
Improving Local Search for Structured SAT
Formulas via Unit Propagation Based Construct
and Cut Initialization
Shaowei Cai #

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology,
University of Chinese Academy of Sciences, Beijing, China

Chuan Luo #

School of Software, Beihang University, Beijing, China

Xindi Zhang #

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology,
University of Chinese Academy of Sciences, Beijing, China

Jian Zhang #

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology,
University of Chinese Academy of Sciences, Beijing, China

Abstract

This work is dedicated to improving local search solvers for the Boolean satisfiability (SAT) problem
on structured instances. We propose a construct-and-cut (CnC) algorithm based on unit propagation,
which is used to produce initial assignments for local search. We integrate our CnC initialization
procedure within several state-of-the-art local search SAT solvers, and obtain the improved solvers.
Experiments are carried out with a benchmark encoded from a spectrum repacking project as well
as benchmarks encoded from two important mathematical problems namely Boolean Pythagorean
Triple and Schur Number Five. The experiments show that the CnC initialization improves the local
search solvers, leading to better performance than state-of-the-art SAT solvers based on Conflict
Driven Clause Learning (CDCL) solvers.

2012 ACM Subject Classification Theory of computation → Randomized local search

Keywords and phrases Satisfiability, Local Search, Unit Propagation, Mathematical Problems

Digital Object Identifier 10.4230/LIPIcs.CP.2021.5

Category Short Paper

Supplementary Material Software (Source Code): https://github.com/caiswgroup/CNC-LS
archived at swh:1:dir:f7ef44ee596e5f008dea01ef7e3c1ee47c8b93dc

Funding This work was supported by Beijing Academy of Artificial Intelligence (BAAI), and Youth
Innovation Promotion Association, Chinese Academy of Sciences (No. 2017150), as well as the Key
Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-
JSC036).

© Shaowei Cai, Chuan Luo, Xindi Zhang, and Jian Zhang;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 5; pp. 5:1–5:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaoweicai.cs@gmail.com
https://orcid.org/0000-0003-1730-6922
mailto:chuanluophd@outlook.com
https://orcid.org/0000-0001-5028-1064
mailto:dezhangxd@163.com
https://orcid.org/0000-0001-5541-7194
mailto:zj@ios.ac.cn
https://orcid.org/0000-0001-8523-3505
https://doi.org/10.4230/LIPIcs.CP.2021.5
https://github.com/caiswgroup/CNC-LS
https://archive.softwareheritage.org/swh:1:dir:f7ef44ee596e5f008dea01ef7e3c1ee47c8b93dc;origin=https://github.com/caiswgroup/CNC-LS;visit=swh:1:snp:cd63ecc19fd0a2b6a72425a45911c7316bbabd84;anchor=swh:1:rev:d9122607522ea757b3412f1cff247b9db6c79c55
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Improving LS for Structured SAT Formulas via UP Based CnC Initialization

1 Introduction

Given a Boolean formula, the Boolean Satisfiability problem (SAT) determines whether the
variables of the formula can be assigned in such a way as to make the formula evaluate to
TRUE. In the SAT problem, Boolean formulas are usually presented in Conjunctive Normal
Form (CNF), i.e., F =

∧
i ∨jℓij . SAT is the first NP-complete problem. Besides, SAT solvers

have shown great success in many applications [29], including bounded model checking [10],
program verification [11], and mathematical theorem proving [17].

Two popular methods for SAT are conflict driven clause learning (CDCL) [33] and local
search. The CDCL based solvers evolve from the DPLL backtracking procedure [13] and
combine reasoning techniques. The reasoning techniques in CDCL solvers, particularly unit
propagation (UP) and clause learning, play a critical role in the good performance of CDCL
solvers on application instances. Local search is an incomplete method and its process can
be viewed as a random walk in the search space [19, 27]. Local search SAT solvers begin
with an initial complete assignment and iteratively modify the assignment, until a model is
found or a resource limit (usually the time limit) is reached [19, 28, 26]. Local search solvers
are usually much simpler and lighter than CDCL ones. Indeed, they are probably the most
lightweight SAT solvers. Local search has proved very effective for solving many NP-hard
combinatorial problems. However, it is known that local search solvers are not effective
as CDCL solvers on solving structured SAT instances, particularly those from real-world
applications.

This work aims to improve local search solvers for structured SAT instances. Specifically,
we propose a construct-and-cut (CnC) method for generating initial assignments for local
search, which aims to produce diverse complete assignments as consistent as possible. The
CnC method iteratively performs assigning procedures, which are also called construction
tries, based on unit propagation and heuristics. In each construction try, the algorithm starts
from an empty assignment and extends it to a complete assignment. Also, the algorithm
records the best solution found (with fewest empty clauses) so far and its number of empty
clauses which serves as an upper bound. In the subsequent tries, once the number of empty
clauses reaches the upper bound, the try is cut off.

We use this CnC method to improve three state-of-the-art local search SAT solvers, by
replacing the original initialization method with the CnC method.We conduct experiments
with three important benchmarks, one of which arises from a recent real-world project about
spectrum repacking [32] and the others consist of instances encoded from two important
mathematical problems namely Boolean Pythagorean Triple [17] and Schur Number Five [16].
Experiment results show that, the CnC method brings obvious improvements to the local
search solvers. Particularly, one of the CnC-enhanced local search solver outperforms modern
SAT solvers based on CDCL approach on the three benchmarks.

2 Technical Background

2.1 Preliminary Definitions and Notations
Given a set of Boolean variables {x1, x2, ..., xn}, a literal is either a variable xi or its
negation xi. A conjunctive normal form (CNF) formula F is a conjunction of clauses (i.e.,
F = C1 ∧C2 ∧ ...∧Cm), where a clause is a disjunction of literals (i.e., Ci = ℓi1 ∨ℓi2 ∨ ...∨ℓij).
Alternatively, a CNF formula can be viewed as a set of clauses, and a clause can be viewed
as a set of literals. For a formula F , we denote the set of variables in F by Var(F), and the
number of literals whose corresponding variable is xi is denoted by ∆F (xi).

S. Cai, C. Luo, X. Zhang, and J. Zhang 5:3

For a literal ℓ, its corresponding variable is denoted by ℓ.var, and its phase, denoted by
ℓ.phase, is 1 if ℓ is positive and 0 if ℓ is negative. A literal can be viewed as an ordered pair
of a variable and its phase, i.e., ℓ = (ℓ.var, ℓ.phase). For a literal ℓ, we denote by ℓ the literal
of opposite phase. A clause containing only one literal is a unit clause. We denote ℓ ∈ Ci if ℓ

is a literal in clause Ci.
For a formula F , an assignment α is a mapping V ar(F) → {0, 1}. If α maps all variables

to a Boolean value, we say it is a complete assignment. For a variable xi ∈ V ar(F) and an
assignment α, α[xi] is the value of variable xi under α. Given an assignment α, we say that
a literal ℓ is true if α[ℓ.var] is equal to ℓ.phase. A clause is satisfied if it has at least one
true literal, and unsatisfied if all the literals in the clause are false literals. By convention
the empty clause □ is always unsatisfiable, and represents a conflict. SAT is the problem of
deciding whether a given CNF formula is satisfiable.

The process of conditioning a CNF formula F on a literal ℓ amounts to replacing every
occurrence of literal ℓ by the constant true, replacing ℓ by the constant false, and simplifying
accordingly. The result of conditioning F on ℓ is denoted by F |ℓ and can be described
succinctly as follows: F |ℓ = {c/{ℓ}|c ∈ F, ℓ /∈ c}. Note that F |ℓ does not contain any literal
ℓ or ℓ. When we assign a variable x with a value v, we can simplify the formula accordingly,
and the simplified formula is denoted as F |(x,v).

Unit propagation on a CNF formula ϕ works as follows: First, we collect all unit clauses
in ϕ, and then assume that variables are set to satisfy these unit clauses. If the unit clause
{xi} appears in the formula, we set xi to true. Also, if the unit clause {xi} appears in the
formula, we set xi to false. We then condition the formula on these settings. The iterative
application of this rule until no more unit clause remains is called unit propagation (UP).

2.2 Local Search for SAT

When solving a SAT formula by local search, the search space is organized as a network, in
which each position represents a complete assignment and two positions are adjacent if they
are neighbors. A commonly used neighborhood relation N maps assignments to their set of
Hamming neighbors, i.e., assignments that differ in exactly one variable. Typically, a local
search algorithm for SAT starts from a complete assignment, and flips a variable iteratively
to search for a satisfying assignment. In this work, we focus on improving local search for
SAT by generating good initial assignments.

3 Related Works and Discussions

This work utilizes a construct-and-cut method based on unit propagation (UP) to produce a
good quality initial assignment for local search SAT solvers. Unit propagation is a simple
form of reasoning, and has been used to improve local search solver previously.

Some local search solvers use UP to simplify the formula before the search [21, 8]. More
complicated preprocessors have also been developed [31]. These preprocessing techniques are
used to simplify the formula. If the formula cannot be simplified, they just do nothing.

Some algorithms use UP during local search. UnitWalk [18] prefers to perform UP if
possible in each local search step, and only when UP is not applicable a normal local search
step is executed. QingTing [22] is an improved version of UnitWalk with more efficient
implementation and also switches between UnitWalk and a normal local search algorithm.
EagleUP [15] also exploits UP during local search, where UP is performed only when the
algorithm is stuck in local optima.

CP 2021

5:4 Improving LS for Structured SAT Formulas via UP Based CnC Initialization

Although UP has been previously combined with local search, these previous works either
use UP only as preprocessor, or use UP too heavily. These solvers usually improve local search
on crafted and random instances, but no good result is reported on solving instances from
real-world applications. Most previous local search solvers, including CCAnr [8], Sattime [21]
and ProbSAT [4], generate the initial assignment randomly, while a recent local search solver
YalSAT [5] also utilizes information such as the best found assignment in the last round to
produce the initial assignment. On the other hand, UP-based initialization has been used in
local search for MaxSAT [7, 9, 25]. However, in these works, the initialization does not use
pruning techniques.

Another relevant direction is using CDCL to boost local search solvers. An incomplete
hybrid solver hybridGM [3] calls CDCL search around local minima with only one unsatisfied
clause. SATHYS [1] performs local search and calls a CDCL solver when it is stuck in
local optima. However, these methods do not show improvement over the CDCL solvers on
application benchmarks, although they show better performance than local search on crafted
instances and better performance than CDCL solvers on random instances.

4 A Novel Initialization Method for Local Search SAT Solvers

This section presents the construct-and-cut (CnC) method, which can be used to produce
good quality assignments for local search SAT solvers. The CnC algorithm consists of
individual construction procedures, each of which constructs a complete assignment by
assigning variables one by one.

4.1 The Construct-and-Cut Method
Before presenting the details of the CnC algorithm, we first introduce the key data structures
used in the algorithm.

Set U : it stores all unit clauses, noting that a unit clause has only one literal. U is
updated during the search. Newly generated unit clauses are put into U , and a unit clause is
removed from U after it is picked to perform unit propagation.

Vector value: this vector records the assigned value for each variable. For each variable
x, value(x) has 4 possible values {−2, −1, 0, 1}, as explained below:

value(x) = −2 means unit clauses x and x appear in F simultaneously (may be due to
different UP operations).
value(x) = −1 means x is unassigned.
value(x) = 0 means x is assigned the value 0 (false).
value(x) = 1 means x is assigned the value 1 (true).

The CnC method is depicted in Algorithm 1. The algorithm consists of individual
construction procedures (also called tries), and the number of tries to be executed is controlled
by a parameter cnc_times. We use #(□) to denote the number of empty clauses in the
formula that the CnC algorithm is currently dealing with, which is the cost of the current
assignment. The cost of the best assignment found (e.g. the minimum cost) in previous
construction procedures is denoted as cost∗. In the beginning, CnC initializes cost∗ as the
number of clauses in the input formula, and stores all unit clauses (if any) in U .

In each try, the algorithm works on a copy of the input formula ϕ, which is denoted as F .
In the beginning of each try, value(x) is initialized as -1 for each variable (line 5), indicating
that all variables are unassigned. Then, a loop is executed until there is no unassigned
variable; moreover, the loop is terminated if #(□) reaches cost∗.

S. Cai, C. Luo, X. Zhang, and J. Zhang 5:5

Algorithm 1 CnC(ϕ, cnc_times).
Input: A CNF formula ϕ, cnc_times
Output: An assignment α∗ of variables in ϕ

1 cost∗ ← + the number of clauses in F ;
2 for i← 1 to cnc_times do
3 F ← ϕ;
4 U ← {all unit clauses in ϕ};
5 ∀x ∈ V ar(F), value(x)← −1;
6 while ∃ unassigned variables do
7 if U ̸= ∅ then
8 ℓ← GetUL(U);
9 x← ℓ.var;

10 if value(x) = −1 then
11 value(x)← ℓ.phase;
12 else
13 value(x)← a random value from {0,1};

14 else
15 x← GetUnassignedVar();
16 value(x)← a random value from {0,1};
17 Simplify F accordingly;
18 foreach newly generated unit clause r do
19 if r /∈ U & r /∈ U then
20 U ← U ∪ {r};
21 else if r ∈ U then
22 value(r.var)← −2;

23 if #(□) ≥ cost∗ then break;
24 if #(□) < cost∗ then
25 α∗ ← value; cost∗ ← #(□);

26 return α∗;

If U is not empty, one literal ℓ is extracted from U via the function GetUL to do unit
propagation. Let us denote x = ℓ.var. We know that x could not have been assigned (either
to 0 or 1). This is because if x is assigned, literals of x would not appear in the formula
and U . Thus, value(x) is either -1 or -2. If value(x) = −1 (e.g., x is unassigned), then x

is assigned the value of ℓ.phase to satisfy the unit clause ℓ; if value(x) = −2, x is assigned
randomly. We would like to mention that, most variables are assigned by UP in the CnC
algorithm.

If U is empty, then an unassigned variable is chosen by the GetUnassignedVar function,
and is assigned a random value.

Whenever a variable x is assigned a value v, the formula F is simplified accordingly. The
result of simplifying F on a literal ℓ can be described succinctly as F |ℓ = {c/{ℓ}|c ∈ F, ℓ /∈ c}
[12]. Moreover, for any newly generated unit clause r, if neither r nor r is in U , then r is
added into U ; if r is already in U , we set value(r.var) to -2 to indicate the conflicting status.

4.2 Main Functions
There are two functions that need to be specified in the CnC algorithm, and they are
presented below.

CP 2021

5:6 Improving LS for Structured SAT Formulas via UP Based CnC Initialization

Algorithm 2 Local Search with CnC.

Input: A CNF formula ϕ

Output: A satisfying assignment of ϕ if found
1 while not reach time limit do
2 α0 ← CnC(ϕ, cnc_times);
3 if α0 satisfies ϕ then return α0;
4 α← LocalSearch(α0, StepLimit);
5 if α satisfies ϕ then return α;
6 return “UNKNOWN”;

GetUL: the function picks a unit clause in U to perform UP. In the first construction
procedure, the function simply picks a random unit clause to perform UP. For the following
construction procedures, the function utilizes a strategy as follows. The idea is to employ
assigning orders as distant as possible in different tries, so as to exploit diverse reason chains,
among which a good one may be touched. Our heuristic is based on a diversification property.
For a variable, we use prev_assign_step(x) to denote the step number in which it was
assigned in the previous try of CnC. Our heuristic prefers to pick a variable with the largest
prev_assign_step value.

GetUnassignedVar: the function picks an unassigned variable to assign value. We use
the same heuristic as in GetUL. In the first construction procedure, a randomized strategy is
used, and in other procedures a diversification strategy is employed to pick the one with the
largest prev_assign_step values.

An important implementation detail is that we use a sampling method for approximately
implementing the heuristic of picking a variable with the largest prev_assign_step value.
We randomly pick a certain number (which is fixed to 10 according to the preliminary
experiments) of candidate variables and pick the one with the largest prev_assign_step

value. So, we do not need to sort the variables or scan all of them in each iteration. This
allows the linear complexity of our method, as picking a variable to assign can always be done
in O(1) time, and the unit propagation in one iteration can be done in ∆ϕ(xi) in the worst
case, where xi is the chosen variable. Since

∑n
i=1 ∆ϕ(xi) = L(ϕ), the worst case complexity

of one CnC try is bounded by O(L(ϕ)), where L(ϕ) is the length of the formula ϕ.

5 Integrating CnC to Local Search SAT Solvers

In this section, we apply the CnC method to improve local search SAT solvers. The framework
of a local search SAT solver equipped with CnC is depicted in Algorithm 2. As it shows,
the solver calls CnC to produce an initial assignment, which is handed to a local search
algorithm for further improvements, trying to find a satisfying assignment. Local search SAT
solvers may have different restart criterion, which is based on a limit on the steps. So, for
each time the solver restarts, an initial assignment is produced by CnC and then modified
by a local search process.

We apply the CnC method to three state-of-the-art local search SAT solvers for structured
formulas, including Sattime [20], ProbSAT [4] and CCAnr [8]. Sattime is the only example
that a local search solver beats all CDCL solvers in the crafted track of a SAT competition
(in 2011) [20]. ProbSAT is a local search solver based on probability distribution and won
the random track in SAT Competition 2013; it is an improved version of another local search
solver Sparrow [2], which also uses probability distribution functions. CCAnr is a local search
designed with the purpose of solving non-random (structured) SAT instances, and has been
found effective on some application benchmarks [14].

S. Cai, C. Luo, X. Zhang, and J. Zhang 5:7

We also note that a recent local search solver YalSAT performs well on a wide range
of benchmarks, winning the random track of SAT Competition 2017, and is able to solve
some hard crafted and application instances in SAT competitions [5]. Nevertheless, YalSAT
utilizes the Lubby restarting scheme [24] and has very frequent restart in the early stage.
This makes it ineffective to integrate CnC into YalSAT, due to the heavy overhead.

6 Experiments

To evaluate the effectiveness of our CnC method, we compare state-of-the-art local search
solvers with their CnC enhanced versions on three important benchmarks of structured SAT
formulas. Also, we compare the best CnC-enhanced local search solver against state-of-the-art
CDCL solvers.

6.1 Benchmarks

Our experiments are conducted with three important benchmarks, including instances
encoded from a real-world project and two important mathematical problems.
FCC: Recently, SAT solvers have been used by the US Federal Communication Commission

(FCC) for spectrum repacking in the context of bandwidth auction which resulted in
about 7 billion dollar revenue [32]. The SAT instances from this project are available
on line 1 [32]. This benchmark contains 10000 instances, 9482 of which are known to be
satisfiable and 121 unsatisfiable, while the satisfiability of the remaining 397 instances
are unknown. As local search solvers such as UPLS are unable to prove unsatisfiability,
we discard the unsatisfiable instances, leading to 9879 instances in this benchmark.

PTN: This benchmark consists of instances encoded from a mathematical problem named
Boolean Pythagorean Triples. This problem used to be a long-term open mathematical
problem and recently has been solved by SAT techniques, resulting in the currently largest-
sized mathematical proof [17]. Marijn et al. proved the answer to Boolean Pythagorean
Triples (PTN) problem is NO, by encoding PTN into SAT instances, including both
satisfiable and unsatisfiable ones, and solving them. Our PTN benchmark contains only
the satisfiable instances.2 There are 23 instances in this benchmark.

SN5: The instances in this benchmark are encoded from a mathematical problem called
Schur Number Five (SN5) and its variants. [16] proved the solution by encoding the
century-old problem into SAT instances, and the proof of the solution is about two
petabytes in size. Our SN5 benchmark contains 6 satisfiable instances.3

6.2 Solvers

The CnC method is implemented into the local search solvers in C++. For a local search
solver A, the solver which integrates CnC is denoted as A+cnc in our experiments. The
cnc_times parameter is set to 20, which is tuned on a training set consisting of 100 random
FCC instances, half PTN instances and all SN5 instances.

1 https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz
2 https://www.cs.utexas.edu/~marijn/ptn/
3 https://www.cs.utexas.edu/~marijn/Schur/

CP 2021

https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz
https://www.cs.utexas.edu/~marijn/ptn/
https://www.cs.utexas.edu/~marijn/Schur/

5:8 Improving LS for Structured SAT Formulas via UP Based CnC Initialization

Table 1 Results of local search solvers and CnC-enhanced local search solvers on all benchmarks.

Benchmark CCAnr CCAnr+cnc ProbSAT ProbSAT+cnc Sattime Sattime+cnc YalSAT

#SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2
FCC (9879) 7878 2091.6 8110 1868.2 5407 4577.7 5477 4506.5 7054 2911.8 7078 2900.0 7136 2881.1
PTN (23) 13 4718.0 23 127.0 5 7885.0 20 2161.7 9 6790.7 18 2945.3 14 4490.3
SN5 (6) 2 7364.5 4 4969.5 0 10000.0 0 10000.0 0 10000.0 1 8708.7 0 10000.0

Table 2 Results of CCAnr+cnc and its CDCL competitors on all benchmarks.

CCAnr+cnc CaDiCaL CaDiCaL_sat Maple_LCM_Dist MapleCOMSPS Kissat Kissat_sat

#SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2
FCC (9879) 8110 1868.2 7674 2326.9 7783 2211.9 7788 2183.2 7783 2183.0 7949 2042.8 8163 1819.1
PTN (23) 23 127.0 17 3274.2 17 3007.4 0 10000.0 1 9639.0 19 2215.7 21 1402.5
SN5 (6) 4 4969.5 0 10000.0 0 10000.0 0 10000.0 0 10000.0 0 10000.0 1 9130.7

The solvers Sattime and ProbSAT are downloaded from the website of SAT Competition
2013. For CCAnr, we used the latest version which is available online4. We include YalSAT in
our experiment, which is downloaded from the website of SAT Comptition 2017.5 Additionally,
we tested UnitWalk [18] – a typical local search solver using unit propagation.6

We also compare the best local search solver obtained by CnC (namely CCAnr+cnc)
against four state-of-the-art CDCL solvers, including MapleCOMSPS [23], Maple_LCM_Dist
[30], CaDiCaL [5] and Kissat (including Kissat_default and Kissat_sat) [6]. MapleCOMSPS
won the gold medal of Main Track of SAT Competition 2016 and the silver medal of Main
Track of SAT Competition 2017, while Maple_LCM_Dist won the gold medal of Main Track
of SAT Competition 2017 and the winner of the main track of SAT Competition 2018 is also
a version of Maple_LCM_Dist. CaDiCaL solved the most instances in the Main Track of
SAT Competition 2019. Particularly, CaDiCaL solved the most satisfiable instances in the
track. Also, Kissat_sat won the gold medal of Main Track of SAT Competition 2020. All
these CDCL solvers are downloaded from the website of SAT Competitions.

6.3 Experiment Results

All experiments were conducted on a cluster of computers with 2.10GHz Intel Xeon CPUs
and 94GB RAM under the operating system CentOS. For each instance, each solver was
performed one run, with 5000 CPU seconds as cutoff. For each solver for each benchmark,
we report the number of solved SAT instances denoted “#SAT” and the penalized run
time denoted “PAR2” (as used in SAT Competitions), where the run time of a failed run is
penalized as twice the cutoff time. The results in bold indicates the best performance for a
benchmark.

Table 1 presents the results of the local search solvers on the three benchmarks. UnitWalk
performs much worse than other solvers (solving 4597 FCC instances and none of the other
two benchmarks) and is not listed in the table. The CnC method improves local search
solvers, particularly on the PTN instances. CCAnr+cnc gives the best performance on all
the benchmarks. It solves 8110 out of 9879 FCC instances, 4 out of 6 SN5 instances and all
PTN instances, showing significantly superiority over all other local search solvers.

4 https://lcs.ios.ac.cn/~caisw/Code/CCAnr-1.1.zip
5 https://baldur.iti.kit.edu/sat-competition-2017/solvers/
6 https://logic.pdmi.ras.ru/~arist/UnitWalk/unitwalk3.tar.gz

https://lcs.ios.ac.cn/~caisw/Code/CCAnr-1.1.zip
https://baldur.iti.kit.edu/sat-competition-2017/solvers/
https://logic.pdmi.ras.ru/~arist/UnitWalk/unitwalk3.tar.gz

S. Cai, C. Luo, X. Zhang, and J. Zhang 5:9

We compare CCAnr+cnc with state-of-the-art CDCL solvers. Table 2 shows the results
of CCAnr+cnc and its CDCL competitors. The best CDCL solver is Kissat_sat, which
outperforms other CDCL solvers on all the benchmarks. Encouragingly, CCAnr+cnc is
able to solve more instances than the CDCL solvers on all the benchmarks, with only one
exception – CCAnr+cnc performs a bit fewer FCC instances than Kissat_sat. Particularly,
CCAnr+cnc solves four SN5 instances, while Kissat_sat solves only one SN5 instance and
other CDCL solvers fail to solve any of them. Note that these benchmarks are encoded from
real-world applications or mathematical problems of importance. Our results show that local
search solvers can be complementary to CDCL solvers in applications.

We also calculate the overhead of CnC in SLS+CnC solvers. Averaging over all instances,
the run time of CnC occupies about 1% run time of the whole process.

7 Conclusions

This work presented an effective method named construct-and-cut (CnC for short) for
generating initial assignments for local search SAT solvers. Our experiments on three
benchmarks from real-world project and mathematical problems showed that, the CnC method
can significantly improve the performance of local search SAT solvers on the benchmarks.
More encouragingly, one CnC-enhanced local search solver CCAnr+cnc outperformed state-
of-the-art CDCL solvers on these benchmarks. The source code of CCAnr+cnc is available
at https://github.com/caiswgroup/CNC-LS.

References
1 Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Sais. Boosting local

search thanks to CDCL. In Proceedings of LPAR 2010, pages 474–488, 2010.
2 Adrian Balint and Andreas Fröhlich. Improving stochastic local search for SAT with a new

probability distribution. In Proceedings of SAT 2010, pages 10–15, 2010.
3 Adrian Balint, Michael Henn, and Oliver Gableske. A novel approach to combine a SLS- and a

DPLL-solver for the satisfiability problem. In Proceedings of SAT 2009, pages 284–297, 2009.
4 Adrian Balint and Uwe Schöning. Choosing probability distributions for stochastic local search

and the role of make versus break. In Proceedings of SAT 2012, pages 16–29, 2012.
5 Armin Biere. Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT competition

2016. In Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, pages
44–45, 2016.

6 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT competition 2020. In Proceedings of
SAT Competition 2020: Solver and Benchmark Descriptions, pages 50–53, 2020.

7 Shaowei Cai, Chuan Luo, Jinkun Lin, and Kaile Su. New local search methods for partial
MaxSAT. Artificial Intelligence, 240:1–18, 2016.

8 Shaowei Cai, Chuan Luo, and Kaile Su. CCAnr: A configuration checking based local search
solver for non-random satisfiability. In Proceedings of SAT 2015, pages 1–8, 2015.

9 Shaowei Cai, Chuan Luo, and Haochen Zhang. From decimation to local search and back: A
new approach to MaxSAT. In Proceedings of IJCAI 2017, pages 571–577, 2017.

10 Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking
using satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

11 Byron Cook, Daniel Kroening, and Natasha Sharygina. Cogent: Accurate theorem proving for
program verification. In Proceedings of CAV 2005, pages 296–300, 2005.

12 Adnan Darwiche and Knot Pipatsrisawat. Complete algorithms. In Handbook of Satisfiability,
pages 99–130. IOS Press, 2009.

13 Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

CP 2021

https://github.com/caiswgroup/CNC-LS

5:10 Improving LS for Structured SAT Formulas via UP Based CnC Initialization

14 Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, and Youssef Hamadi. Stochastic
local search for satisfiability modulo theories. In Proceedings of AAAI 2015, pages 1136–1143,
2015.

15 Oliver Gableske and Marijn Heule. EagleUP: Solving random 3-SAT using SLS with unit
propagation. In Proceedings of SAT 2011, pages 367–368, 2011.

16 Marijn J. H. Heule. Schur number five. In Proceedings AAAI 2018, pages 6598–6606, 2018.
17 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the Boolean

Pythagorean triples problem via cube-and-conquer. In Proceedings of SAT 2016, pages 228–245,
2016.

18 Edward A. Hirsch and Arist Kojevnikov. UnitWalk: A new SAT solver that uses local
search guided by unit clause elimination. Annals of Mathematics and Artificial Intelligence,
43(1):91–111, 2005.

19 Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004.

20 Chu Min Li and Yu Li. Satisfying versus falsifying in local search for satisfiability. In
Proceedings of SAT 2012, pages 477–478, 2012.

21 Chu Min Li and Yu Li. Description of Sattime 2013. In Proceedings of SAT Competition 2013
: Solver and Benchmark Descriptions, pages 77–78, 2013.

22 Xiao Yu Li, Matthias F. M. Stallmann, and Franc Brglez. A local search SAT solver using an
effective switching strategy and an efficient unit propagation. In Proceedings of SAT 2003,
pages 53–68, 2003.

23 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for SAT solvers. In Proceedings of SAT 2016, pages 123–140, 2016.

24 Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas algorithms.
Information Processing Letters, 47(4):173–180, 1993.

25 Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: An efficient local search
algorithm for weighted partial maximum satisfiability. Artificial Intelligence, 243:26–44, 2017.

26 Chuan Luo, Shaowei Cai, Kaile Su, and Wei Wu. Clause states based configuration checking
in local search for satisfiability. IEEE Transactions on Cybernetics, 45(5):1014–1027, 2015.

27 Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, and Kaile Su. CCLS: An efficient local
search algorithm for weighted maximum satisfiability. IEEE Transactions on Computers,
64(7):1830–1843, 2015.

28 Chuan Luo, Shaowei Cai, Wei Wu, and Kaile Su. Double configuration checking in stochastic
local search for satisfiability. In Proceedings of AAAI 2014, pages 2703–2709, 2014.

29 Chuan Luo, Holger H. Hoos, and Shaowei Cai. PbO-CCSAT: Boosting local search for
satisfiability using programming by optimisation. In Proceedings of PPSN 2020, pages 373–389,
2020.

30 Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause
minimization approach for CDCL SAT solvers. In Proceedings of IJCAI 2017, pages 703–711,
2017.

31 Norbert Manthey. Coprocessor 2.0 – A flexible CNF simplifier – (tool presentation). In
Proceedings of SAT 2012, pages 436–441, 2012.

32 Neil Newman, Alexandre Fréchette, and Kevin Leyton-Brown. Deep optimization for spectrum
repacking. Communications of the ACM, 61(1):97–104, 2018.

33 João P. Marques Silva and Karem A. Sakallah. GRASP – A new search algorithm for
satisfiability. In Proceedings of ICCAD 1996, pages 220–227, 1996.

	1 Introduction
	2 Technical Background
	2.1 Preliminary Definitions and Notations
	2.2 Local Search for SAT

	3 Related Works and Discussions
	4 A Novel Initialization Method for Local Search SAT Solvers
	4.1 The Construct-and-Cut Method
	4.2 Main Functions

	5 Integrating CnC to Local Search SAT Solvers
	6 Experiments
	6.1 Benchmarks
	6.2 Solvers
	6.3 Experiment Results

	7 Conclusions

