibit a great advantage on all the metrics in most cases
and the advantage expands as k increases. This is because more agents performing BIP
can lead to better pruning efficiency under larger k. Moreover, the BIP-based algorithms
can scale up to larger problems when k = 4 and their scalability is further enhanced when
k = 8. In more detail, BnB-ADOPT+-FDAC can only solve problems with the number
of agents no greater than 24, and ADOPT+-FDAC+BIP can scale up to 26 and 28 when
k = 4 and k = 8, respectively. The similar phenomenon can be found from PT-FB+BIP
and HS-CAI(k = 4)+BIP(k = 4). In addition, RMB-DPOP has a great advantage over
the search algorithms on the number of messages, but performs worse than all the search
algorithms except BnB-ADOPT+-FDAC and BnB-ADOPT+-FDAC+BIP(k = 4) in terms
of the NCLOs. Besides, when k = 8, HS-CAI is superior to RMB-DPOP in terms of the
network load in most cases and HS-CAI+BIP greatly expands the superiority of HS-CAI
over RMB-DPOP.

Figure 5 presents the experimental results under different numbers of agents on the dense
configuration, and the third and fourth rows of Table 2 show the corresponding improvement
over the originals. It can be seen that the BIP-based algorithms also perform better than
their originals in terms of both the number of messages and network load. However, the

6 In the sparse configuration, HS-CAI+BIP is superior to HS-CAI on the NCLOs and the superiority
expands as the number of agents increases when the number of agents is greater than 26.

7 In the configuration of varying domain size, we set the number of agents to 22 and HS-CAI+BIP is
inferior to HS-CAI on the NCLOs, while HS-CAI+BIP will be superior to HS-CAI on this metric when
the number of agents is greater than 26, which can be seen from Figure 4(c).
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Figure 5 Performance comparison under different numbers of agents on the dense configuration.

gaps narrow compared to the ones on the sparse configuration. This is because less agents
at the high positions of the pseudo-tree perform BIP on the dense configuration, which
impairs pruning efficiency. In addition, BIP does not always perform well in terms of the
NCLOs on the dense configuration. That is because the computational consumption of BIP
is exponential to the number of (pseudo) children of an agent and there are more agents
with a large number of (pseudo) children in the dense configuration. Compared to the search
algorithms, the performance of RMB-DPOP is similar to the one on the sparse configuration.
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Figure 6 Performance comparison under different domain sizes.

Figure 6 presents the experimental results under different domain sizes, and the corres-
ponding improvement over the originals can be found in the fifth and sixth rows of Table 2.
We can see that BIP still works well when facing the problems with larger domain size.
However, the improvement gaps narrow as the domain size increases. This is because the
proportion of values pruned out by BIP reduces at large domain size. In addition, the
BIP-based algorithms can solve the problems with larger domain size than their originals. In
more detail, PT-FB can not solve the problems with the domain size greater than 5, while
PT-FB+BIP can scale up to the ones with the domain size of 6 when k = 4, and further to
the ones with the domain size of 7 when k = 8. When facing the problems with larger domain
size, the performance of RMB-DPOP is similar to the one in the first two configurations.
It is worth noting that the number of messages of RMB-DPOP(k = 8) holds steady as the
domain size increases. That is because under this configuration, it performs just like DPOP
where the number of messages is linear to the number of agents.

Figure 7 presents the experimental results on scale-free networks and the seventh and
eighth rows of Table 2 show the corresponding improvement over the originals. It can be
seen that the BIP-based algorithms exhibit a great advantage over their originals on all
the metrics in most cases and the advantage expands as k increases, which is similar to
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Figure 7 Performance comparison on scale-free networks.

the results on random DCOPs. In addition, when k = 8, both BnB-ADOPT+-FDAC+BIP
and PT-FB+BIP can scale up to the problems with larger m1 than their originals. The
performance of RMB-DPOP is similar to the one on random DCOPs.

From Table 2, we can see that BIP can improve the tree-based complete search algorithms
in terms of both the number of messages and network load in all the experimental configur-
ations. This is because BIP can significantly reduce the search space without introducing
any new messages, and only adds some extra attachments which only require linear memory
to forwarding messages. Thus, BIP is well suited for some real-world applications that
are equipped with devices with the limited memory and desire for lower communication
overheads. In addition, BIP can greatly improve the search-based algorithms under the
sparse configuration on all the metrics. Thus, BIP is also well suited for solving the real-world
applications with low graph density.

6 Conclusion

Complete search algorithms for DCOPs depend solely on bounds to prune the search space.
However, obtaining strong lower bounds come at a high price. The paper presents a novel
pruning technique named BIP which can independently reduce the search space only by
means of local knowledge and running contexts. To the best of our knowledge, BIP is the
first pruning technique independent of bounds for tree-based complete search algorithms to
solve a DCOP. Moreover, our proposed BIP can be easily applied to any existing tree-based
complete search algorithms for DCOPs with minor modifications. We theoretically prove the
correctness of our technique and our empirical evaluation confirms its great superiority. It is
worth noting that our proposed BIP is not specific to tree-based complete search algorithms
for DCOPs and can be easily adapted to other backtracking search algorithms for distributed
and centralized optimization problems.
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