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—— Abstract

Decision systems for solving real-world combinatorial problems must be able to report infeasibility
in such a way that users can understand the reasons behind it, and understand how to modify the
problem to restore feasibility. Current methods mainly focus on reporting one or more subsets of the
problem constraints that cause infeasibility. Methods that also show users how to restore feasibility
tend to be less flexible and/or problem-dependent. We describe a problem-independent approach to
feasibility restoration that combines existing techniques from the literature in novel ways to yield
meaningful, useful, practical and flexible user support. We evaluate the resulting framework on two
real-world applications.
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1 Introduction

Finding (high quality) solutions to combinatorial problems is important for our society. This
has fuelled research into technologies to model and solve these problems, many of which are
now used in decision systems deployed by businesses such as Amazon, Google and HP.

An important, but less researched aspect of these systems is their interaction with human
users, particularly when reporting infeasibility created by errors or “what-if” scenarios. While
users do need information to restore feasibility, it is not obvious what information is best.
Research has mainly focused on finding subsets of the problem constraints responsible for
the infeasibility. This has yielded interesting subsets, such as Minimal Unsatisfiable Sets
(MUS) and Minimal Correction Subsets (MCS) [20], and enumeration methods to compute
them efficiently (e.g., [13, 16, 19, 18, 21]). See [6] for applications of these subsets.

While enumeration methods are a great starting point for explaining infeasibility to users,
a straightforward use of these methods is not suitable for real-world systems [10]. We have
experienced this repeatedly, most recently in a system that finds high quality 3D layouts
for an industrial plant, where better quality solutions can save millions of dollars. We soon
realised it is easy for users to create infeasible plants due to incorrect data (e.g., making the
(i)/[llankaikone Ser}thooran, Matthias Klap}:)erstue(?k, Gleb Belov,. Tobias Czauderna, Kevin Leo,

B ark Wallace, Michael Wybrow, and Maria Garcia de la Banda,;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 49; pp. 49:1-49:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany


mailto:ilankaikone.senthooran@monash.edu
https://orcid.org/0000-0001-6207-3780
mailto:matthias.klapperstueck@monash.edu
https://orcid.org/0000-0002-6759-7185
mailto:gleb.belov@monash.edu
https://orcid.org/0000-0002-6120-8484
mailto:tobias.czauderna@monash.edu
https://orcid.org/0000-0002-1788-9593
mailto:kevin.leo@monash.edu
https://orcid.org/0000-0003-4720-4265
mailto:mark.wallace@monash.edu
https://orcid.org/0000-0001-7326-8110
mailto:michael.wybrow@monash.edu
https://orcid.org/0000-0001-5536-7780
mailto:maria.garciadelabanda@monash.edu
https://orcid.org/0000-0002-6666-514X
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2

Human-Centred Feasibility Restoration

plant too small for its equipment) and/or inconsistent constraints (e.g., setting object A on
the ground and also on top of another object B). Since plants contain hundreds of pieces
of equipment, multiple inconsistencies are easily introduced. Our attempts to use some of
the constraint-independent enumeration methods available [19, 18] to find and resolve these
inconsistencies resulted in impractical waiting times and hundreds of MUSes, overwhelming
users. Further, these methods did not show how to restore feasibility. Our attempts to
use methods that sacrificed generality for speed, and which reported the minimum changes
needed to restore feasibility [6, 27], led to users being given a very restricted set of choices.

Our experiences illustrate the need for user support that is meaningful, useful, practical
and flexible. We say support is meaningful if it expresses the selected constraint subsets in a
way that is understandable to users. It is useful if it helps users determine not only what
prevents the system from finding a solution, but also how to actually modify the data or
constraints to eliminate the inconsistency. It is practical if it is fast enough for users, and it
is flexible if it gives them choices regarding how to find and resolve infeasibility.

The few methods that address some of these four needs [17, 8, 4] tend to focus only on
one of them and/or are problem-dependent. Our main contributions are (1) to describe a
problem-independent approach to feasibility restoration that combines existing qualitative
and quantitative techniques in novel ways, yielding meaningful, useful, practical and flexible
user support, and (2) to evaluate the trade-offs between practicality and flexibility for the
conflict resolution alternatives offered by our approach, as well as their meaningfulness and
usefulness, in the context of two real-world applications. In doing this, we also contribute
(3) a method to quantify the violation of logical combinations of constraints, and (4) a
problem-independent interface for user intervention.

2 Background and Related Work

Explaining infeasibility. Given an unsatisfiable set of constraints C, subset M C C'is a
Minimal Unsatisfiable Set (MUS) of C'iff M is unsatisfiable and removing any constraint from
M makes it satisfiable; and is a Minimal Correction Subset (MCS) of C' iff C'\ M is satisfiable
and adding any ¢ € M to C'\ M makes it unsatisfiable. Every MCS is a hitting set of all
MUSes (i.e., has a non-empty intersection with each MUS) and vice-versa. While removing
a MUS from C might not make it satisfiable (C' may have disjoint MUSes), removing one
MCS from C' does. Applications often have a subset B of C, called the background, that
should not appear in the computed subsets. Its complement C'\ B is the foreground. MUSes
and MCSes are redefined using B as follows. A minimal conflict of C for B is a subset M of
the foreground such that M U B is unsatisfiable, and for any M’ C M, M’ U B is satisfiable.
A minimal relazation of C for B is a subset M of the foreground such that (C'\ M) U B is
satisfiable and for any subset M’ C M, (C'\ M’) U B is unsatisfiable. Herein we treat MUS
and MCS as synonyms of minimal conflicts and minimal relaxations, respectively.

Finding one MUS. Early techniques to find a MUS are based on linear deletion methods [13],
where each constraint in unsatisfiable set C' is tentatively removed from it, and is added back
to C if its removal yields satisfiability. Once all constraints in the initial C' are tested, those
in the final C' form a MUS. One of the most popular techniques is QuickXplain [16], which
reduces the number of satisfiability checks needed by recursively splitting and reducing C' to
a MUS. These approaches use solvers as satisfiability checkers, without taking into account
any properties of C. Other approaches sacrifice such generality for speed by focusing on



l. Senthooran et al.

particular kinds of constraints, like those in linear programs [26, 12], numerical constraint
satisfaction problems [11], and Mixed Integer Programs (MIP) [13], where a MUS is called
an Irreducible Inconsistent Subsystem (IIS).

Enumerating MUSes and finding one MCS. Most MUS enumeration techniques gain
speed by keeping track of the explored subsets to prune superseded ones. One of the most
popular is MARCO [19], which avoids redundant checks of supersets/subsets of known
unsatisfiable/satisfiable sets. The aim when enumerating MUSes is often to compute an
MCS. Efficient techniques exist to compute MCSes directly (e.g., [20, 9, 21]), rather than
as hitting sets of MUSes. MCSes discovered during MUS enumeration can also be used to
speed up the enumeration process [1].

Preferred subsets. The exponential number of MUSes and MCSes, together with the large
number of constraints in real-world problems, have yielded methods that allow users to
express their preferences [16, 22, 23]. These methods obtain MUSes and MCSes built from less
preferred constraints, which can be violated to satisfy the more important ones. In addition,
accounting for preferences can help speed up computation, as shown by MiniBrass [25],
which generalises several constraint preference schemes by using partially ordered valuation
structures, and implements them as a soft constraint modelling language.

Human-understandable subsets. The closest work we know of is that of [17], which uses
a version of MARCO to iteratively construct minimal conflicts responsible for causing
infeasibility, coupled with minimal relaxations which can be used to restore feasibility. Their
minimal sets can be expressed in human understandable language and at different levels of
abstraction by using a powerset lattice of Boolean variables to represent each constraint in
the foreground, which only contains constraints that can be altered by parameters controlled
by the users. It is also the only work we know of that tries to eliminate redundancies from
the subsets to produce more compact descriptions. In contrast, our method is problem-
independent and, as shown later, its novel combination of enumeration and IIS based methods
makes it more practical and flexible.

Connecting models to instances. We distinguish between a problem model, where the
input data is described in terms of parameters, and a particular model instance, where the
values of all parameters are added to the model. Models are usually defined in a high-level
language, such as JUMP [7] or MiniZinc [24], and their instances are compiled into a flat
format, where loops are unrolled and constraints are transformed into formats suitable for
the selected solver. Both the compiler and the solver may introduce new variables and
constraints during the flattening/solving process. This makes it difficult to report constraint
subsets to the users in a meaningful way. In this paper we use the MiniZinc toolchain, which
assigns a unique identifier [18] to each variable and constraint in a flattened instance that
links them to the part of the model’s source code that generated them.

3 Motivating Example: Plant Layout

The equipment allocation phase of the Plant Layout system of [2] finds the 3D position
coordinates and orientations of the specified equipment within a given container space, that
(a) satisfy distance, maintenance and alignment constraints, and (b) minimise the costs of
the plant’s footprint, of the supporting equipment, and of a Manhattan approximation of the
connecting pipes. Figure 1(d) shows a possible solution for the plant described in Figure 1(a).
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Figure 1 Simplified Plant Layout workflow for a feasible plant (a=-d) and for feasibility restoration
(a=b=c=d).

Data. The user interface (UI, Figure 1(a)) provides a predefined palette of equipment
templates, where each template belongs to a class (e.g., heat exchangers or pumps) and each
class has a set of associated constraints. Users can drag and drop equipment from the palette
onto the canvas to describe the plant. They can modify the equipment dimensions, alter the
positions of the nozzles where the pipes attach, and connect equipment via pipes.

Underlying constraints. Each piece of equipment is automatically constrained to (a) be
within the container space, (b) not overlap with any other equipment, (c) be positioned in one
of four possible orientations, (d) satisfy the min/max distances associated to its class, and
(e) satisfy any maintenance access constraints associated to its class (e.g., needs truck access
or cannot have equipment below). In addition, some combinations of equipment have extra
constraints (e.g., heat exchangers must be symmetrically positioned w.r.t. their connecting
vessel). Finally, the model has redundant constraints to speed up solving.

User constraints. The Ul allows users to add, remove and modify some of the underlying
constraints. In particular, users can (a) modify the min/max distances between equipment
classes, (b) add constraints on the relative position/distance of any two objects, (c) ad-
d/delete/modify maintenance access for any equipment, (d) ensure objects are positioned
within/at a given area/point, (e) provide upper bounds to the container space dimensions,
and (f) add group size constraints forcing selected objects to be within a given sized box.

Internal representation. The optimisation model internally treats equipment as boxes, thus
ignoring their exact form. It also treats maintenance access as boxes attached to equipment in
rigid /rotatable form, thus providing access to one or any of its sides (blue, green and yellow
boxes in Figure 1(d)). The position of each box is modelled primarily by its front-left-bottom
corner coordinates and its orientation. However, many other auxiliary decision variables are
used to make it easier to express certain constraints.
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Restoring feasibility. It is easy for user constraints to cause infeasibility. For example, the
min/max distances or the absolute/relative positioning of equipment, can conflict with the
dimensions of the container space, or make it impossible for equipment to be symmetrically
positioned. Figure 1(b) shows some of the ways our system helps users restore feasibility,
which include displaying the constraints in all MUSes from which users can select an MCS.
This MCS is then used to find restoration values for its constraints (Figure 1(c)). Users can
then modify these values in the UI and restart the process for a solution (Figure 1(d)).

4 Design Decisions

As mentioned before, our aim is to support users not only in understanding the reasons for
infeasibility, but also in recovering from it, and do so in a meaningful, useful, practical and
flexible way. As with most multi-objective optimisation problems, these objectives often
conflict. For example, in order to be useful we would like to find all possible MCS (or minimal
relaxation) subsets. However, this can be both impractical and overwhelming to users, thus
affecting meaningfulness. The following is a brief summary of our key design decisions.

To be meaningful we use MiniZinc’s capability to (a) annotate the model constraints
with meaningful names, and (b) connect the variables and constraints seen by the underlying
solver (i.e., those in the flattened instance) to those appearing in the problem model. This
allows us to present information to the users at the same level of abstraction used by the U,
independently of the underlying technology (see, for example, the constraint names “group
size” and “maximum distance” in the infeasibility set reported by Figure 1(b)).

To be useful we combine the detection of infeasible sets with a conflict resolution
technique where slack variables are added to user constraints, transforming them into soft
constraints [27]. This allows us to tell users not only which constraint subsets are infeasible,
but also how the value of their variables can be modified to make them feasible.

To be practical we combine time-intensive methods that aim to enumerate all minim-
al/maximal infeasible/feasible sets, with fast methods that aim to report a single set, possibly
not minimal/maximal. By iteratively combining these methods we can provide feedback
about infeasibility quickly, while also generating sets that are useful to the users.

To be flexible we show users the different ways in which our methods can be executed
and allow them to decide what they want reported and how long they can wait for it.
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Figure 2 Sequence diagram showing the high-level overview of the method for an application.
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5 Method Overview

Figure 2 shows our method as a sequence diagram, where colours correspond to the different
restoration methods users can select and the solid/dash outline indicates the right/left
direction of the arrow. The first 4 steps (in green) are always followed: the user describes the
problem via a UI (step 1), which sends this information to the instance generator (step 2) to
generate a MiniZinc instance (step 3) that is flattened by the MiniZinc compiler and sent to
the selected solver (step 4). If a (possibly optimal) solution is found, it is sent back to the UI
and presented to the user (steps 5 and 6). Otherwise, two paths (blue/red) can be selected.
In the blue path the solver engages our soft generator (step 7) to generate a soft instance,
where the user constraints are relaxed by means of slack variables aimed at quantifying
infeasibility (step 9). This soft instance is flattened and sent to the solver (step 10) for a
soft solution. Users who want a fast, though potentially incomplete explanation, can get
this soft solution (steps 11 and 12) and use the values of the slack variables to modify the
problem, and restart the process at step 1. If they want a more complete explanation, the
soft solution can be sent to our MUS enumerator (step 13) to speed up its enumeration. In
the red path the MUS enumerator is called directly (step 8) and the enumeration is done as
usual. In both cases, the enumeration often requires several calls to a solver (step 14). The
enumerated MUSes are sent to the UI and presented to the users (steps 15 and 16), who
can then review these MUSes (step 16), select their preferred MCS (step 17), and trigger
another recovery phase (step 18), where slack variables are only added to the selected MCS
constraints (step 19). The resulting soft instance is then flattened (step 20) and solved
(step 21). The MCS solution is presented to users in step 22, who can adopt it into the
original problem or perform further modifications, before restarting the process.

6 Soft Generator

Our soft generator has two main goals. The first one is to quickly identify either one MCS
or the constraints in the MUSes of one MCS. The former greatly reduces the number of
constraints users need to modify, but locks them into the constraints of that MCS. The latter
allows users to select their preferred MCS from the constraints in the MUSes, but can yield
too many constraints. Thus, the former is more meaningful, the latter more flexible. The
second goal is to quantify the minimum changes required to restore feasibility [5].

To achieve our goals, we modify the infeasible instance based on [27] in two ways. First,
all user constraints are relaxed by introducing slack variables, whose values provide the
required quantification for our two goals (and must be > 0). Second, the original objective
function is replaced by one that always minimises the total slack value (second goal) but
can either minimise the number of slacks with a positive value (yielding one MCS), or not
(yielding constraints in the MUSes of one MCS). For Plant Layout the violation measured by
the slacks corresponds to length units, and the new objective function uses them without
any scaling (i.e., the unit of violation is constant, e.g., lmm) and without any weights, since
we do not have a priori preferences. Instead, users can control such preferences a posteriori
(step 17) by switching constraints on and off (see Section MUSes and MCS Visualiser).

Relaxing constraints via slacks. Let ¢,z € R™ be vectors of coefficients and variables,
respectively, and d € R a constant. Linear inequality ¢c" z < d is relaxed in [27] as ¢ "z < d+s,,,
where w is the index of the constraint and, thus, of the slack variable s,. Since all slack
variables must be > 0, linear equality ¢'z = d is relaxed in [27] using two inequalities:
c'x <d+ s} and ¢z > d — s, which increases the number of constraints.
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Combinatorial constraints are not tackled in [27], and we are not aware of any method to
quantify their violation. We define a general method by modifying MiniZinc’s linearisation
mechanism for MIP solvers [3]. Let us show how we do this using logic constraints to illustrate
the method. Consider a logic constraint, such as a disjunction of inequalities. MiniZinc
linearises logic constraints in three steps. First, each linear component (say ¢z < d) is
turned into an indicator constraint, b=1 — ¢z < d, where b is an auxiliary 0/1 variable
and — logical implication. Second, each indicator constraint is turned into the big-M
constraint ¢'x < d + M(1 — b), where M is an upper bound for ¢z — d. Finally, the
original logic constraint is translated into Boolean arithmetic. Our method modifies step two
to relax the indicator constraints by introducing a slack variable into the right-hand side:
b=1 — c¢'z <d+s,. This quantifies the infeasibility.

Replacing the objective function. To identify one MCS quickly, we generate the following
lexicographic two-objective function, which first minimises the total number of positive slacks
(vielding a minimum-cardinality MCS), and then the total magnitude of slack violation [6]
(ensuring the changes needed to restore feasibility via that MCS are minimal):

lex_min(fy =), bus fa =2, 5w) (1)

where s, is the slack variable introduced for constraint w, and each b, is a new 0/1 variable
defined by the indicator constraint b, = 0 — s, < 0 (recall s,, > 0). Thanks to f;, the
solution returned minimises the number of constraints that must be violated to get a soft
solution to the original problem (those for which the slack variables are positive). This
identifies one MCS (in fact a minimum-cardinality MCS), which was our first goal. Thanks
to fo, the solution also quantifies the minimum total change required for the slack values in
the violated constraints, which was our second goal. While the resulting value for fo might
be higher than that obtained with fy alone, neither f; nor fy alone perform well: f; can
yield too large slack values, while fs is unlikely to yield an MCS.

To identify the constraints in the MUSes of some MCS quickly we generate the following
alternative lexicographic two-objective function [27]:

lex_ min(f] = max,, s,; f2) (2)

where w, s, and f are as above. Here, f{ minimises the maximum slack value and f5 the sum
of slacks, ensuring each falls below the value returned by f;. Note that this does not group
constraints into MUSes, thus speeding up the computation. Again, neither fi norf, alone
perform well: f{ may leave all slacks positive (including those of non MUS-members), while
f2 can lead to arbitrary MUS-member slacks being zero. Even joining both objectives by a
linear combination can fail to produce a single MUS, thus reducing flexibility by reducing the
amount of choice. Consider for example, constraints x < 14 s, y < 1+ 39, Ax+ By > 3 — s3,
and Cz + Dy > 3 — s4, with user inputs A = B = C = D = 1. Minimising f{ + f2 produces
S1 = 89 = %, s3 = 84 = 0, while a MUS must have one of the last two constraints. Even

objective (2) may miss some constraints of a MUS if they overlap with those of another MUS.

This is shown in Figure 3, where lines denote linear constraints 1-5 and arrows denote their
feasible directions, yielding three MUSes: {1,2,3}, {1,4,5}, and {1,2,5}. When minimising
objective (2), the slacks of constraints 3 and 4 become zero and are thus disregarded.

Note that when using any of the two objectives above, the original objective is not used.

This allows us to omit their associated variables and constraints (giving a satisfaction version
of the model), which can sometimes simplify the model considerably. This is also the case
when enumerating MUSes (detailed in the next section).
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Figure 3 An example of overlapping MUSes.

7 MUS Enumerator

MUS enumeration often aims at computing an MCS. Automatically doing this can however
prevent users from selecting the best MCS for their problem. To increase flexibility, our
method graphically displays the MUSes enumerated (see next section) in such a way it is easy
for users to identify different MCSes for those MUSes, and select one. We use FindMUS [18], a
MUS enumeration tool available for MiniZinc, that extends MARCO to take advantage of the
hierarchical structure present in MiniZinc models. User-provided names for the constraints
and expressions in the model are included in FindMUS’s JSON output, making it easier to
integrate with other tools and present more meaningful MUSes to users.

The downside of such flexibility is practicality: MUS enumeration tools are often imprac-
tical for real-world systems due to the number of possible foreground constraint combinations.
This number can be very large even after removing any redundant constraints added by
the system to speed up solving, and after moving to the background (a) data constraints
assumed to be correct, such as the dimensions of the equipment in Plant Layout, and (b)
underlying constraints that cannot be modified by the user, such as the non-overlap and
the group constraints. These constraints are easily marked in the model using MiniZinc
annotations, and automatically removed or put in the background by our method. This also
increases meaningfulness as it focuses users on the constraints they can change (e.g., the size
of a group), and reduces the number of MUSes pointing to the same problem (e.g., one per
object in the group not fitting in the allocated space).

To further increase the practicality of MUS enumeration tools we have explored three
alternative avenues. The first avenue uses the solution to the soft instance generated by the
soft generator to try to speed up the search for MUSes. To achieve this, the MUS enumerator
collects in set Vars all non-slack variables that occur in at least one constraint with a positive
slack value. It then partitions the original set of constraints by defining the foreground as
the set of constraints that have at least one variable in Vars, and the background as the
remaining set of constraints. Intuitively, this focuses the MUSes on the variables that are
directly involved in the infeasibility. For Plant Layout, Vars corresponds to the objects
in the plant and our system uses the annotations in the MiniZinc model to speed up the
detection of constraints that involve at least one object in Vars.

The second avenue explores the use of the Irreducible Inconsistent Subsystem (IIS)
efficiently computed by some MIP solvers — we use Gurobi [14]. To achieve this, the MUS
enumerator is modified to start each search for a MUS by asking the solver for an IIS, with
the aim of improving performance. Gurobi can report whether the IIS is minimal or not,
and we have modified FindMUS to deal with it accordingly, further shrinking non-minimal
subsets to a MUS before reporting it. The third avenue combines the two previous ones by
allowing the MUS enumerator to take advantage of both soft generation and IIS.
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Figure 4 Conlflict visualisations for the Water Management problem introduced in Section 10.

8 MUSes and MCS Visualiser

As shown in Figure 2, step 16 enables users to review the MUSes found by the MUS
enumerator, and select a correction set (minimal or not, step 17) to execute steps 18-22. To
help users during this selection, we developed three problem-independent ways to visualise
MUSes, each providing different levels of detail and different perspectives on the conflicts
(Figure 1(b) for Plant Layout, and Figure 4 for Water Management, see Section 10).

The most detailed visualisation provides a list of all MUSes found by the algorithm
(2 in Figure 1(b) and 5 in Figure 4(a)). Users can select a MUS in the list to see details
of its conflicting constraints including description, error type, associated elements and (if
the constraint was relaxed) the value of its variables. The user can select one (or more)
constraints from the MUSes in the list to form a (possibly not minimal) correction set. The
selected constraints are used for step 17 in the workflow shown in Figure 2.

The list visualisation is only meaningful when the number of MUSes and/or constraints
in each MUS is small. To increase meaningfulness for large lists, we created a graph
representation (Figure 4(b)) that connects the constraints (coloured dots on the left-hand
side) with their MUSes (green dots in the middle) and their elements (green dots on the
right-hand side). The colour of each constraint dot identifies its type, as described by the
legend appearing in the top-right of the figure. Constraints that occur in the same MUSes
are grouped in a rectangle and linked to those MUSes, significantly reducing the number of
connections and visual clutter.

Users can interact with the graph in two ways. First, if they select a constraint on the
graph, the system highlights with a red frame the constraint and all MUSes linked to it (e.g.,
MUS 2 in Figure 1(b) and MUS 4 and 5 in Figure 4(b)), indicating that all those MUSes will
be resolved if the highlighted constraint, or any constraint in that rectangle, is relaxed. The
system also highlights with a green frame any rectangle linked to the highlighted MUSes,
indicating that selecting constraints in those rectangles is no longer required to resolve the
MUSes. This helps users find a suitable MCS (achieved when all MUSes are highlighted),
which will be used to relax its constraints and find a solution (steps 18-22 in Figure 2). The
second way of interacting with the graph is by deselecting one or more types of constraints in
the legend, indicating the user would prefer not to modify them (e.g., constraint “minimum
distance” in Figure 1(b) and “TRANSFER_MAX?” in Figure 4(b) are greyed out). This
causes the system to remove those constraints from the left-hand side. Note that if the user
deselects too many constraint types, the remaining constraints might not resolve all existing
MUSes. If so, those MUSes are highlighted as a warning to the user.
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The third visualisation is a network (Figure 4(c)) that helps users better understand the
conflicts by focusing on the conflicting elements and their relationships. Nodes in the network
represent constraint elements, while black edges represent relationships among them. The
network can be laid out using force-directed layout or fixed locations. Constraint conflicts
are visualised on top of this network using the same colour codes as those in the MUS graph
visualisation, and drawn either as frames around a node (if the conflict only involves that
node) or as coloured edges (if it involves multiple ones).

9 Experimental Evaluation for Plant Layout

This section aims at evaluating the trade-offs between practicality and flexibility for the
conflict resolution alternatives offered by our method in the context of a real-world application,
as well as their meaningfulness and usefulness.

Benchmarks. We used the Plant Layout’s Ul to create four classes of benchmarks: small (S),
medium (M), large (L) and extra-large (XL). Small benchmarks have between 2 and 5 boxes
and (except for S2) no pipes, medium have 19 boxes and 20 pipes, large have 78 boxes and 66
pipes, and extra-large have 217 boxes and 207 pipes. We then created variations of these four
classes by adding constraints that made them infeasible. Those constraints were carefully
selected to create a representative single conflict of a specific type. In small benchmarks
we evaluated six types of base conflicts using “toy-plants” as a proof of concept to check
that these conflicts could be effectively detected using our approach. For the three larger
classes, we applied four of these base conflicts: 1) a conflict involving minimum-maximum
distance, 2) a conflict involving symmetric placement of equipment, 3) a conflict involving
the relative attachment position of a box, and 4) a conflict involving insufficient group
size for contained boxes. We also created benchmarks with a combination of conflicts. To
reduce the experiment size, we selected four additional conflict combinations of the given
base conflicts: 5) symmetry 4+ minimum-maximum distance, 6) symmetry + attachment
position, 7) symmetry + group size, and 8) all four base conflicts combined. This resulted
in 8 benchmarks for each size class, e.g., M1 for medium size with a minimum-maximum
distance conflict, M5 for a medium size with a combined symmetry + minimum-maximum
distance conflict, and M8 for a medium size with all four base conflicts combined. This in
turn resulted in 30 infeasible benchmarks, whose characteristics are shown in Table 1.

The first two columns show the benchmark size and name. The next fourshow the total
number of constraints in the instances generated in step 4 when the benchmark is initially
solved (empty if MiniZinc detects infeasibility and aborts), in step 10 when it is relaxed
by the soft generator searching for the set of constraints either in an MCS (equation (1) —
denoted SGC) or in its MUSes (equation (2) — denoted SGU), respectively, and in step 8
when calling FindMUS directly (denoted FM). The last four columns show the number of
conflicts in the benchmark (equal to the number of constraints in a minimum MCS), the
number of objects (boxes or pipes) involved in these conflicts, and the type of constraints in
conflict (MnD indicates a minimum distance, MxD a maximum distance, Sym a symmetry
constraint, AttPos the position of an attached box, GrSz a group size, and CtSp the size of
the container space). Note that the last benchmark in the medium, large and extra-large
size (M8, L8 and XL8) contains all the conflicts from the first 4 benchmarks in that size.

Setup. All benchmarks were run in 8 different configurations: the three already introduced
(SGC, SGU and FM) and the combinations FM+IIS, SGC+FM, SGC+FM+IIS, SGU+FM
and SGU4+FM+IIS (IIS denotes Gurobi’s IIS). In addition, all configurations involving
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Table 1 Characteristics of the 30 infeasible benchmarks created for Plant Layout.

#Constraints in #Conflicts| #Objects in | Type of constraints in conflicts
associated instances the conflicts
Bnchm. [Initial[ SGU SGC FM #boxes[#pipes
S1 42 113 174 115 1 2 0|MnD, MxD
. |S2 141 295 434 306 1 3 2|MnD, MxD, Sym
= (S3 99 264 421 250 1 4 0|MnD, MxD, AttPos
(}EJ S4 60 150 223 155 1 3 0|MnD, GrSz
S5 40 107 180 101 1 2 0|MxD
S6 116 364 575 362 1 5 0|MnD, CtSp
M1 | 1,516| 4,105 6,506| 4,241 1 2 0[MnD, MxD
M2 1,524 4,145 6,570| 4,277 1 3 2|MnD, MxD, Sym
£ [M3 1,516| 4,105 6,506| 4,241 1 4 0|MnD, MxD, AttPos
Z(M4 | 1512| 4,083 6472 4,221 1 3 0/MnD, GrSz
o [M5 1,528| 4,167 6,604| 4,297 2 5 2|MnD, MxD, Sym
=|M6 | 1,528 4,167| 6,604| 4,297 2 7 2|MnD, MxD, Sym, AttPos
M7 1,524 4,145 6,570 4,277 2 6 2|MnD, MxD, Sym, GrSz
M8 1,532 4,189 6,638 4,317 4 12 2|MnD, MxD, Sym, AttPos, GrSz
L1 |[10,653| 36,669| 60,754| 35,687 1 2 0|MnD, MxD
L2 |10,657| 36,683| 60,780| 35,699 1 3 6| MnD, MxD, Sym
o|L3 [10,653| 36,669| 60,754| 35,687 1 3 0|MnD, MxD, AttPos
L4 [10,653| 36,665 60,750| 35,683 1 3 0|MnD, GrSz
S L5 |[10,661| 36,705| 60,814| 35,719 2 5 6|MnD, MxD, Sym
L6 |[10,661| 36,705| 60,814| 35,719 2 6 6|MnD, MxD, Sym, AttPos
L7 |10,657| 36,683| 60,780 35,699 2 6 6|MnD, MxD, Sym, GrSz
L8 [10,665| 36,727| 60,848| 35,739 4 11 6|MnD, MxD, Sym, AttPos, GrSz
XL1 |95,285(336,243|554,302| 332,384 1 2 0|{MnD, MxD
XL2 -1334,157|552,240( 329,181 3 5 6(MnD, MxD, Sym
9 XL3 |95,285(336,243|554,302| 332,384 1 2 0|MnD, MxD, AttPos
= | XL4 [93,854|329,875|543,878|326,030 1 4 0|MnD, GrSz
3 [XL5 -1336,387| 554,482 (332,513 4 7 6|MnD, MxD, Sym
= |XL6 -1336,387|554,482(332,513 4 7 6|MnD, MxD, Sym, AttPos
XL7 -1330,019|544,058 (326,159 4 9 6|MnD, MxD, Sym, GrSz
XL8 -1330,063|544,126 (326,199 6 13 6|MnD, MxD, Sym, AttPos, GrSz

FM were run in two modes: finding one MUS and finding all. This is because FindMUS
supports a fast single MUS extraction mode that might also be useful for users. All runs
were performed on an Intel Core i7-8700K (3.70 GHz, 12 cores, 12MB cache) with 32GB
memory using MiniZinc 2.5.5, FindMUS, and Gurobi 9.0.1. Each instance was run on 2 cores
with 2 instances being run in parallel at a time. Time limits for the soft generator (step 13)
and for FindMUS (step 14) were both set at 1/2 hour for small sizes, and 2 hours and 4
hours, respectively, for the other sizes. If reached, SGC and SGU might return unnecessary
constraints, while FM might return non-minimal or not all unsatisfiable subsets.

Results. Tables 2 and 3 show the results. Values are underlined if a timeout was reached.
Table 2 shows the number and total value of positive slack variables, and number of MUSes.
The first two columns show the benchmark size and name. The next four show the number
(#sl) and total value (slack) of positive slack variables returned by SGC and SGU. The last
six show the number of MUSes (#ms) returned by FM, FM+IIS, SGC+FM, SGC+FM+IIS,
SGU+FM, and SGU+FM+IIS, with FM enumerating all MUSes. Table 3 shows the run-
times. The first two columns show the benchmark size and name, and the others show the
times (minutes:seconds) taken by the 8 configurations in two modes: FM computing one
MUS (greyed) and all MUSes.

Discussion. There is no clear winner between SGC and SGU in terms of speed. Both
only time out for the XL benchmarks (except for XL5) with symmetry conflicts (whose
absolute value constraint slows down solving). When there is no timeout, SGC always returns
a minimum MCS, while SGU returns more constraints (those in the associated MUSes),
where partition into MUSes is unknown. If SGU returns many constraints (e.g., XL8), they
can become overwhelming and thus not meaningful. If it does not, they can also be more
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Table 2 Number and total value of positive

slack variables, and number of MUSes.

SGU SGC FM |[FMA+IIS[SGU+FM[SGU+FM+IIS[SGC+FM[SGC+EMFHIIS

Bnchm. [# sl slack |[# sI| slack |# ms| # ms # ms # ms # ms # ms
ST 2] 2,000] 1] 2,000 1 1 1 1 1 1
_|s2 4| 2,321 1| 2,506 5 5 5 5 2 2
(83 4| 500 1| 500 1 1 1 1 1 1
E 2| s00| 1| 00| 1 1 1 1 1 1
S5 2| 1,000 1| 1,000 1 1 1 1 1 1
S6 4| 3,000/ 1| 3,000 1 1 1 1 1 1
M1 2] 2,000] 1| 2,000 1 1 1 1 1 1
M2 4| 2,321 1| 2,506 5 5 5 5 2 2
£|M3 4| 500 1| 500 1 1 1 1 1 1
.5 M4 2| 500 1| 500 1 1 1 1 1 1
S| M5 5| 4,000 2| 4,506 6 6 6 6 3 3
= | M6 5| 2,821 2| 3,006 6 6 6 6 3 3
M7 5| 2,821 2| 3,006 6 6 6 6 3 3
MS8 7| 5,000| 4| 5,506 8 8 8 8 5 5
L1 2 50] 1 50 1 1 1 1 1 1
L2 9| 2,182 1| 1,000| 24 0 24 0 0 2
o |L3 3| 750 1| 500 2 2 2 2 2 2
80| 1,4 2| 450 1| 450 1 1 1 1 1 1
S|Ls 9| 2,232 2| 1,050 4 4 4 4 9 8
L6 11| 2,848| 2| 1,500 1 1 1 1 1 1
L7 10| 2,632 2| 1,450 0 0 25 0 0 0
L8 14| 3,348| 4| 2,000 2 2 2 2 2 2
XL1 2[ 1,500 1] 1,500 1 1 1 1 1 1
XL2 | 11[40,097| 4[22,850 4 4 4 4 4 4
o |XL3 3|71,950| 1| 1,500 2 2 2 2 1 1
5| XL4 3| 1,550 1| 1,300 3 5 0 3 1 1
Q XL5 | 12]41,516| 5|24,350 5 5 5 5 5 5
XL6 | 15|52,661| 5(25,056 3 7 5 5 5 5
XL7 | 12|41,316| 555,213 4 8 5 5 7 7
XL8 | 15(44,316| 733,871 6 5 6 7 7 7

Table 3 Run-time results for Plant Layout. Times are given in minutes:seconds.

SGU | SGC FM FM 4 1IS SGU+FM |SGU+FM+IIS| SGC+FM |SGC+FM+IIS

Bnchm allms| 1 ms [all ms| 1 ms [allms| 1 ms [ allms | 1 ms [all ms| 1 ms | all ms
S1 <0:01 <0:01|<0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01

—. |52 <0:01 <0:01|<0:01| 0:12]| <0:01| <0:01| 0:02 0:12] <0:01| <0:01| 0:02 0:04
EIEE <0:01 <0:01|<0:01| <0:01| <0:01| <0:01| <0:01 0:02| <0:01| <0:01| <0:01| <0:01
UE) S4 <0:01 <0:01|<0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01
S5 <0:01 <0:01|<0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01| <0:01
S6 <0:01 <0:01] 0:07| 0:07| <0:01| <0:01| 0:07 0:08| <0:01| <0:01| 0:07 0:07
M1 | <0:01 0:05| 0:06| 0:08{ 0:04| 0:05] 0:08 0:09| 0:04| 0:05] 0:07 0:08
M2 | <0:01 0:16| 0:21 1:18| 0:05| 0:20| 0:22 1:26| 0:06| 0:10| 0:24 0:47
£[M3 | <0:01 0:11| 0:19| 0:26| 0:06| 0:10] 0:25 0:29| 0:07| 0:10] 0:30 0:33
-_5 M4 | <0:01 0:03| 0:11| 0:12] 0:03| 0:05| 0:15 0:16| 0:04| 0:05| 0:15 0:17
o |M5 | <0:01 1:43| 0:14 2:58 0:05 1:41 0:17 2:52 0:14 1:34 0:26 2:09
2|M6 | <0:01 1:34| 0:18| 3:01| 0:06| 1:25| 0:24 2:47| 14:40| 15:05| 15:04| 16:39
M7 | <0:01 0:34| 0:09| 1:32| 0:04| 0:40] 0:11 1:43| 0:06| 0:27| 0:13 1:07
M8 | <0:01 188:11| 0:22{194:46| 0:05[149:17| 0:24| 149:36| 0:15(127:01| 0:36| 128:07
L1 0:33 5:37| 1:17| 5:49| 5:59| 29:10| 3:14| 18:37| 5:19| 28:22| 3:03| 18:29
L2 1:27 242:28| 5:36(283:42| 15:40(241:44| 66:14| 247:35| 79:24|312:51|138:15| 327:31

o | L3 0:30 6:40| 0:59| T7:29| 7:14| 17:10| 3:03| 14:00| 2:51| 11:33| 3:22| 12:46
o014 0:28 2:15] 1:48| 3:12| 4:03| 6:00| 3:34 5:37| 2:38| 3:26| 2:30 3:29
_‘j L5 6:59 240:06| 1:39(277:59| 8:36|275:57| 9:15| 246:59(121:31|244:26| 6:07| 280:16
L6 3:30 294:54| 1:01[254:35| 4:33(250:05| 4:47| 284:20| 6:38(261:16| 7:10| 345:39
L7 2:16 254:31| 2:37(245:25| 14:45|243:57| 4:31| 298:03| 84:48|262:09| 11:28| 279:48
L8 4:34 252:43| 1:04(289:09| 5:23(253:20| 5:47| 275:15| 2:30|251:14| 2:53| 305:01
XL1 | 02:51 153:16| 19:52(118:35[100:25[127:54| 52:48| 78:51| 84:36| 97:36| 51:49| 63:47
XL2 [121:25 240:27| 04:36(250:00/130:20(361:41|127:08| 362:49|142:09|164:39|143:03| 157:57

9 XL3 [106:23 251:49| 31:51(251:38/195:51(303:19|161:01| 278:49| 36:20| 42:20| 89:29| 101:34
5| XL4 | 08:15 240:33| 12:48(241:44| 83:19(248:53| 35:15| 250:03| 19:15| 21:20| 28:28| 29:34
= | XL5 | 83:46 240:57| 04:35(244:25| 87:00|324:24| 89:42| 333:00(138:54|378:22|139:06| 363:55
= |XL6 |123:23 240:18| 04:18(241:00(|135:45|362:48(126:39| 364:03(162:16|384:46|148:24| 389:58
XL7 (121:43 240:10| 04:23(241:16|132:23(362:02|129:04| 377:29(246:26|414:04|253:35| 420:07
XL8 [122:01(254:37| 18:46(240:31| 05:09|240:07|127:28364:21(127:14| 361:48|258:48|495:23|258:23| 494:42
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meaningful (may give more context to the failure) and flexible (give more choice). However,
if the MCS returned by SGC is meaningful enough, SGC is more useful, as it always provides
the minimum number of constraints that must be changed. This already shows the value of
having different approaches available.

As expected, enumerating all MUSes using FM is significantly slower than using SGU or
SGC. However, if FM does not time out, it is more flexible than SGC (gives a single MCS)
and SGU (might miss constraints), and more meaningful, as it provides the full context while
partitioning constraints into MUSes (as opposed to SGU). Also, using FM to find a single

MUS is usually fast. Users could repeatedly do this to restore instances with several MUSes.

The combination of FM with SGU is not as promising as expected: the possible reduction
in flexibility due to only looking at the variables in the constraints returned by SGU only
pays off with speed-ups for M3, M8 and XL1. The rest are actually slower. The combination
with SGC is better in terms of speed-ups (M2, M3, M8, XL1 to XL4), but might lose MUSes
(M2 and M8). SGU and SGC improve FM’s usefulness by providing users with slack values.

These results, and our own experience as users, suggest the following strategies for Plant
Layout. Less experienced users, those modifying an unfamiliar model, and those with enough
time would benefit from using FM on its own and in combination with SGC to get results
that are useful (via SGC’s slacks), flexible (FM’s MUSes) and meaningful (FM+SGC’s MUS
reduction). Experienced users are likely to find SGU’s results useful, fast and (together with
their knowledge and experience) meaningful enough to restore feasibility, compared to being
flexible with longer run-times and possible timeouts for very large instances.

10 Second Real-World Example: Water Management

Managing a city’s water supply requires a complex set of decisions regarding the city’s
storage/service reservoirs, tunnels and water-transfer pipelines. The work of [15] describes
an optimisation system designed to do this by creating a plan that outlines the anticipated
operations in the water supply system for years ahead, and identifies for each month the
expected water to be sourced, stored, moved from one reservoir to another, or released to
the rivers. The resulting operating plan is built to (a) satisfy water demand, environmental
and network capacity constraints, (b) minimise the risk of uncontrolled releases from the
water harvesting sites, and (c) minimise the cost of transferring water between reservoirs.

Data. The Ul provides a predefined water supply network and historical stream-flows,
where the user can set (a) the reservoir capacities, (b) planning horizon length and, for each
month, (¢) the water demands (d) min/max water levels per reservoir and (e) min/max
water flow per pipeline. In addition, for the selected planning horizon, users must specify the
water levels of each reservoir at the beginning of the period and the anticipated stream-flow
derived from past data. This allows users to generate operating plans for different rain inflow
scenarios, storage distributions (both spatial and seasonal) and planning horizons.

Underlying constraints. Each reservoir is constrained to maintain its water level within
the specified range for each month, and to release water to waterways to meet any specified
environmental requirements. Each pipeline (i.e., the water transfer link between reservoirs,
from a reservoir to the city, or from a reservoir to the river) cannot transfer more water than
its maximum capacity. No redundant constraints were added to the model.
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Table 4 Characteristics of the 14 infeasible benchmarks created for Water Management.

#Constraints in #Conflicts | Type of constraints in conflicts
associated instances
Bnchm.[Initial[ SGU | SGC | FM

Long
=
B

62,506 74,604 80,208 80,166
L5 |62,506|74,604|80,208(80,166
L6 |62,505|74,603|80,207(80,165
L7 |62,506|74,604|80,207|80,166

MnV, MxV, MnT, MxT
MnV, MxV, MnR, MxR
MnT, MxT, MnR, MxR
All three conflicts

S1 |12,532(14,094|16,139|16,006 1 MnV, MxV
S2 |12,531(14,993|16,138(16,095 1 MnT, MxT
+| 83 [12,53114,993|16,138/16,095 1 MnR, MxR
S| s4 |12,532|14,994|16,138|16,096 2 MnV, MxV, MnT, MxT
@ 85 |12,532(14,994|16,138|16,096 2 MnV, MxV, MnR, MxR
S6 |12,531(14,993(16,137|16,095 2 MnT, MxT, MnR, MxR
S7 |12,532(14,994|16,137|16,096 3 All three conflicts
L1 |62,506|74,604]80,209]80,166 1 MnV, MxV
L2 |62,505|74,603|80,208(80,165 1 MnT, MxT
L3 |62,505|74,603|80,208|80,165 1 MnR, MxR
2
2
2
3

User constraints. When generating an operating plan, users can modify the network
capacity constraints (a, d and e mentioned under “Data” above) to consider events such as
the closure of a pipeline or a reduction in the water level at a reservoir during a given period
due to maintenance.

Restoring feasibility. The number of network capacity-related parameters exposed to users is
high and increases with the planning horizon length. Thus, users can easily cause infeasibility
by setting conflicting values. For example, setting a low maximum water level at a reservoir
can result in excess water that needs to be transferred out, which then conflicts with the
limit set on a pipeline.

10.1 Experimental Evaluation for Water Management

Benchmarks. We built two classes of benchmarks: with short-term operating plans (12-
month) and with long-term ones (60-month). All are built on the same distribution network,
which has 11 reservoirs, 9 transfer nodes and 46 connections. We then created seven
benchmarks for each class by modifying the operational parameters that made them infeasible.
Three of the benchmarks have a single base conflict: 1) a conflict involving minimum-maximum
reservoir volume, 2) a conflict involving minimum-maximum pipeline limits, and 3) a conflict
involving minimum-maximum release limits. The remaining four benchmarks are created
from combinations of these base conflicts.

Table 4 shows the characteristics of the resulting 14 infeasible benchmarks. Columns 1-7
follow those of Table 1. The last column shows the type of constraints in conflict, where MnV
indicates a constraint on the minimum water volume to be maintained in a reservoir, MxV a
constraint on the maximum reservoir volume, MnT a minimum transfer volume constraint,
MxT a maximum transfer volume constraint, MnR a constraint on the minimum volume
released to the rivers, and MxR a constraint on the maximum release volume.

Setup and Results. We used the same setup as for Plant Layout. The results, shown in
Tables 5 and 6, follow the same structure as that of Tables 2 and 3.

Discussion. There is no timeout in any of the instances and configurations tried. Interest-
ingly, short-term instances have more slacks/MUSes than long-term ones. This is because
the chosen conflicts have more impact in the short-term benchmarks and can be resolved in
many more ways than in the long-term ones.
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Table 5 Number and total value of positive slack variables, and number of MUSes.

SGU SGC FM |FM+IIS|SGU+FM|SGU+FM+IIS|SGC+FM |[SGC+FM-+IIS

Bnchm. [# sl| slack [# sl| slack [# ms| # ms # ms # ms # ms # ms
S1 3[18,976 1[19,236 7 7 7 7 7 7
S2 2| 3,317 1| 5,267 4 4 3 3 3 3
+[S3 1 240 1 240 1 1 1 1 1 1
_g S4 5(22,293 2(24,503 19 19 16 16 16 16
185 3[19,216 2(19,476 8 8 8 8 8 8
S6 3| 3,557 2| 5,507 5 5 4 4 4 4
S7 5|22,533 3]24,743 20 20 17 17 17 17
L1 1 800 1 800 1 1 1 1 1 1
L2 1 620 1 620 1 1 1 1 1 1
o0| L3 1 310 1 310 1 1 1 1 1 1
g L4 2| 1,420 2| 1,420 2 2 2 2 2 2
=1L5 2| 1,110 2| 1,110 2 2 2 2 2 2
L6 2 930 2 930 2 2 2 2 2 2
L7 3| 1,730 3| 1,730 3 3 3 3 3 3

Table 6 Run-time results for Water Management. Times are given in minutes:seconds.

SGU | SGC FM FM + IIS | SGU+FM [SGU+FM+IIS| SGC+FM [SGC+FM+I1IS

Bnchm. 1 ms|all ms|1 ms|all ms|1 ms[all ms|1 ms| all ms |1 ms|all ms|[1l ms| all ms
S1 <0:01{<0:01| 0:06| 0:22] 0:03| 0:09] 0:05| 0:27] 0:04 0:13] 0:05| 0:16| 0:04 0:09
S2 <0:01|<0:01| 0:13| 0:38| 0:03| 0:19| 0:07| 0:28| 0:04 0:15| 0:07| 0:17| 0:04 0:09
+£1S3 <0:01|<0:01| 0:07| 0:08]| 0:03| 0:05| 0:06| 0:08] 0:04 0:06| 0:06| 0:08| 0:04 0:06
Ss4 <0:01|<0:01| 0:14| 1:42| 0:05| 0:42| 0:06| 1:10| 0:04 0:33| 0:08| 0:56| 0:04 0:23
n S5 <0:01|<0:01| 0:06| 0:29| 0:04| 0:12| 0:06| 0:26| 0:05 0:13| 0:06| 0:27| 0:04 0:13
S6 <0:01|<0:01| 0:13| 0:51| 0:03| 0:26] 0:14| 0:35| 0:04 0:20| 0:08| 0:23| 0:04 0:12
S7 |<0:01{<0:01| 0:06| 2:05| 0:04| 1:00| 0:06| 1:25| 0:06 0:45| 0:06| 1:05| 0:04 0:31
L1 0:06| 0:05] 0:33| 0:41] 0:17| 0:27| 0:32| 0:42| 0:23 0:28] 0:32| 0:36| 0:22 0:26
L2 0:06| 0:05| 0:35| 0:43] 0:17| 0:27| 0:38| 0:50| 0:24 0:34| 0:35| 0:51| 0:22 0:32
o|L3 0:07| 0:05| 0:30| 0:41] 0:17| 0:26| 0:43| 0:48| 0:25 0:35] 0:39| 0:44| 0:22 0:32
|14 0:06| 0:05| 0:34| 1:12| 0:18| 0:41| 0:38| 1:15| 0:24 0:47] 0:35| 1:11| 0:23 0:46
= |L5 0:06| 0:05| 0:34| 1:16| 0:18| 0:40| 0:35| 1:09| 0:24 0:46| 0:43| 1:13| 0:23 0:45
L6 0:06| 0:05| 0:30| 1:05| 0:17| 0:39| 0:42| 1:19| 0:24 0:47] 0:38| 1:15| 0:23 0:46
L7 0:06| 0:05| 0:32| 1:45| 0:17| 0:59| 0:38| 1:48| 0:24 1:07| 0:41| 1:40]| 0:23 1:06

SGC is slightly faster than SGU, but this is only noticeable in the long-term benchmarks.

SGC always returns a minimum MCS, while SGU returns more constraints in short-term
instances but an MCS in long-term ones because the total amount of violations required
by an MCS happens to be the minimum. In all cases, SGC produces the same number of
constraints as the number of conflicts introduced. Both FM and FM+IIS, enumerate all
MUSes, but FM+1IIS is faster. Out of the four combined approaches (SGU+IIS, SGU+FM,
SGU+FM++IIS, SGC+FM+IIS), SGC+FM+IIS is always fastest, and is even faster than
FM+IIS for many short-term benchmarks. All four combinations produce the same number
of MUSes for the same benchmark. While they often take longer to enumerate all MUSes
than FM and FM+IIS, they produce fewer MUSes in some benchmarks (S2, S4, S6, S7).

Like for Plant Layout, using FM/FM+IIS to enumerate all MUSes is slower than using
SGU and SGC. However, it is more flexible and provides the full context; especially with the
visualiser, where users can easily see the connections between the conflicting constraints.

Based on the above results and our experience as users, we recommend using FM+IIS or
SGC+FM-+IIS for this problem, which we have already used to find conflicts for our industry
partner very quickly. This might be surprising, as SGC is faster and always points to the
correct reservoirs and/or connections. However, all configurations are fast and there are
often multiple ways to resolve conflicts in this problem, one of which could be the desired
way to fix them, and this could only be found by enumerating all the MUSes.
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11 Conclusion

This paper addresses the need for decision systems to provide meaningful, useful, practical
and flexible conflict resolution techniques to be actually deployed by its target users.

To be meaningful an interface must present application concepts rather than software
constructs. While requiring a problem-specific interface, the ability to interact with a solution,
change it and get feedback about the infeasibility of the change, is problem-independent.
We propose a generic explanation tool that shows which user constraints conflict with each
other, describes the conflicts (Figures 1 and 4), and avoids overwhelming users by supporting
diagnosis at different levels of detail through the annotation of the underlying constraints,
and by letting users determine the amount of information shown (MCS/MUSes).

To be useful the system must also show users how to resolve conflicts. We propose a
combination of conflict resolution methods that not only identify the key conflicting decisions,
but also reveal the amount of change needed to resolve them. We do this by both reducing
the set of infeasible constraints to a minimal set, and finding the smallest total relaxation of
the constraints that can restore feasibility.

Theoretical approaches to detecting feasibility do not scale to real-world applications,
as finding all minimal unsatisfiable sets (MUSes) is often computationally impractical for
them. A key contribution of this paper to practicality and flexibility is the ability for users to
control infeasibility detection, as shown in Figure 2, so that useful explanations are returned
in the right amount of time (from a few seconds to overnight, depending on the need).

Usability is a slippery and often underestimated concept. The novel features we propose
result from a collaborative process with industry users, who were initially sceptical and/or
confused about the software, and now want to see the solutions it produces, understand
the best trade-offs between the different objectives and learn why some seemingly obvious
decisions turn out to be far from optimal.

This work identifies a few future research directions, and gives some initial indication of
what can be achieved. For instance, we developed a method to soften logical constraints.
This can be extended to other constraint types, e.g., CP global constraints. The presented
conflict visualisations are helpful but require user evaluation to prove their usefulness.
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