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Abstract
Recent advances in solvers for the Boolean satisfiability (SAT) based optimization paradigm of
maximum satisfiability (MaxSAT) have turned MaxSAT into a viable approach to finding provably
optimal solutions for various types of hard optimization problems. In various types of real-world
problem settings, a sequence of related optimization problems need to solved. This calls for studying
ways of enabling incremental computations in MaxSAT, with the hope of speeding up the overall
computation times. However, current state-of-the-art MaxSAT solvers offer no or limited forms of
incrementality. In this work, we study ways of enabling incremental computations in the context of
the implicit hitting set (IHS) approach to MaxSAT solving, as both one of the key MaxSAT solving
approaches today and a relatively well-suited candidate for extending to incremental computations.
In particular, motivated by several recent applications of MaxSAT in the context of interpretability
in machine learning calling for this type of incrementality, we focus on enabling incrementality in
IHS under changes to the objective function coefficients (i.e., to the weights of soft clauses). To this
end, we explain to what extent different search techniques applied in IHS-based MaxSAT solving can
and cannot be adapted to this incremental setting. As practical result, we develop an incremental
version of an IHS MaxSAT solver, and show it provides significant runtime improvements in recent
application settings which can benefit from incrementality but in which MaxSAT solvers have so-far
been applied only non-incrementally, i.e., by calling a MaxSAT solver from scratch after each change
to the problem instance at hand.
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1 Introduction

Maximum satisfiability (MaxSAT) constitutes today a viable approach to solving various
types of NP-hard real-world optimization problems (see [6] for a recent survey). This is in
particular due to various recent algorithmic advances applied in readily-available MaxSAT
solvers. Iteratively solving a series of decision problems with Boolean satisfiability solvers
gives a basis for most if not all current state-of-the-art MaxSAT solvers [4, 5]. MaxSAT
solvers make heavy use of the incremental APIs of SAT solvers [13], through which SAT
solvers can provide explanations as unsatisfiable subsets of soft constraints (i.e., unsatisfiable
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cores). Two main paradigms adhering to this framework are the core-guided approach
(see e.g. [24, 23, 25, 1, 2, 17]) and the implicit hitting set (IHS) approach [11, 12, 10, 29].
In the core-guided approach, cores iteratively obtained from the SAT solvers are used for
transforming the original MaxSAT instance in a controlled way so that, once satisfiability is
achieved, any satisfying truth assignment reported by the SAT solver constitutes an optimal
solution to the original MaxSAT instance. The IHS approach, on the other hand, leaves
the original MaxSAT instance unchanged, and computes at each iteration a hitting set of
the so-far accumulated set of cores. In the next SAT solver call, the soft clauses contained
in the most recently computed hitting set are ignored. This loop is continued essentially
(i.e., ignoring various search techniques applied in actual solver implementations of the IHS
approach) until the SAT solver returns a satisfying truth assignment.

Both of these SAT-based MaxSAT solving paradigms make heavy use of incremental
computations on the level of the SAT solver. However, enabling incremental computations
on the actual MaxSAT solving level, i.e., gearing MaxSAT solvers towards solving sequences
of related MaxSAT instances without restarting search for each instance, remains today an
underdeveloped research direction. Indeed, MaxSAT solvers offer little for such incremental
settings, with the exception of a few solver implementations offering an API for adding
hard and soft clauses in-between the MaxSAT solver calls [29, 17]. This kind of incremental
solving has been further investigated in the context of core-guided solving by adaptively
restarting the solver when the quality of the cores degrades [30]. Note that, while so-called
incremental cardinality constraints have been proposed and are applied in core-guided
MaxSAT solvers [22, 21, 20], this notion refers to incrementality on the SAT-level within the
core transformations in the core-guided approach rather than incrementality on the level of
MaxSAT, i.e., in incrementally solving a sequence of MaxSAT instances. The lack of support
for more generic forms of incrementality on the level of MaxSAT is indeed problematic: various
types of recent real-world applications of MaxSAT solvers [19, 9, 33, 27] could evidently
benefit in terms of runtime improvements with the help of incremental computations, but
currently have to resort to calling a MaxSAT solver from scratch for each instance that needs
to be solved towards finding an optimal solution to the problem at hand.

In this work, we make progress on enabling incremental computations on the MaxSAT
level. Specifically, we focus on enabling incrementality in problem settings constituting of
solving a sequence of MaxSAT instances which differ from each other in the weights of the soft
clauses in the instances. In particular, we consider the general setting where the soft clause
weights of the next instance in the sequence are adaptively assigned based on the previous
instances in the sequence and the optimal solutions found to those instances. Interestingly,
this form of incrementality can be identified to be intrinsically present in various application
settings of MaxSAT in the context of interpretable machine learning [18, 15, 16, 32] (though
various other types of application settings can naturally be imagined), but is not supported
by any of the state-of-the-art MaxSAT solvers.

Specifically, we focus on enabling incrementality under changing soft clause weights in the
context of the IHS approach to MaxSAT solving. The IHS approach is particularly appealing
for incrementality due to the very fact that the solving process does not essentially alter
(through core transformations, as in the core-guided approach) the original MaxSAT instance.
This allows for ensuring that cores between different MaxSAT instances under changing
weights can be reused across the different instances and hence need not be re-computed from
scratch. However, the various intricate search techniques and optimizations implemented in
the state-of-the-art IHS MaxSAT solver MaxHS make adapting the solver for incremental
computations under changing weights a non-trivial task in practice. To this end, we describe
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in detail the search techniques that can and cannot be applied in incremental computations
under changing soft clause weights, and provide a first IHS solver implementation supporting
incrementality under changing weights, building on MaxHS. Most concretely, we apply this
incremental adaptation of MaxHS to two recent applications of MaxSAT solving in the
context of interpretable machine learning, namely, decision tree boosting and decision set
learning, identifying that both of these problem settings could at least in principle benefit
in terms of overall runtimes of incremental computations under changing weights. Indeed,
we show that our adaptation of MaxHS supporting incrementality under changing weights
provides significant runtime improvements compared to a current version of (non-incremental)
MaxSAT, despite the fact that not all performance-optimizing techniques applied in the
non-incremental version can be applied by the incremental adaptation.

2 Maximum Satisfiability

For a Boolean variable x, there are two literals x and ¬x. A clause C is disjunction of
literals, viewed as a set, and a (CNF) formula F is a conjunction of clauses, again viewed as
a set. A truth assignment τ maps Boolean variables to 1 (true) or 0 (false). The semantics
of truth assignments are extended to literals l, clauses C and formulas F in the standard
way: τ(¬l) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C} and τ(F ) = min{τ(C) | C ∈ F}. An
assignment τ is a model of a formula F if τ(F ) = 1. A formula F is satisfiable if it has a
model, otherwise it is unsatisfiable.

An instance F of (weighted partial) MaxSAT consists of two CNF formulas, the hard
clauses H(F) and the soft clauses S(F), and a weight function w(F) : S(F) → R+ that
assigns a positive weight to all soft clauses. When the instance F is clear from context,
we use H, S and w to denote H(F), S(F) and w(F), respectively. A model τ of H is a
solution to F . We assume that MaxSAT instances have at least one solution, i.e., that H is
satisfiable. A solution τ to F has cost cost(F , τ) =

∑
C∈S w(C)(1− τ(C)), i.e., the sum of

weights of the soft clauses it falsifies. A solution τ is optimal if cost(F , τ) ≤ cost(F , τ ′)
holds for all solutions τ ′ of F . We denote the cost of the optimal solutions to F by cost(F).
When convenient, we treat a solution τ as the set of literals the assignment satisfies, i.e, as
τ = {l | τ(l) = 1}.

In order to simplify notation we will assume that each soft clause C ∈ S is a unit
soft clause containing a negation of a variable, i.e., C = (¬b). This assumption can be
made without loss of generality as any soft clause C ∈ S can be transformed into the hard
clause C ∨ b and the soft clause (¬b) with w((¬b)) = w(C) where b is a new variable. A
variable b that appears in a soft clause (¬b) ∈ S is a blocking variable; we denote the set
of blocking variables of F by B(F). As assigning a blocking variable b = 1 corresponds to
falsifying the corresponding soft clause (¬b), we treat blocking variables and soft clauses
interchangeably, and extend the weight function w to blocking variables by w(b) = w((¬b))
and to sets Bs ⊂ B(F) by cost(F , Bs) =

∑
b∈Bs

w(b). The cost of a solution τ is then
cost(F , τ) =

∑
b∈B(F) τ(b)w(b).

The IHS algorithm for computing optimal MaxSAT solutions, focused on in this work,
makes use of so-called (unsatisfiable) cores of MaxSAT instances. A core κ ⊂ S is a set of
soft clauses that is unsatisfiable together with the hard clauses. As each soft clause C ∈ κ is
a negation of a variable C = (¬b), the fact that H ∧ κ = H ∧

∧
(¬b)∈κ(¬b) is unsatisfiable

implies that any solution to F assigns b = 1 for at least one (¬b) ∈ κ. Thus a core can
be expressed as the clause {b | (¬b) ∈ κ} that is entailed by H, i.e., a clause over blocking
variables that is satisfied by all solutions to F . Note that κ can also be expressed as the
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Algorithm 1 IHS for MaxSAT.

1 IHS(F)
Input: An instance F = (H, S, w)
Output: An optimal solution τ

2 lb ← 0; ub ←∞;
3 τbest ← ∅; C ← ∅;
4 while (true) do
5 hs← Min-Hs(B(F), C);
6 lb = cost(F , hs);
7 if (lb = ub) then break;
8 (K, τ)← Extract-Cores(H,B(F), hs);
9 if (cost(F , τ) < ub) then

τbest ← τ ; ub ← cost(F , τ);
10 if (lb = ub) then return τbest ;
11 C ← C ∪K;

minimize
∑

b∈B(F)

w(b) · b

subject to∑
b∈κ b ≥ 1 ∀κ ∈ C

b ∈ {0, 1} ∀b ∈ B(F)

Figure 1 An integer program for
computing a hitting set over a set C
of cores of an instance F .

linear inequality
∑

(¬b)∈κ b ≥ 1. We will mostly treat cores as clauses over (or sets of)
blocking variables. Given a set C of cores, a hitting set hs ⊂ B(F) is a set of blocking
variables that has non-empty intersection with each κ ∈ C. A hitting set hs is minimum-cost
if cost(F , hs) ≤ cost(F , hs′) holds for all hitting sets over C. IHS-based algorithms to
MaxSAT rely on the well-known fact that hitting sets over sets of cores provide lower bounds
on the optimal cost of instances.

▶ Proposition 1. Let hs be a minimum-cost hitting set over a set C of cores of an instance
F . Then cost(F , hs) ≤ cost(F).

An important remark to make here for understanding the IHS approach to MaxSAT solving
is that Proposition 1 holds for any set of cores of an instance. For an minimum-cost hitting
set hs over the set C of all cores of F , it holds that cost(F , hs) = cost(F) and there is a
solution τ to F that sets all blocking variables not in hs to 0.

▶ Example 2. Consider the MaxSAT instance F with H = {(b1 ∨ bX), (b2 ∨ bX), (b3 ∨ bX)}
and B(F) = {b1, b2, b3, bX} with w1(b1) = w1(b2) = w1(b3) = 1 and w1(bX) = 2. An optimal
solution τ1 to F is τ1 = {¬b1,¬b2,¬b3, bX} and has cost(F , τ) = cost(F) = 2. The instance
has three subset-minimal cores (MUSes): κ1 = {b1, bX}, κ2 = {b2, bX} and κ3 = {b3, bX}.
For a set C = {κ1, κ2} of cores, an example minimum-cost hitting set hs1 is {bX} which
has cost(F , hs1) = 2 ≤ cost(F). If we instead have w2(b1) = w2(b2) = w2(b3) = 1 and
w2(bX) = 4, then an optimal solution τ2 is τ2 = {b1, b2, b3,¬b4} and has cost(F , τ2) = 3.
Now a minimum-cost hitting set hs2 over C is hs2 = {b1, b2} which has cost(F , hs2) = 2.
Notice that changing weights can significantly alter the minimum-cost hitting sets. Specifically,
hs1 is not minimum-cost w.r.t. w2 while hs2 is also a minimum-cost hitting set w.r.t. w1

3 The Implicit Hitting Set Approach to MaxSAT Solving

Algorithm 1 details IHS, the implicit hitting set algorithm to computing an optimal solution
to a single MaxSAT instance F . In short, the algorithm decouples MaxSAT solving into
separate core extraction (the Extract-Cores subroutine) and an optimization step (the
Min-Hs subroutine). The core extraction makes use of a SAT solver to extract an increasing
number of cores, which are stored in the set C. As a by-product, the procedure also computes a
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solution τ to F . The solution allows refining the upper bound ub on cost(F), i.e., comparing
cost(F , τ) to the known upper bound ub and updating it if the new solution has lower
cost. The optimization steps compute a minimum-cost hitting set hs over the set C of cores
extracted so far using an IP solver. By Proposition 1 the cost cost(F , hs) of such a set is a
lower bound lb on cost(F). IHS terminates once lb = ub and returns τbest , the solution for
which cost(F , τbest) = ub, which is guaranteed to be an optimal solution.

In more detail, when invoked on an instance F , IHS begins by initializing the lower bound
lb to 0, the upper bound ub to ∞, the best known model τbest to ∅ and a set C of cores of
F (represented as sets of blocking variables) to ∅ (Lines 2-3). Then the main search loop
(Line 4-11) is started. During each iteration of the loop, a hitting set hs over C is computed on
Line 5 by solving the integer program detailed in Figure 1 via the procedure Min-Hs(B(F), C).
The procedure returns a minimum-cost set of blocking variables hs that contains at least
one variable from each κ ∈ C, i.e., a minimum-cost hitting set over C. The cost cost(F , hs)
of the set is then used to update the lower bound lb on cost(F) on Line 6. Since no cores
are removed from C during the execution of IHS, cost(F , hs) is non-decreasing over the
iterations.

After updating the lower bound, the termination criteria is checked on Line 7. If the
known upper bound matches the known lower bound, the algorithm terminates and returns
the current best solution τbest . Otherwise, the core extraction step Extract-Cores is invoked
on Line 8. The procedure uses a SAT solver iteratively in order to extract previously unseen
cores of F in the form of a disjoint set K of cores s.t. each κ ∈ K is a subset of B(F)\hs. The
cores are extracted using the assumption interface offered by most modern SAT solvers [13, 8]
that allows inputting a CNF formula F and a set A of assumptions in the form of literals.
The SAT solver then solves the formula F ∧

∧
l∈A(l) and returns either (i) a model τ of F

that sets τ(l) = 1 for all l ∈ A or (ii) a subset As ⊂ A such that F ∧
∧

l∈As
(l) is unsatisfiable

(which is equivalent to F entailing the clause {¬l | l ∈ As}).
Extract-Cores invokes the internal SAT solver on the hard clauses H under the as-

sumptions {¬b | b ∈ B(F) \ hs}. If the SAT solver reports unsatisfiability, the subset of
assumptions returned by the SAT solver corresponds to a core of F . The literals in the
core are then removed from the assumptions and the SAT solver reiterated. The procedure
terminates when K is a maximal set of disjoint cores over B(F) \ hs and returns K and τ ,
the final model returned by the SAT solver that satisfies the hard clauses and all soft clauses
that are not in hs nor any of the cores in K.

Since τ satisfies H, it is a solution to F . Thus its cost cost(F , τ) is compared to the
current upper bound ub and updated if needed on Line 9. If the new bounds match, the
algorithm terminates on Line 10. Otherwise, the new cores in K are added to C and the loop
reiterated. An important intuition here is that all cores in K are disjoint from the hitting set
hs and are thus not hit by hs. Adding the new cores to C results in hs not being a hitting
set over C in subsequent iterations. With this intuition. the termination of IHS follows by
the finite number of cores and hitting sets of F . A detailed argument for the correctness of
IHS can be found in [3].

▶ Example 3. Invoke IHS on the instance F from Example 2 with w(F) = w1. In the
first iteration, the set C of cores is empty, so Min-Hs returns an empty hitting set hs = ∅
which does not allow increasing the lower bound. At this point 0 = lb < ∞ = ub so IHS
does not terminate but instead moves on to Extract-Cores to extract a disjoint set of cores
over B(F) \ hs = {b1, b2, b3, bX}. There are a number of different possibilities that could be
returned. However, all of them contain at most one core that contains at least one of the
variables b1, b2 or b3. Say Extract-Cores returns K = {b1, bX} and τ = {¬b1,¬b2,¬b3, bX}.
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Since cost(F , τ) = 2 < ∞ = ub the upper bound is updated to 2 and the best model
τbest is set to τ . At this point, IHS has found an optimal solution to F . However, since
lb = 0 ̸= 2 = ub the algorithm does not terminate, but instead augments C with {b1, bX} and
reiterates. Informally speaking, the optimality of τbest has not been proven yet.

In the next iteration Min-Hs is invoked with C = {{b1, bX}}. There exists one minimum-
cost hitting set hs = {b1} over C. This hitting set allows refining lb = 1 and Extract-Cores
to extract one more core that is a subset of B(F) \ hs = {b2, b3, bX}, say {b2, bX}. In
the next iteration, Min-Hs computes either hs = {b1, b2} or hs = {bX}. In both cases
lb = cost(F , hs) = 2 = ub so the algorithm terminates, and returns τbest .

We end this section by discussing abstract cores, a recently proposed improvement to
IHS [8]. In short, an abstract core is a compact representation of a large – potentially
exponential – number of regular cores that the IHS algorithm can reason with more efficiently.
In more detail, an abstraction set ab ⊂ B(F) is a subset of n blocking variables that are
augmented with count variables ab.c[1] . . . ab.c[n]. Informally speaking, the count variables
count the number of variables in ab set to true. More precisely, the definition of the count
variable ab.c[k] is the constraint ab.c[i]↔

∑
b∈ab b ≥ i. An abstract core of an instance F

w.r.t. a collection AB of abstraction sets is then clause κ that: (i) contains only blocking
variables or count variables and (ii) is entailed by the conjunction of hard clauses of F and
the definitions of count variables. Following [8] we require that all of the blocking variables
assigned to the same abstraction set ab have the same weight. This allows the count variables
of ab to have well-defined weights; each count variable of ab being assigned to 1 corresponds
to one more b ∈ ab also being assigned to 1, incurring w(b) more cost.

For some intuition on their usefulness, note that an abstract core κ containing a count
variable ab.c[i] corresponds to

( |ab|
|ab|−i+1

)
non-abstract cores where the count variable ab.c[i]

variable is exchanged with any subset of ab containing |ab| − i + 1 elements. More details
can be found in [8].

An IHS algorithm using abstract cores, ihs-abscores, extracts both abstract and regular
cores during search. Additionally it maintains and dynamically updates a collection AB of
abstraction sets over which the abstract cores are then extracted. The abstraction sets are
computed based on a graph G that initially has the blocking variables as nodes and an edge
between any two variables with the same weight that have been found in a core together.
The weight of each edge in G between the nodes n1 and n2 is the number of times that the
variables corresponding to n1 and n2 have appeared in cores together. The abstraction sets
are then computed by clustering G and using the clusters as abstraction sets. The intuition
here is that we wish two variables that often appear in cores together (and are as such in
some sense related) to be included in the same abstraction set. During search the quality of
the abstraction sets in AB are monitored. If the extracted (abstract) cores are not driving up
the lb computed by the optimizer (Min-Hs), then the graph G is reclustered by merging the
nodes in the current clusters and then re-clustering the graph. Note that after re-clustering,
one single node in G might correspond to several blocking variables of F .

4 MaxSAT with Changing Weights

We move on to our proposal for extending the IHS approach to MaxSAT for computing
optimal solutions to MaxSAT instances under changing weights. After formulating in more
detail the incremental problem setting we consider, we will describe an extension of IHS
capable of solving sequences of MaxSAT instances with different weights in an incremental
fashion.
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Algorithm 2 IHS-INC for computing optimal solutions to k different instances of different
weights.

1 IHS-INC(F , next-w, k)
2 C ← ∅ AB← ∅;
3 τbest ← SAT(H(F));
4 for i = 1, . . . , k do
5 if i > 1 then w(F) = next-w();
6 deactivate-abs(AB, w(F));
7 ub ← cost(F , τbest);
8 τbest ← ihs-abscores(F , C, AB, ub);
9 output τbest ;

4.1 Problem Formulation
Given a MaxSAT instance F and k different weights wi for the soft clauses in F , our objective
is to compute k solutions τ1 . . . τk to F such that each τi is an optimal solution w.r.t. the
weights wi. We do not put any requirements on how the weights are computed. Our solution
algorithm solves the problem sequentially. In particular, the ith weights wi can depend on
the optimal solutions τ1 . . . τi−1 computed in previous iterations. More formally, we assume
that the first weights w1 are given as part of the input and abstract the computation of all
other weights to a black-box oracle next-w that is assumed to have access to all information
(optimal solutions, previous weights, etc.) from previous iterations.

4.2 Incremental IHS for MaxSAT with Changing Weights
Algorithm 2 details IHS-INC, an extension of the IHS algorithm ihs-abscores with abstract
cores, for solving a MaxSAT instance F under k different weight functions. The algorithm
takes as input the instance F , a function next-w for computing the weight functions used in
subsequent iterations and k, the number of iterations required. After initializing a set C of
cores and a set AB of abstraction sets on Line 2 as well as obtaining an initial solution τbest
by invoking a SAT solver on the hard clauses of F on Line 3, the algorithm enters its main
search loop (Lines 4-9).

In each iteration of the loop, the algorithm computes an optimal model w.r.t. the ith
weights. Each iteration starts with the new weights being obtained on Line 5 and an
initial upper bound ub computed from the current best model τbest on Line 7. In the first
iteration, τbest will be the model obtained by checking the satisfiability of the hard clauses (on
Line 3). In subsequent iterations, τbest will be the optimal model computed in the previous
iteration. Afterwards, an optimal model w.r.t. the current weights is computed using the
function ihs-abscores implementing the IHS algorithm with abstract cores for computing
one optimal solution to the instance.

A central fact to note in IHS-INC is that – on every iteration except the first one –
ihs-abscores is invoked with a set C of cores and AB of abstraction sets that are non-empty.
Indeed, all of the cores and abstract cores that are computed during previous iterations are
preserved and used in subsequent iterations as well. Similarly, as many abstraction sets as
possible are also preserved between iterations. Recall that ihs-abscores assumes that all
blocking variables assigned to the same abstraction set ab have the same weight. As the
weights of blocking variables can change between iterations, we stop extracting new abstract
cores over ab if the weights of the blocking variables in ab are changed to be unequal. More
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precisely, we say that an abstraction set ab is valid if w(bi) = w(bj) holds for any bi, bj ∈ ab.
In Algorithm 2 the deactivate-abs method loops over the set AB to check which ones are
not valid anymore. The ihs-abscores method then only extracts abstract cores over valid
abstraction sets. However, since the definition of an abstract core is independent from the
weights of blocking variables, abstract cores containing count variables in an invalid ab are
still preserved and used in subsequent iterations, the definitions of count variables of invalid
abstraction sets are kept in the SAT and IP solvers. We also allow blocking variables from
invalid abstraction sets to be assigned to other abstraction sets in later iterations. More
specifically, the blocking variables from invalid abstraction sets are reintroduced into the
graph and allowed to be clustered in later iterations.

The correctness of IHS-INC follows from the fact that the definition of a core and an
abstract core depends only on the clauses in F , and the clauses defining count variables.
Neither of these change between iterations so all of the cores computed in previous iterations
can be kept in subsequent ones.
▶ Example 4. Invoke IHS-INC on the instance F from Example 2 and assume the weight
function w1 for the first instance in a sequence of instance to be solved. To keep the example
simple, we also assume that no abstraction sets or abstract cores are used in the execution.

Assume that the initial SAT solver call on Line 3 on the clauses of F obtains a model
τbest = {b1, b2, b3,¬bX} and an initial upper bound ub = cost(F , τbest) = 3. The algorithm
then invokes ihs-abscores with C = ∅ and ub = 3. As ihs-abscores without abstract cores
corresponds exactly to IHS detailed in Algorithm 1, Example 3 details one possible execution
when solving F . After that execution, the procedure returns τbest = {¬b1,¬b2,¬b3, bX} and
updates C = {{b1, bX}, {b2, bX}}.

Assume then that the weights of F are updated to w2 as detailed in Example 2. The new
weights are then used to update the upper bound to cost(F , τbest) = 4 before ihs-abscores
is invoked again. In the first iteration of the search loop of ihs-abscores, the set C already
contains two cores. As such Min-Hs returns the minimum-cost hitting set hs = {b1, b2} and
updates lb = cost(F , hs) = 2. Afterwards, Extract-Cores extracts the core {b3, bX} and
returns (for example) the solution τ = {b1, b2, b3,¬bX}. This solution has cost(F , τ) = 3,
so the ub and τbest is updated. In the next iteration, Min-Hs computes the hitting set
hs = {b1, b2, b3} which has cost(F , hs) = 3 and allows the algorithm to terminate.

Example 4 demonstrates how IHS-INC is able to solve the second iteration just by
extracting one more core. In contrast, it can be shown that restarting the search from scratch
(i.e., invoking IHS) results in at least 3 cores being extracted when solving F with w(F) = w2
from Example 2.

4.3 Realizing IHS-INC
On an abstract level, as demonstrated by Algorithm 2, IHS-INC is relatively straightforward
to implement given a procedure for ihs-abscores. However, in reality, the engineering
aspects are less trivial. We continue by detailing our implementation which is built on top of
MaxHS [11, 8], a state-of-the-art IHS MaxSAT solver. In practice this requires several changes
to the underlying data structures and procedures of MaxHS, especially those concerning the
internal representation of soft clauses and their weights.

4.3.1 Handling Weight Changes
Our goal is to provide an API function changeWeight(i,w) which can be called incrementally
to change the weight of the ith input soft clause to w ≥ 0. The necessary changes to MaxHS
are applied to the following components.
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WCNF Simplification

Before solving, MaxHS performs a series of simplifications to the input instance. In particular,
after simplifying, the list of soft clauses is not in general equal to the soft clauses of the
input instance1; since some soft clauses are removed due to either always being satisfied or
impossible to satisfy given the hard clauses, and some soft clauses are merged. In order to
have access to changeWeight(i,w), we implement a mapping currentIndex which takes an
index of the original soft clauses as input, and returns either: (a) an index of the internal
list of the soft clauses (note that since some soft clauses have been merged, the same index
may correspond to several indices of the input instance), (b) SAT if the soft clause has been
removed since it is implied by the hard clauses or (c) UNSAT if the soft clause has been
removed because it is unsatisfiable given the hard clauses. Furthermore, we also keep track
of all preimages of this map in order to perform updates to it correctly. After simplifying,
currentIndex will remain constant. During simplification, MaxHS also computes baseCost
as the sum of the weights of soft clauses which cannot be satisfied, and totalWeight as the
sum of the weights of soft clauses remaining after simplification. These numbers may also
naturally change due to changing weights of the original instance.

In more detail, the simplification procedures are the following:
Hardening of soft clauses. MaxHS checks the input weights of the soft clauses and
determines whether some soft clauses can be hardened due to their high weight. Since
in our setting such a high weight may change to an arbitrarily low one, this feature is
disabled.
Unit hard clauses and equalities. MaxHS performs unit propagation over the hard clauses,
checks for equalities implied by the hard clauses, and performs pure literal elimination.
Although these procedures do not concern the weights, they may modify the original
list of soft clauses. In particular, a soft clause may be satisfied due to e.g. containing a
literal which has been assigned to true via unit propagation, in which case the soft clause
is removed; we update currentIndex by setting the corresponding index to SAT. If a soft
clause becomes empty due to e.g. containing only literals which have been assigned to
false via unit propagation, it is removed and baseCost is updated; we update currentIndex
by setting the corresponding index to UNSAT. Finally, tautologies are removed; for a
(tautological) soft clause we set the corresponding index to SAT.
Contradictory unit clauses. If there is a pair of contradictory unit clauses one of which is
soft and the other is hard, the soft clause is falsified, so we update currentIndex by setting
its index to UNSAT. If there is a pair of contradictory soft unit clauses, the base-version
of MaxHS would only preserve the clause with higher weight, setting its new weight
as the difference and incrementing baseCost with the smaller weight. In our setting we
need to preserve both; we additionally set the new weight of the lower-weight clause to
zero, and keep track of such contradictory unit soft clauses within the contradictoryUnit
datastructure. In particular, MaxHS initializes blocking variables in such a way that
unit soft clauses are used as blocking variables, and new variables are declared only for
non-unit softs. In contrast, we declare new blocking variables for unit soft clauses for
which contradictoryUnit is true.
Duplicate clauses. If there is a pair of duplicate clauses with a hard clause and a soft clause,
the soft clause is subsumed by the hard clause. In this case, we update currentIndex at
the corresponding index to SAT. If there is a duplicate of two soft clauses, they are joined
into one by setting the weight as the sum of the two weights. We update currentIndex by
setting the index of the removed soft clause to the same index as the preserved one.

1 Note that, in contrast to the pseudocode, MaxHS does not assume that every soft clause is a unit
negation of a blocking variable. Instead the solver maintains the full clause and declares a blocking
variable for it internally.
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Algorithm 3 Procedure for changing the weight of the ith soft clause to w.

1 changeWeight(i, w)
2 δ ← w − originalWeights[i];
3 if currentIndex[i] = UNSAT then
4 baseCost← baseCost + δ;
5 else if currentIndex[i] = SAT then
6 return;
7 else
8 if contradictoryUnit[currentIndex[i]] then
9 resolve unit softs;

10 else
11 totalWeight← totalWeight + δ;
12 weights[currentIndex[i]]← weights[currentIndex[i]] + δ;
13 originalWeights[i]← w;
14 update CPLEX;

Flipping literals. If there is a unit soft clause with a positive literal, that literal is flipped
in the instance in order to use it as a blocking variable (so that setting the blocking
variable to true incurs the cost of the soft clause). We only do this in the case that the
soft clause does not have a contradictory unit soft clause.

Note that hardening of soft clauses is disabled since it may change the set of cores of the
instance being solved and lead to IHS-INC computing cores that are not valid to preserve
between iterations.

▶ Example 5. Consider the instance F with H = {(b1 ∨ b2)} and B(F) = {b1, b2} with
w(b1) = 1 and w(b2) = 10. During hardening, MaxHS invokes a SAT solver on H in hopes
of finding a good model that allows hardening of soft clauses. Assume that the model τ =
{b1,¬b2} is computed. Since cost(F , τ) = 1 < w(b2) MaxHS concludes that the soft clause
(¬b2) can be hardened and invokes ihs-abscores on the instance FH = {(b1 ∨ b2), (¬b2)}
with B(FH) = {b1}. While the optimal solutions of both F and FH are the same, the set of
cores are not, κH = {b1} is an example of a core of FH that is not a core of F . In other
words, κH could not in general be preserved between the iterations of IHS-INC as it is not a
core of any instance where (¬b2) can not be hardened.

CPLEX Interface

The underlying IP solver CPLEX, used for solving the hitting set problems, has to be updated
between iterations with the new sequence of weights. We implement this within the CPLEX
interface of MaxHS by using CPXXchgcoef2 to change the coefficient of the objective function
corresponding to the weight of a blocking variable. This update is performed only if the
corresponding blocking variable exists in CPLEX.

The resulting procedure for changeWeight(i,w)is detailed as Algorithm 3. We compute δ

as the difference between the new weight w and the current weight stored in originalWeights[i]
(line 2). If currentIndex[i] is UNSAT, it suffices to increment baseCost by δ (lines 3 and 4). If
currentIndex[i] is SAT, we simply do nothing (lines 5 and 6). Otherwise currentIndex[i] contains
the index of the corresponding internal soft clause. Now, if this internal soft clause has a

2 https://www.ibm.com/docs/en/icos/12.10.0?topic=c-cpxxchgcoef-cpxchgcoef

https://www.ibm.com/docs/en/icos/12.10.0?topic=c-cpxxchgcoef-cpxchgcoef
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contradictory unit clause, we resolve these two unit soft clauses (lines 8 and 9). Otherwise, we
increment totalWeight and the internal weight weights[currentIndex[i]] by δ (lines 11 and 12).
Finally, we set originalWeights[i] to the new weight w (line 13) and perform the necessary
updates to CPLEX (line 14).

4.3.2 Weight-based Reasoning
In addition to correctly taking into account the simplification procedure and updating the
IP solver, during solving MaxHS performs weight-based reasoning, which either has to be
disabled or reimplemented by taking into account that weights may potentially change. These
reasoning procedures are the following.

Reduced Cost Fixing

MaxHS considers the linear programming (LP) relaxation of the hitting set problem, and
using so-called reduced costs corresponding to the optimal solution of the LP, determines
whether a soft clause can be hardened [3]. In particular, this is determined via the optimal
cost of the LP, the reduced cost corresponding to the blocking variable, and the cost of a
feasible solution to the MaxSAT problem. After changing weights, all of these numbers may
change arbitrarily. Hence, it is clear that soft clauses hardened due to reduced cost fixing
may invalidate the current instance and alter the set of cores the instance (recall the earlier
discussion on hardening). Due to this, reduced cost fixing is disabled.

Abstract Cores: Graph and Totalizers

Recall that in order to determine which blocking variables occur in cores often together,
MaxHS constructs a weighted undirected graph based on the accumulated cores [8]. Nodes
of this graph correspond to partitions of the set of blocking variables, and weights of the
edges between nodes to how many times the blocking variables occur together in a core. In
particular, it is assumed that blocking variables within a node and in adjacent nodes have
the same weight. In order to preserve these invariants, if a node contains several blocking
variables which now have different weights, the node is removed from the graph. Similarly, if
the incident nodes of an edge contain blocking variables with different weights, the edge is
removed from the graph.

In order to encode cardinality constraints over count variables corresponding to abstract
cores, MaxHS makes use of totalizers [7]. It is assumed that blocking variables used as inputs
of a totalizer have the same weight. Furthermore, each totalizer is assigned this weight in
order to compute new lower bounds. In order to preserve this invariant, we check which
totalizers contain inputs whose weights have changed. If all weights have changed to the
same new weight, we simply reset the current weight of the totalizer to the new weight.
If weights are different, the totalizer is invalid, so it is removed, and so are all totalizers
containing a subset of the inputs of the totalizer.

4.3.3 Solving Procedure
With all of this in place, for solving the instance at iteration i > 1 we recompute the sum of
the weights of soft clauses known to be satisfiable from the existing model in the SAT solver
(τbest in Algorithm 2) – this weight is used to determine the upper bound by subtracting it
from totalWeight. Furthermore, we recompute the sum of the weights of blocking variables
that are fixed to true by the SAT solver, and set the lower bound to this number. After
reinitializing the graph and totalizers related to abstract cores, we may solve the updated
instance as usual.
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In addition to the techniques discussed in this section, our implementation of IHS-INC
also makes use of a number of previously proposed heuristics for extracting a large number
(hundreds) of cores from each hitting set [12, 10, 28]. The techniques that have not been
discussed in this section are all sound to keep between iterations. Recall that, as long as a
core extraction heuristic computes a set of blocking variables that is a core of the current
instance, the same set will be a core in subsequent iterations as well.

5 Experimental Evaluation

In this section we provide an empirical evaluation comparing MaxHS (MaxSAT evaluation
2020 version3) to our implementation of IHS-INC built on top of MaxHS. The non-incremental
MaxHS is run with default parameters, with all its optimizations including hardening of soft
clauses during simplification and in the form of reduced cost fixing enabled.

All experiments were run on 2.60-GHz Intel Xeon E5-2670 8-core machines with 64GB
memory and CentOS 7. We set a per-instance time limit of 7200 seconds (2 hours) and a
memory limit of 16 GB. Specifically, the 7200-second time limit is for solving a single instance
n times with n different weights w1, . . . , wn. For both the incremental and non-incremental
solver, we record the solving time tk of each iteration k. The kth iteration (as well as all
subsequent ones) is considered as a timeout if

∑k
i=1 ti > 7200 seconds.

We consider two different recently-proposed methods for learning interpretable classifiers,
namely decision trees and decision rules, via MaxSAT. The input for both scenarios is a
dataset (Xi, yi), i = 1, . . . , n, of binary examples Xi ∈ {0, 1}m and classes yi ∈ {0, 1}. Each
coordinate j = 1, . . . , m of an example Xi = (x1

i , . . . , xm
i ) is called a feature. The goal is to

learn a binary classifier (a function mapping each example in the feature space {0, 1}m to a
class in {0, 1}) which minimizes the training error consisting of the number of misclassified
examples in the input dataset. In the context of changing weights, we consider two different
methods designed to avoid overfitting. For decision trees, AdaBoost [16] is an algorithm
where a sequence of shallow decision trees are learned by iteratively changing the weights of
the examples in the training set. For decision rules, we include a regularizing term to the
objective function which also enforces the sparsity of the resulting rule [18], and iteratively
vary the value of the regularization parameter.

5.1 Case Study 1: MaxSAT for Boosting Decision Trees
Decision trees are classifiers with the structure of a full binary tree for binarized data. Leaf
nodes are associated with a particular class (in our setting, 0 or 1), and non-leaf nodes
with a feature j = 1, . . . , m. An example X = (x1, . . . , xm) is classified by starting from the
root node, checking the value of xj for the feature j associated to the node, and proceeding
recursively to the left child if xj = 0 and to the right child if xj = 1. The class is then
determined by the leaf node which terminates the recursion.

We consider the MaxSAT encoding for learning a decision tree of depth at most U [16],
based on a SAT encoding for learning a decision tree with exactly N nodes [26]. In addition
to variables and hard clauses for encoding the structure of a valid binary tree, its depth,
and the classification of the training data, the MaxSAT encoding has variables bi for each
example Xi with the interpretation that bi is true if and only if example Xi is classified
correctly. The objective is then to minimize the training error via unit-weight soft clauses (bi)
for each example Xi. An instance formed from a dataset with n examples and m features
has O(n + m) variables, O(n + m) hard clauses of length O(m), and n unit soft clauses.

3 https://maxsat-evaluations.github.io/2020/descriptions.html

https://maxsat-evaluations.github.io/2020/descriptions.html
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Table 1 Statistics on MaxSAT instances used for AdaBoost.

Minimum Maximum Average Median
Number of variables 2129 26396 8310.4 7768

Number of hard clauses 8176 96382 30343.8 26772
Literals in hard clauses 38524 5342964 718654.9 211629

Average length of hard clauses 3.45476 70.1593 16.4 10.3187
Number of soft clauses 27 6473 803.6 342

In particular, here we focus on the implementation of AdaBoost [14], an ensemble method
where multiple weak classifiers (in this context, shallow decision trees) are trained and then
combined into a single classifier via a weighted voting scheme. This is achieved via changing
the weights of the soft clauses iteratively [16]. In more detail, after learning a decision tree,
the weight w(bi) for each i = 1, . . . , n is updated via

ŵ(bi) = w(bi) · fi∑n
j=1 w(bj) · fj

where fi = exp(−α) if the ith example was classified correctly and exp(α) otherwise,
α = 1

2 ln( 1−ε
ε ), and ε is the training error. As long as ε < 0.5, this raises the weight

of incorrectly classified examples and lowers the weight of correctly classified examples.
Intuitively, the following decision tree will consider that misclassified examples are more
important than correctly classified ones. Then, weights are discretized by setting

w(bi) = round
(

ŵ(bi)
minj=1,...,n ŵ(bj)

)
.

In other words, if an example is classified correctly at each iteration, its corresponding weight
will remain constant 1 due to discretization. If an example is classified incorrectly at each
iteration, its weight will grow exponentially.

In contrast to using an incomplete MaxSAT solver by starting it from scratch at each
iteration [16], we consider solving each iteration exactly in an incremental fashion. For
benchmarks, we take the 15 datasets used in [16] (which were downloaded from CP4IM4

and discretized5). For the exact number of examples and the number of features in these
instances, we refer the reader to [16, Table 1]. For each dataset, we generated different
training sets by taking 20%, 30%, . . . , 80% of the available data, resulting in 105 training
sets. We set the maximum depth to U = 2 and used 21 iterations for AdaBoost. Detailed
statistics on the resulting MaxSAT instances are provided in Table 1.

The results are summarized in Figure 2, where each point is a single iteration, the x-axis
is the CPU time-consumed by our implementation, and the y-axis is the CPU time-consumed
by MaxHS. Points are colored by the iteration number: the higher the iteration number,
the more yellow the point (and the lower, the more blue). We clearly see that almost all
lower iterations take approximately the equal amount of time, with a few more timeouts
exhibited by our implementation than by MaxHS (four points on the right border of the plot).
However, for higher iterations, we see a clear improvement from using the incremental version

4 https://dtai.cs.kuleuven.be/CP4IM/datasets/
5 https://gepgitlab.laas.fr/hhu/maxsat-decision-trees
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Figure 2 Incremental vs. non-incremental
MaxHS for AdaBoost. Each point is an iteration.
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Figure 3 Incremental vs. non-incremental
MaxHS for AdaBoost on example datasets.

of MaxHS. In particular, some iterations which take 100 seconds to solve using MaxHS are
now solved in a matter of seconds, and MaxHS exhibits a significant number of timeouts
which are solved using the incremental version (points on the upper border of the plot).6

Dataset specific examples of how the runtimes of non-incremental and incremental MaxHS
differ when iterating over the sequences of instances the datasets give rise to are provided
in Figure 3. We observe that for almost all iterations, the performance of the incremental
version is significantly better than that of the standard non-incremental MaxHS. This is the
case in particular for the later iteration; evidently, incremental computations start paying off
noticeably after solving the first few instances in the sequence.

5.2 Case Study 2: MaxSAT for Learning Decision Rules
Decision rules are classifiers which take the simple and interpretable form of if-then-else
rules. Here we consider MLIC [18], a framework for learning decision rules via MaxSAT, in
particular decision rules where the implicant is a CNF formula R over the features containing
exactly K clauses, and the consenquent is simply “class is 1”. In addition to minimizing
the training error, the goal is to learn sparse decision rules. Sparsity of the learned rules
is enforced by a regularizing term. In particular, the objective is to minimize λ|ER|+ ∥R∥,
where |ER| is the number of misclassified examples and ∥R∥ is the number of literals in
R. The choice of the regularization parameter7 λ > 0 is a difficult task. A simple method
for choosing λ is to perform an exhaustive grid search over an interval and choosing the
λ that minimizes e.g. the cross-validated error. Note the form of the objective function,
namely minimizing the linear combination of an error and a regularizing term, is very general,
and interestingly similar MaxSAT-based methods for learning sparse decision sets [32] and
lists [31] also share a similar objective.

6 We also tried using the previous optimal solution to calculate an initial UB in non-incremental MaxHS,
but did not observe any significant performance improvements. Note that MaxHS only terminates
when the upper bound equals the lower bound, even given an optimal solution, MaxHS has to prove its
optimality by extracting cores which yield a hitting set of the same cost.

7 Note that, unlike is typically the case, the role of λ in [18] is the weight of the error term, not the
sparsity term (which is in fact the regularizer). The sparsity term has coefficient 1/λ.
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Table 2 Data on MaxSAT instances used for MLIC.

Minimum Maximum Average Median
Number of variables 182 183105 26122.9 2339.5

Number of hard clauses 523 49086727 3792656.9 47721
Literals in hard clauses 1473 120037762 9765213.2 216129

Average length of hard clauses 2.21576 132 15.8 2.5
Number of soft clauses 157 48139 8224.0 1627.5

The MaxSAT encoding has variables bj
k for each clause index k = 1, . . . , K and each

feature j = 1, . . . , m, and variables ηi for each example Xi. Here bj
k is assigned to true if and

only if feature j occurs in the kth clause, and ηi is assigned to true if and only if example Xi

is classified incorrectly. In addition to hard clauses encoding the semantics, soft clauses (¬ηi)
with unit weights and (¬bj

k) with weight λ are used to encode the objective function. An
instance resulting from encoding a dataset with n examples and m features has O(n + m)
variables, O(n + m) hard clauses with length O(m), and O(n + m) unit soft clauses.

Following [18], we consider computing the optimal decision rules for λ = 0.25, 0.5, . . . , 5.0,
in this exact order. As we start from a low value of λ, the iterative procedure first learns
decision rules that are more sparse and less attention is given to correct classification, and
as λ is incremented, more importance is given to classifying the examples correctly than to
sparsity. We use the same 10 datasets (from the UCI repository8) which were discretized via
adapting the script provided by the MLIC repository9. For the exact number of examples and
the number of features, we refer the reader to [18, Table 1]. For each dataset, we generated
training sets by taking 10%, 20%, . . . , 90% of the available data, resulting in 90 different
training sets. We learned CNF rules consisting of K = 2, 3 clauses (as instances with K = 1
clauses were observed to be solved directly using the IP solver due to all constraints being
seeded into CPLEX). This gave rise to 180 different runs each with 20 iterations. Detailed
statistics on the MaxSAT instances are provided in Table 2.

Our results are summarized in Figure 4, where each point corresponds to a single iteration,
the x-axis is the CPU time of the incremental version, the y-axis is the CPU time of basic
MaxHS, and points are colored by the iteration number. We observe a very clear improvement
in favor of the incremental version, especially for higher iterations. MaxHS also exhibits a
significant number of timeouts for iterations that are solved using the incremental version.

Dataset specific examples of how the runtimes of non-incremental and incremental MaxHS
differ when iterating over the sequences of instances the datasets give rise to are provided in
Figure 5, with the value of lambda (corresponding to the iteration) on the x-axis and the
CPU time on the y-axis. While we observe some variation in the runtime for both solvers, e.g.
the iterations corresponding to λ = 1.25, 2.25, are slower to solve, the incremental version is
clearly faster on most iterations. Some instances are significantly easier, essentially trivial,
to solve using the incremental version compared to the non-incremental solver; the bottom
plot in Figure 5 provides such an example.

8 https://archive.ics.uci.edu/ml/
9 https://github.com/meelgroup/MLIC/tree/MLIC
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Figure 4 Incremental vs. non-incremental
MaxHS for MLIC. Each point is an iteration.
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Figure 5 Incremental vs. non-incremental
MaxHS for MLIC on example datasets.

6 Conclusions

Various types of real-world optimization problems, requiring solving a sequence of related
problem instances, call for solvers that can make use of incremental computations across
the instances. Motivated by recent applications of MaxSAT solvers, we adapted one of
the key MaxSAT solving approaches – the implicit hitting set approach – to cope with
incrementality under changes to the weights of soft clauses. While it is seemingly simple to
adapt a rudimentary version of the IHS approach to deal with this type of incrementality, the
various search techniques applied in MaxHS, a state-of-the-art IHS MaxSAT solver, make such
adaptations non-trivial. In particular, we explained which search techniques can and cannot
be adapted for incremental computations under changing weights. Taking these observations
into practice, we adapted MaxHS to support incrementality under changing soft clause
weights. Using two recent real-world applications of MaxSAT in the context of interpretable
machine learning as examples, we showed that the incremental version of MaxHS provides
significant runtime improvements over MaxHS (despite all of the performance-improving
optimizations used in the non-incremental version) when solving sequences of MaxSAT
instances with adaptively changing weights. As future work, we aim to generalize the
framework further to allow e.g. efficiently altering the set of hard and soft clauses between
iterations without increasing the sizes of extracted cores or hitting set instances met.
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