Data Driven VRP: A Neural Network Model to
Learn Hidden Preferences for VRP

Jayanta Mandi & a

Data Analytics Laboratory, Vrije Universiteit Brussel, Belgium

Rocsildes Canoy &

Data Analytics Laboratory, Vrije Universiteit Brussel, Belgium

Victor Bucarey S &
Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile

Tias Guns D94
Data Analytics Laboratory, Vrije Universiteit Brussel, Belgium
Department of Computer Science, KU Leuven, Belgium

—— Abstract

The traditional Capacitated Vehicle Routing Problem (CVRP) minimizes the total distance of the
routes under the capacity constraints of the vehicles. But more often, the objective involves multiple

criteria including not only the total distance of the tour but also other factors such as travel costs,
travel time, and fuel consumption. Moreover, in reality, there are numerous implicit preferences
ingrained in the minds of the route planners and the drivers. Drivers, for instance, have familiarity
with certain neighborhoods and knowledge of the state of roads, and often consider the best places
for rest and lunch breaks. This knowledge is difficult to formulate and balance when operational
routing decisions have to be made.

This motivates us to learn the implicit preferences from past solutions and to incorporate
these learned preferences in the optimization process. These preferences are in the form of arc
probabilities, i.e., the more preferred a route is, the higher is the joint probability. The novelty
of this work is the use of a neural network model to estimate the arc probabilities, which allows
for additional features and automatic parameter estimation. This first requires identifying suitable
features, neural architectures and loss functions, taking into account that there is typically few data
available. We investigate the difference with a prior weighted Markov counting approach, and study
the applicability of neural networks in this setting.
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1 Introduction

Although the Vehicle Routing Problem (VRP) and its many variants have been extensively
studied in the literature, the “theoretical optimal” solution often does not meet the expect-
ations of the route planners and the drivers. This is because in real-life operations, the
acceptability of a route is dependent not only on distance, travel time or fuel consumption,
which have been studied in the literature, but also on multiple factors which are difficult to
put in the objective function. A study by [2] has revealed that local drivers prefer routes
that are not optimal in terms of travel time or cost. The drivers take into account several
factors which are not in the objective function such as traffic congestion and availability of
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parking and fuel stations. This highlights the necessity of preference-based routing where the
objective is to minimize the travel cost as perceived by the drivers and the planners. To put
it another way, we can see it as maximizing the utility of the drivers and the planners.

In this work, we propose VRP solutions which are acceptable to the route planners and
the drivers. We start from the setting studied in [1], which proposes the maximum likelihood
routing. Maximum likelihood routing considers the transition probabilities between the stops
as revealed preferences of the drivers and the planners and finds the maximum utility route
by maximizing the joint transition probabilities. To estimate the transition probabilities, [1]
uses a Markov counting approach which enumerates the past solutions for each realized route.
Their approach uses only the past solutions for probabilities estimation but cannot make
use of contextual features such as day of week. We extend their framework to use a neural
network model to estimate the transition probabilities before finding the route by applying
maximum likelihood routing. The motivation behind using the neural network model is
to generate a better estimation of the cost vector by using historical as well as contextual
information in the neural network model.

We start with a neural network model which is trained using both contextual information
and past solutions. We also include the Markov prediction as a feature in the neural
network and observe improvement in the solution quality. Finally, we choose a parsimonious
architecture in order to avoid overfitting and with this we are able to outperform [1].

Contributions.
We formulate the challenge of neural network-based learning of hidden preferences from
moderately sized data, in a way that is compatible with existing VRP solvers.
We investigate different features and architectures for such a neural network, more
specifically arc-based linear models combined into per-node probabilistic estimates.
We investigate how we can combine the Markov model and neural network, e.g., by
considering the Markov predictions as an input to the neural network model.
We propose two loss functions that allow for gradient-descent learning: one based on
standard multi-class losses and another based on decision-focused learning that incorporate
the VRP solving into the loss function.

2 Related Work

The VRP [3] has been studied with its many different variations. Traditional VRP minimizes
a tangible objective such as operational costs [10], travel time [13], fuel consumption or
carbon emission [26, 19]. Although multiple aspects of the assignment schedules of the drivers
such as route balancing [14] have been studied, learning and optimizing drivers’ preferences
has recently received increasing attention.

The preferences of the drivers can be considered by including them in the objective
function. This can be treated in a multi-objective VRP [11] setting, such as forming an
objective function as a weighted sum or finding the set of Pareto optimal solutions based
on standard multi-objective evolutionary algorithms [21]. However, the preferences of the
drivers are implicit [22] and in most cases, explicit formalization of these preferences is not
possible in practice.

Authors in [1] tackled the problem from a different perspective: they introduce a weighted
Markov model to learn the preferences. This approach avoids the explicit specification of the
preference constraints and the implicit sub-objectives. The Markovian model is built using
preferences learned from past solutions, which the planners have constructed by modifying
solutions given by off-the-self solvers. Contrary to their work, we use a neural network model
to learn the drivers’ preferences, allowing a more flexible and general framework.
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Learning preferences for drivers have been focused mainly in the setting of one single
origin and destination. TRIP [15] leverages past GPS data to learn drivers’ preferences
by comparing the ratios of the drivers’ travel time to the average travel time, and with
that, it generates routes that mimic the ones chosen by the drivers. The approach in [6]
also deduces driving preferences from GPS traces and models them into the weights of a

linear programming formulation, which is then optimized to generate new route suggestions.

The authors in [8] are able to enhance the quality of the solutions by considering different
routing preferences that vary depending on the contexts. While we do not provide an explicit
representation of the preferences, we assume that the preferences can be expressed in terms
of probabilities (or utilities) of the arcs in the graph.

Decision-focused learning [25, 5], which combines gradient-based neural network and
optimization into a single framework, has recently received much attention in operations
research. In this setup, the outputs of the neural network are fed into the optimization
module as one of the inputs. The novelty of this approach is that it trains the neural network
model while considering the objective value in the optimization problem. Decision-focused
learning of submodular optimization problems, zero-sum games and SAT problems have
been studied in [25, 17, 24] respectively. The approach proposed by [20] also combines a
neural network model with any given optimization oracle via “implicit interpolation”. Ours
is the first work which uses this framework for learning preferences in the context of vehicle
routing.

3 Preliminaries

3.1 Problem Description

In this work, we are interested in the route planning process of an actual small transportation
company. The route planners in the company are responsible for organizing tours for a fleet
of vehicles in order to deliver goods to the customers. Although they use a commercial route
optimization software to produce routes that are optimal in terms of route length and travel
time, they are hardly satisfied with the solutions. Solutions have to be modified to come up
with a tour which is acceptable to the planners, drivers, and other stakeholders. In this way,
the planners are implicitly optimizing the utilities of all those involved.

One way to approach this problem is to explicitly define the set of objectives. However,
it is nearly impossible to model such personal preferences. We observe that the planners
start from past realized routes because they require minimal modifications compared to the
“theoretical optimal” routes. Therefore, in a way, the past solutions capture the preferences
(or the utilities) of the planners and the drivers. Our objective in this work is to learn the
latent preferences of the drivers and the route planners for vehicle routing using a neural
network model and propose tours which are acceptable to the planners. More specifically, we
will focus on learning preferences at the arc level. We consider the transition probabilities as
revealed preferences. We use neural network to output the transition probabilities between
every pair of nodes. The advantage of this formulation is that we can use the negative log
probability in place of a traditional travel cost in any existing VRP solver.

Challenges. A machine learning model learns from training instances. In our case with the
company data, each instance is realized in a day. However, due to functional and operational
reasons, tours are not organized each day. Putting that into perspective, it would take more
than 6 months to collect only 180 training instances. Consequently, we are not in a state
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to use a neural network model trained with thousands of training instances. Hence, we
have to be particularly careful about using a neural network model with a large number of
parameters, as such network is prone to overfitting with small data.

Another challenge in this case is that not all customers raise a demand request with equal
frequency. In fact, some customers have daily requests, whereas others raise requests only
once or twice in a month. Depending on which set of customers raise a request, there can
be considerable changes in the tour. We also observe a weekly pattern in the tours, i.e.,
tours of one weekday are different from the other days but very similar to those from the
same weekday of the previous weeks. Therefore, learning the weekly patterns from a limited
number of weeks poses another challenge.

3.2 Formalization

We begin by formalizing the objective and the data structures. Formally, on a given day ¢,
St is the set of stops to be served by a number m! of homogeneous vehicles. We represent
St ={0,1,...,n}, where 0 represents the depot, and the other nodes represent the customers.
Let A? define the set of all arcs in S*.

We call x! a routing with respect to S* with m! homogeneous vehicles, if x! contains a
set of at most m! tours in S* with each tour starting from and ending at the depot 0 and
each node in S* is visited exactly once to satisfy its demand request. Additionally, a feasible
routing should ensure that the total demand allocated to each vehicle does not exceed its
capacity Q. Let Xg}t denote all feasible routings of m! vehicles over St. The objective in
standard CVRP is to minimize the total travel costs of the routing. We remark that the
depot is fixed and always present but the set of stops S* changes from one day to another as
not all customers raise a demand request each day.

For learning the preferences from past data, we are given a dataset H = {(S?, 2%, X*)}L_,.
Each instance in the dataset is a tuple where ¢ is a timestamp, S? is the set of stops served
at ¢, X denotes the actual preferred routing created by the planners, and 2! are feature
variables such as the demand of each stop, the number of vehicles used, the day of the week,
or some other known parameters. Hereafter, we will use the symbols without the suffix ¢ to
avoid notational complexity.

3.3 Transition Probabilities

Explicit specification of the preferences of the drivers and the planners would result in a
complex model with a large number of parameters to tune. Instead, in this paper, we use the
framework of [1], which captures the preferences of the route planners and the drivers using
transition probabilities. In more formal terms, we learn a model which assigns probabilities
to all the arcs within the network. Our hope is that these transition probabilities subsume
the hidden preferences of the route planners and the drivers. Formally, we learn Pr(r|s)
which denotes the probability of the next stop being r, conditional on the current stop s. We
remark that the transition probability would be a function of some temporal and contextual
attributes including but not limited to the traditional cost measures.

3.4 Maximum Likelihood Routing

Once the probabilities are learned, we follow the methodology of [1] to find the most likely
routing from the set of all feasible routings. We call the routing with the highest probability
the maximum likelihood routing (MLE routing). Formally,

max H Pr(rls). (1)

TEXT
S (sor)ex
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In order to identify the MLE routing, we solve an optimization problem whose feasible region
is defined by the following standard CVRP constraints [23].

Z Tor = 1 ses (2)

reV, r#s

Z ZTor =1 res (3)
sEV, s#r
Zx()r =m (4)
r=1
ifzg =1 = us+q = u, (s,r)€A:t#0,5s#0 (5)
gs <us <Q s € S\{O} (6)
zsr € {0,1} (s,r) € A. (7)

(2) and (3) ensure that each customer is served by exactly one vehicle. (5) performs subtour
elimination. (6) ensures that the vehicle capacity is respected. We remark that in (4), we use

the equality constraint because in practice, the company must use all the available vehicles.

The only modification from the standard CVRP is that instead of minimizing the distance,
we maximize the joint probability. To transform the product in the objective function into a
sum, we consider log probabilities in the objective function and minimize the following:

min Z —log Pr(r|s)zs, (8)
* (s,r)eA

In the subsequent discussions, the (s,r)-th entry of matrix P would contain Pr(r|s).

3.5 Transition Probability Estimation by Markov Counting

The goal of the Markov Counting approach is to estimate all the conditional probabilities
Pr(r|s) over the set of all stops in the data: S = [, S*. From conditional probability theory,
we have:

Pr(r|s) = Prl(:)sr;) T),

(9)
where Pr(s) = > Pr(s — u). By defining the frequency of a transition (s — r) in the
historical dataset H as fo. = >_,[ (s — r € X*)], where [-] equals 1 if the statement inside
the bracket is true and 0 otherwise, the conditional probabilities from the dataset can be
estimated by:

fsr
Dufou

We point out that with this formulation, we can solve the standard CVRP which minimizes
the distance if we replace Pr(r|s) by a distance-based probability Pryis(r|s):

Pr(r|s) =

(10)

e_dsr

= 7Zu efdsu .

The transition probability matrix construction algorithm presented in [1] makes use of

(11)

Praist(r]s)

weighing schemes, where a variable weight w; is defined for each historical instance in 4. This
weight varies according to the properties of the tuple (S?, 2, X!). Giving varying weights to
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each historical instance affects the way the transition frequencies are counted, hence each
weighing scheme results in a different transition matrix. Exponential weighing is one of the
most used scheme, where instances far-off in the past receive decaying weights. Therefore, in
our experiments, we will compare our approach with the Markov model with the exponential
weighing scheme.

4 Learning the Transition Probabilities Using Neural Network

One limitation of the Markov counting approach introduced in section 3.5 is that it only uses
past data to arrive at the probabilities. We want the transition probabilities to be a function
of other attributes such as the day of week and the distances between stops, among others.
This is the motivation behind using a neural network model.

Neural networks are made of interconnected units called neurons. A single neuron takes a
series of inputs z, ..., 2, and returns an output o as a function of the inputs o = (> w;z;),
or in matrix form o = f(Wz), where f is an activation function and w;’s are the weights.
Many choices for the activation function exist — sigmoid, ReLU, tanh are some of the widely
used activation functions. A network consists of several layers, and multiple neurons are
stacked in each layer where the inputs are connected to each neuron. The output of the
layer can be conveniently described in matrix form as o = f(Wz). Here, each row of W
corresponds to each neuron. The dimension of output o is controlled by the dimension of
matrix W. In a multilayer network, the subsequent layers use the outputs of the preceding
layers as inputs. Obviously, the designer has the option to transform the output between
two layers.

A multilayer neural network is considered as a universal function approximator [16],
which tries to learn the functional relationship between the output and the input. To do
so, the parameters of the neural network must be learned using training data. This is done
by backpropagating the loss between the predicted output and the target output. During
backpropagation, the derivative of the final loss with respect to the weights is computed
and then the weights are updated by gradient descent. The choice of the loss function is
dependent on the problem at hand. For a multiclass classification approach, categorical cross
entropy loss is the preferred choice.

We propose to learn the transition probabilities between the stops from the historical data
using a neural network. For a single day ¢, we have (S?, 2, X*) as explained in section 3.5.

Feature variables. We want the predicted probabilities to be a function of the feature
variables. Different types of features can be considered: time-lagged temporal features,
features related to the set of stops to be served (S?), the distance between the stops and
contextual features such as day of week, number of vehicles. The motivation behind using
the time-lagged solutions as features is to learn from past solutions. We define the look
back period (L) as the maximum number of past observations considered in our model. The
motivation of this look back period is two-fold: 1. it allows us to model the fact that past
observations lose their relevance over time, and 2. to avoid problems of over-fitting due to
lack of observations. We can also consider the output of the Markov counting model as a
feature, as it subsumes past information. Moreover, this can be computed easily on the fly.

From this discussion, it is evident that some of the features are specific to an arc. This
includes the time-lagged features, the distances and the Markov probabilities. On the other
hand, features such as day of week and stops to be served are the same across all the stops.
All of these are considered as an input to the neural network in Figure 1.
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Figure 1 Neural network architecture to estimate transition probbailities from a source node s.

Architecture of the neural network. Our goal is to build a network that estimates the
transition probabilities for each arc (s,r) € A. We have |A|x |A| distance features, L x| A|x|A|
time lagged features and |K| number of contextual features. Because of limited data, our
aim is to build a parsimonious network with as few parameters as possible.

Authors in [1] propose a linear combination of Markov probabilities (Eq. 10) and distance-
based probabilities (Eq. 11), P* = wP}, k0o + (1 — w)PL .. Essentially, this approach
considers these two factors while computing the probabilities. Furthermore, this can be
extended to more number of feature variables in general. The advantage of using a neural
network is that it learns the weights of the linear combination itself.

The final layer of the proposed architecture in Figure 1 performs this linear combination.
This linear layer outputs unnormalized scores and a softmax operation upon these would
result in the probabilities. As the outputs are unnormalized scores, so should be the inputs
and that is why we log-transform the Markov probabilities. The distance based probabilities
are arrived by considering the softmax of the distances from the source stop s.

We treat the categorical features such as day of week and stops to be served, by passing
them to embedding layers before feeding them to the linear layer. The embedding layer
computes dense vector representations of the categorical variables. The numerical feature
variables such as the number of vehicles are passed directly to the final layer.

We treat the time-lagged solutions between (s, r) by considering linear combinations of L
previous solutions of (s,r). The first linear layer considers past solutions of the look back
period as inputs and its output is a score based on that. Thus, the stop which has been
chosen more often as the next stop, would be assigned a higher score. We remark that there
are other ways to treat time-lagged variables such as LSTM [7], but they might be prone to
overfitting because they have a large number of parameters.
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Algorithm 1 Transition probability estimation from source stop s.

Input
Historical solutions up to day T: {(S?, 2%, X"},
s: the source stop

1 active days <— list of days where s is active
2 Model.initialize();
3 for t in active days do

4 | =z, X'[s,:] // target solution
5 Past%s) — {X!'[s,:]|t' € active days|-(look back period):] }
6 if length(active days) < look back period then
7 ‘ Fill the remaining days with equiprobable probabilities vector
8 end
9 HE (zfs),PasthJ
10 for training epochs do
11 Pt'[s,:] < Model.Predict(H?)
12 L + Cross Entropy(P[s, ], z(s))
13 Update Model by backpropagating V p. (L)
14 end
15 end

The final linear layer outputs a score between s and a destination node. So essentially,
there are |A| number of such linear layers. The use of neural network gives us the flexibility
to use separate weights for the linear layers of every destination node. Obviously, this may
result in overfitting as the number of parameters increase.

Other than the contextual features, which are the same for all (s,r), the other inputs to
the linear layer are specific to (s,r) and so is the output. We use a separate model for
each source node s and each of them generates transition probabilities from the source
node to all the other nodes.

Algorithm. Algorithm 1 proposes a training scheme for estimating probabilities from a
single source stop s to the others. We use all the features including the time-lagged solutions
day t, to estimate the transition probabilities on day ¢. This past data (Pastfs)) is obtained
by extracting the corresponding row from the incidence matrix. As the training is for s, we
only consider the next stop visited after it in the past. Hence, we formulate it as a multiclass
classification problem, where the classes are the possible next stops and the objective is to
classify them correctly. We use different models for different stops and while training the
model for a stop s, we only consider past days where s was served. For any stop that does
not have enough past data, to fill the look back period, the remainder of the look back
period are filled with uniform distribution over the set of possible next stops.

Loss function. We formulate the learning problem as a multiclass classification task. The
classification problem is to identify the next stop after s. While training we do not consider
any VRP constraints, i.e., the transition probabilities of all the stops can be nonzero regardless
of whether they are active or not. Once the neural network predicts the transition probability
vector p(s), we compute the cross entropy loss with respect to the actual solution x,.

L(P(s)7 X(s)) = - Z T 50, 10g(Psu) (12)
ueV
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Algorithm 2 Evaluation of Maximum Likelihood Routing.

T+1
Input: ST+ T+ (Xt}
1 for each stop s in STt! do

2 active days <— list of days s is active

3 Model «+ Algorithm 1 ({(S%, 2!, X*)}2_,, s) // Model training

4 if length(active days) > look back period then

5 ‘ Past{,) + {XT'[s,:]|T" € active days[-(look back period):] }
end

7 else

‘ Past(T;) — {XT'[s,:]|T" € active days }

9 end

10 HTHL <Z£T1,Pastg;')*'1)

11 Model +— Model dictionary [s]

12 | PTHl[s;:] «— Model.predict(HT+1)

13 end
14 MLE Routing (—log(PT*1)); Compare with X7+1

Finally this loss is backpropagated to update the parameters of the neural network.

Algorithm 2 shows how we utilize the estimated transition probabilities to come up with
the maximum likelihood solutions. Once we train the models for each stop using the data
available until day T, we use it for routing on day T + 1. To do so, first we estimate the
transition probabilities for each stop using the trained models. The (s,r)-th entry of the
matrix P contains the estimated transition probability of going from stop s stop r. Then
using the estimated transition probability matrix 15, we solve the maximum likelihood routing
problem.

5 Decision Focused Learning

The approaches proposed so far consider the prediction of the transition probabilities and the
VRP optimization separately. Such approaches can be viewed as two-stage approaches [4],
where a neural network model is separately trained to estimate the unknown coefficients of
an optimization problem.

One drawback of such a two-stage approach is the neural network model fails to incorporate
information from the optimization problem. As the neural network model is trained without
regard for the downstream optimization problem, the loss function fails to consider the

impact of the predicted coefficients on the final objective value of the optimization problem.

Decision focused learning approaches [5, 25], on the other hand, consider how effective
the predicted values are to solve the optimization problem and is trained with respect to the
optimization task loss rather than a prediction loss such as cross entropy loss.

In Algorithm 3 we show our implementation of the decision focused learning approach
for this problem. We implement the methodology of [20] to differentiate a combinatorial
optimization problem with linear objective.
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Algorithm 3 Decision Focused Learning Algorithm.

Input : Historic solutions till days T: {(s*, 2t, X*)}L ,
1 for training epochs do

2 for t in 1 to T do
3 for each stop s in STt! do
4 (g  X'[s, ]
5 Past‘és) — {X[s,:]|t' € active days A \Pastzs)\ < lookback period}
6 H <z€s),PastEs)>
7 Pt[s,:] < Model® Predict(H?)
8 end
9 # «— —log(P?)
10 X' + MLE Routing(r)
11 L + sum(ReLU (X" — X*))
12 7~T~ — T - /\d‘fét
13 X + MLE Routing(7)
14 Va(L) + —+[X! - X]
15 for each stop s in STt! do
16 Model® backpropagate (VW(L) [s, ])
17 end
18 end
19 end

They consider an optimization problem minx ¢, f(m, X) with a linear objective. X*(#)
is the solution by using predicted # and the final optimization task loss is L(X* (), X*(%)).
The gradient of this task loss with respect to 7 is the following
* Ok [ A 1.5 * (A Ok [~
VaL(X7(m), X* (7)) = =1 [X7(7) = X*(7)] (13)
where 7 is a perturbation around the predicted 7, given by

dL(X*(m), X*(#))

F=R+A ;
dX*(%)

(14)

In our setting, 7 is the matrix of negative log probability vectors i.e. m = —log(P), and X
is the resulted routing. The final task is to minimize the difference between the actual route
and the proposed route. So a suitable choice for the task loss is to consider arc difference,
the number of arcs present in the actual solution but not in the predicted solution. Formally,

L(X*(m), X*(#)) = Sum(ReLU (X*(7) — X*(%))) = Z max (z;; — £;;,0) (15)
(¢,7)€dim(X)
here Sum is the summation of all the elements of the matrix. The derivative of L can be
computed s follows

Y(i,j) € dim(X™) (16)

dL(X*(r), X* (%)) —1if &5 < 245
0 otherwise



J. Mandi, R. Canoy, V. Bucarey, and T. Guns

If we consider a squared loss instead of the ReLU, we replace max (xij — @ij,O) with

(xij — i”ij)Q. In this case the derivative would be

—2if i‘ij < Ty
=q2if fij > Tij V(Z,j) € dlm(X*> (17>

0 otherwise

Intuitively, if ¢ — j is present in X, but not in X , then we lower 7;; by A and with this
generate a new solution with. A scaled difference between these two solutions is the gradient
with respect to 7.

6 Experimental Evaluation

6.1 Evaluation Criteria

We are interested in how the MLE routing solutions differ from the used routes. To do so,
we evaluate the performance using the following two evaluation measures.

Arc Difference (AD). measures the number of arcs traveled in the actual solution but not
in the MLE routing solution. It is calculated by taking the set difference of the arc sets of
the test and predicted solutions. The percentage is computed by dividing AD by the total
number of arcs in the whole routing.

Route Difference (RD). indicates the number of stops that were incorrectly assigned to
a different route. Intuitively, RD may be interpreted as an estimate of how many moves
between routes are necessary when modifying the predicted MLE solution to match the
actual routing. To compute RD, the pair of routes with the smallest difference in stops is
greedily selected without replacement. The total number of incorrectly assigned stops is
considered as RD. The percentage is computed by dividing RD by the total number of stops
in the whole routing.

We also present the cross entropy (CE) loss as the neural network models are trained
with respect to this criterion.

6.2 Data Description

For empirical evaluation®, we use actual historical data from a logistics company to compare

the performance of our proposed approaches against the Markov model presented in [1].

The data consists of 201 daily routings collected in a span of 39 weeks. It has 73 unique
customers, each representing a node other than the depot. In each instance, an average of 31
stops are serviced by an average of 8 vehicles. We group the instances by day of the week,
giving us an average of 29 instances per weekday. In training and testing the models, we

used a 75%-25% split while ensuring that we have exactly 7 testing instances per weekday.

We use a rolling window model for valuation, where the lookback period remains fixed and
counts backwards from the most recent observation.

In Table 3, we present the percentage AD and RD of the Markov approaches on the
test instances for each day of week. The Markov (allday) approach arrives on the transition

! The code and the anonymised data are available at https://github.com/JayMan91/
CP2021-Data-Driven-VRP.

42:11

CP 2021


https://github.com/JayMan91/CP2021-Data-Driven-VRP
https://github.com/JayMan91/CP2021-Data-Driven-VRP

42:12

Data Driven VRP

probability by considering all past days. On the contrary, the Markov (weekday) approach
considers only those past instances which occurred on the same day of week as the evaluation
instances. Both the approaches use Eq. (10) to compute the probabilities. We can see in
Table 3 that Markov (allday) performs better on the weekdays, but its result worsens on the
weekends. Due to the operational characteristics of the company, the number of customers,
number of available vehicles, and hence the routing decisions tend to be highly dependent
on the day-of-week. So there is a strong influence of the day on the probabilities. Probably,
this is why [1] preferred the Markov (weekday) approach. The motivation behind the neural
network approach is that it can consider the day of week as feature, so that we do not have
to compute the probability separately for each day. Moreover, other feature variables can
easily be passed into the neural network.

In our experiment we consider the following feature variables to predict the transition
probabilities— a. day of week, b. the set of stops to be served, c. distance between the
stops, d. number of available vehicles, e. routings used in the past, f. transition probabilities
computed by Markov (weekday).

6.3 Experimental Results

In this section, we will address the following research questions
Choice of the feature variables and the network architecture in a systematic way
Compare the quality of predictions of the neural network trained with respect to the CE
loss with that of Markov counting approach
The effectiveness of a decision focused approach, which trains the network to directly
minimize AD

6.3.1 Choice of Network Architecture and Feature Variables

As mentioned in Section 4, there are many choices for the network architecture and because
of limited data we are careful to avoid overfitting.? In Table 1, we first present the impact
of feature variables on the quality of predictions. We show the cross entropy loss on both
training and test data and AD and RD on test data. We point out that the network presented
in Figure 1 results in the lowest training loss among them. On the other hand, a network only
with Markov probabilities as input lowers test loss and lower AD, RD. A network without
the time-lagged data has even lower CE loss on the test instances and lowest AD and RD
suggesting that past information is already subsumed in the Markov probabilities, making
the time-lagged information redundant. The Markov probabilities along with the contextual
information seem to be the right choice for the feature variables.

In the lower section of Table 1, we present two alternative architecture choices. The first
one replaces the linear layer of the lagged solutions with an LSTM. The second one has
different weights for different destination stops in the final layer in Figure 1.

It shows that using different weights for different destination stops results in lowest
training CE loss. But this model clearly overfits, as the performance is poor on the test data.
The LSTM model seems to improve on CE loss but not on AD and RD measures. So overall,
the model without the past data results in lowest CE loss as well as lowest AD and RD.
This model has the Markov probabilities as input, and the past information carried by this
probability.

2 We use Pytorch [18] and Gurobi [9] for neural network and VRP models respectively.
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Table 1 Investigation into feature variables and architectures.

Model Training CE ~ Test CE AD AD (%) RD RD(%)
Experiment on feature variables

Neural Net 2.14 1.10 6.27 19.80 4.57 18.04
Neural Net
(without past data) 2.48 1.04 5.68 18.04 4.30 17.02
Neural Net

2.14 . . . . .
(without weekday) 1.09 6.24 19.75 4.59 18.03
Neural Net
(without stop information) 2.20 1.13 6.28 19.86 4.56 17.97
Neural Net

2.2 . . . . .
(without distance) 0 1.10 6.18 19.54 4.46 17.62
Neural Net
(without Markov probabilities) 2.43 1.49 7.99 26.26 5.32 21.38
Neural Net 2.58 107 595 1885 4.29  16.93

(only Markov probabilities)

Experiment on architecture choice

LSTM 2.22 1.01 6.35 20.10 4.49 17.75
Linear Layer

different for each stop 1.37 1.82 7.21 22.81 4.74 18.57

6.3.2 Neural Network Predictions

Table 2 Comparison of Neural Network with Markov Counting (Actual Distance is 413 km.)

CE loss  Arc Difference (AD)  Route Difference (RD) Dzitjln)ce
Absolute Percent  Absolute Percent

Markov 2.77 10.33  35.69 6.29 25.75 424
(allday)
Markov 2.44 586 1855 439 17.26 418
(weekday)
Neural 1.04 5.68 18.04 4.30 17.02 414
Net
Conventional
o 11.90 21.47 73.14 11.65 46.93 366

The last section suggests to consider a network without the lagged variables for this task.

Next, we compare the quality of predictions of this model shown to that of Markov counting
approach. We present the average of CE loss, AD, RD between the actual solutions and
generated solution on test instances in Table 2. We also present the distance of the solutions
of these approaches. We point out in Table 2 that a neural network model results in lower
CE loss, which is expected as the model is trained with that objective. Moreover, we also
observe lower AD and RD with this model. We also present results of a conventional VRP
algorithm, which is the best in terms of total distance covered, but clearly very far off from
the preferred solution. Table 3 presents this comparison in more detail, where we evaluate for
each day of week separately. Although we do not need to train the neural network separately
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Table 3 Daywise Analysis of Arc Difference and Route Difference.

Arc Difference(%) Route Difference(%)

Markov Markov Neural | Markov Markov Neural

(allday) (weekday) Net (allday) (weekday) Net
Monday 51.53 23.62 23.62 27.98 21.75 21.25
Tuesday 24.96 25.61 25.82 29.15 28.87 30.85
Wednesday 19.61 21.30 20.48 17.96 15.12 14.61
Thursday 24.89 22.86  21.17 19.75 18.63 17.08
Friday 19.18 19.38 18.08 13.74 13.19 11.54
Saturday 51.59 0.00 0.00 25.21 0.00 0.00
Sunday 58.09 17.08 17.11 46.48 23.23 23.82
Overall 35.69 18.55 18.04 25.75 17.26 17.02

for each day of week, by considering the Markov probabilities as inputs, it is able to generate
predictions which result in lower AD and RD. This demonstrates the advantage of the neural
network approach, which can consider multiple inputs, contextual as well as temporal, in a
single framework.

Figures 2 to 6 illustrate our approach for one instance. Figures 3 and 4 present the learned
transition probabilities and Figures 5 and 6 show the MLE routing of Markov weekday and
neural net respectively.

6.3.3 Decision Focused Learning

Next, we experiment with the decision focused learning approach introduced in section 5. We
use the same neural network architecture but trained with arc difference as the loss function,
and the loss backpropagted through a corresponding subgradient (Eq. (16)). We present the

Table 4 AD and RD with Decision Focused Learning.

CE loss . . Distance
(test) Arc Difference (AD)  Route Difference (RD) (km.)
Absolute  Percent Absolute  Percent
Relu 2.77 13.76  45.96 9.51 38.54 434
loss
fo‘izared 3.97 13.31  44.27 9.10 37.14 436

solution quality of this approach in Table 4. We can see, it fails to generate lower AD and
RD on the test instances. In fact, we observe AD reducing on training instances but not on
test instances, suggesting a case of overfitting. Only 152 instances is not enough to train a
complex model like this. So the poor quality can be attributed to limited amount of data.

7 Conclusion

We presented a neural network model which learns the transition probabilities between stops
in a CVRP setting. With these transition probabilities, we solve the MLE routing problem
instead of the conventional VRP. The resulting solution is able to mimic the solution preferred
by the route planners and drivers. In this way, we are able to include the preferences of the
planners and the drivers implicitly in the VRP solution.
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Figure 2 Human-made
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Figure 3 Learned proba-

bilities (Markov)

bilities (NN)

Figure 4 Learned proba-

2 0.9 0.9
4
0.8 0.8
a4 16
/'9 0.7 0.7
9877
23
A9 0.6 0.6
5 7 13
A0 o 05 05
13 21 ar 0.4 0.4
18 3 22
20 03 03
a5 0.2 0.2
A 0.1 0.1
8 a2
0 0

& 2
4 y
16 16
¥R N
9 s
19 23 19 23
5 7 13 5 7 13
A a N a
5 2 a7 F 21 \ar
as 3 22 a8 3 22
20 20 \
a5 \ a5
A A
8 22 8 a2
Figure 5 Markov Figure 6 NN
solution. solution.

We extend on the work of [1]. The novelty of our approach is to use a neural network
model to estimate the probabilities. Key developments are the use of an arc-based architecture
to control the number of trainable parameters, and the identification of the standard cross-
entropy classification loss as a suitable (and cheap to compute) proxy loss for training. This
leads us to develop a general framework for such problem setting, which has the flexibility of
taking contextual features including the output of [1] into consideration. By considering the
contextual features in a principled way, our approach marginally outperforms [1], emphasising
the advantage of a generic approach.

We also use a decision focused learning approach which directly trains the neural network
to minimize the final objective of minimizing the difference between the generated solution
and the preferred solution. Although this approach considers the structure of the VRP
optimization problem, our results show that it fails to generate good quality solutions in the
test data. We believe it is due to the limited number of training instances.

Our methodology relies on the presence of recurrent stops in our training set. Future
research will aim to extend our methodology to learn preferences over non-recurring stops. It
will also be interesting to investigate loss functions that include the structure of the CVRP
tackling the challenges of the scalability.
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Experiment Setup

We use Pytorch [18] and Gurobi [9] for neural network and VRP models respectively. We
use Adam optimizer [12] implementation of Pytorch. The hyperparameters of each setup is
detailed below.

Table 5 Hyperparameters Configuration (For all experiments the embedding dimension of weekday

and stop feature are 6 and 40 respectively).

Learning

Epoch
rate poctis
Neural Net 0.1 50
Neural Net
1 1
(without past data) 0 00
Neural Net
(without weekday) 0-1 50
Ne}lral Net . . 01 100
(without stop information)
Neural Net
(without distance) 0-1 100
Neural Net
.1 1
(without Markov probabilities) 0 00
Neural Net
(only Markov probabilities) 0-1 100
LSTM 0.1 50
Linear Layer 0.01 100

different for stops
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