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Abstract
Recent developments in applying and extending Boolean satisfiability (SAT) based techniques have
resulted in new types of approaches to pseudo-Boolean optimization (PBO), complementary to the
more classical integer programming techniques. In this paper, we develop the first approach to
pseudo-Boolean optimization based on instantiating the so-called implicit hitting set (IHS) approach,
motivated by the success of IHS implementations for maximum satisfiability (MaxSAT). In particular,
we harness recent advances in native reasoning techniques for pseudo-Boolean constraints, which
enable efficiently identifying inconsistent assignments over subsets of objective function variables
(i.e. unsatisfiable cores in the context of PBO), as a basis for developing a native IHS approach to
PBO, and study the impact of various search techniques applicable in the context of IHS for PBO.
Through an extensive empirical evaluation, we show that the IHS approach to PBO can outperform
other currently available PBO solvers, and also provides a complementary approach to PBO when
compared to classical integer programming techniques.
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1 Introduction

Declarative approaches are central in efficiently solving various types of NP-hard real-
world optimization problems. Indeed various constraint optimization paradigms have been
developed, ranging from mixed integer linear programming (MIP) [32] to finite-domain
constraint optimization [34] and Boolean satisfiability (SAT) based maximum satisfiability
(MaxSAT) [3] and its extensions to e.g. optimization modulo theories and MaxSMT [11, 41].
Each of the paradigms offer distinct features in terms of the declarative language used
and the underlying algorithmic approach, ranging from branch-and-cut in MIP to the
unsatisfiability-based search through iterative applications of SAT solvers in MaxSAT.

Pseudo-Boolean (PB) constraints [36] constitute an interesting constraint language for
modelling and solving optimization problems. Also known as 0-1 linear constraints, stated as
linear inequalities with integer coefficients over binary variables, pseudo-Boolean constraints
constitute a central fragment of integer programming. However, PB constraints can also
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be viewed as natural generalizations of conjunctive normal form clausal constraints [5, 36].
Taking this view, effective specialized decision procedures have been developed for PB by
lifting search techniques from the realm of SAT solving, boosted with additional inference
techniques which lift the theoretical efficiency of PB solvers beyond that of standard SAT
solvers [24, 10, 42, 12]. For a recent overview of such conflict-driven pseudo-Boolean solving,
we refer the reader to [9]. Recent work on extending these techniques from decision to
optimimization problems by harnessing search techniques from both core-guided MaxSAT
solving [21] and linear programming [20] have been shown to hold promise as an alternative
approach to pseudo-Boolean optimization (PBO) complementing the more classical MIP
solving techniques [33].

Building on these recent developments, in this work we develop an alternative approach to
PBO drawing from both advances in PB solving and IP solving. In particular, motivated by
the success of the so-called implicit hitting set (IHS) approach to MaxSAT [16, 17, 18, 37] as
a current state-of-the-art MaxSAT solving approach alongside the core-guided approach, we
develop a first instantiation of an IHS PBO solver. While the general IHS solving framework
has been shown to be applicable in a range of settings [18, 19, 28, 39, 27, 25, 38], we are not
aware of earlier work studying the applicability of IHS in the context of PBO. For realizing a
competitive IHS PBO solver, we harness recent advances in native reasoning techniques for
pseudo-Boolean constraints, which enable efficiently identifying inconsistent assignments over
subsets of objective function variables [20], i.e., unsatisfiable cores in the context of PB. As the
other major component, we employ integer programming and linear programming for hitting
set computations over iteratively accumulated unsatisfiable cores as well as for integrating
bounds-based inference techniques [14, 2]. We provide results from an extensive empirical
evaluation of our implementation of the IHS approach to PBO, comparing its performance
with a range of earlier developed specialized solvers for PBO as well as a commercial MIP
solver, and evaluate the impact of the various search techniques of the empirical performance
of the IHS PBO solver. It turns out that, overall, our IHS PBO solver outperforms earlier
advances in specialized PBO solving, and shows complementary performance depending on
the problem domains considered with respect to both other specialized PBO solvers and a
commercial MIP solver.

2 Preliminaries

A binary variable x has the domain {0, 1}. A literal l over a variable x is either x or x ≡ (1−x).
A pseudo-Boolean (PB) constraint C is a 0-1 integer linear inequality

∑
i aili ≥ B over

literals li. The set of variables appearing in C is var(C). We assume w.l.o.g. that all PB
constraints are in normalized form, i.e., that each variable appearing in it is distinct and that
the coefficients ai and bound B are non-negative integers. We use l = 0 as shorthand for the
constraints l ≥ 0 and −l ≥ 0 (rewritten in normal form). An assignment τ : var(C)→ {0, 1}
is extended to literals by τ(l) = 1 − τ(l). An assignment τ satisfies C (τ(C) = 1) if∑

i aiτ(li) ≥ B. When convenient we treat an assignment τ over a set X of variables as a
set of literals τ = {x | x ∈ X ∧ τ(x) = 1} ∪ {x | x ∈ X ∧ τ(x) = 0}.

A PB formula F = {C1, . . . , Cn} is a set of PB constraints. We denote by var(F ) the
set of variables appearing in the constraints of F . An assignment τ : var(F ) → {0, 1} is
a solution to F if it satisfies all constraints in F . We use τ(F ) = 1 to denote that τ is a
solution to F ; τ(F ) = 0 denotes that τ is not a solution to F .

An instance F of the pseudo-Boolean optimization problem (PBO) consists of a PB
formula constraints(F) and an objective function OF ≡

∑
i wili where each li is a literal

over a variable xi ∈ var(constraints(F)) and wi its non-negative integer weight. When
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clear from context, we use F and constraints(F) interchangeably and drop the superscript
from OF . We will sometimes abuse notation and treat O as either a set of literals or a set of
weight-literal tuples, i.e., write l ∈ O and (w, l) ∈ O to obtain either literals or weight-literal
pairs from O. The set of variables appearing in O is var(O). The value of O under an
assignment τ : var(O) → {0, 1} is O(τ) =

∑
i wiτ(li). A solution τ to F is optimal if it

minimizes O(τ) over all solutions to F . The PBO problem consists of finding an optimal
solution to a given PBO instance.

The approach to computing optimal solutions of PBO instances presented in this work
makes use of so called core constraints and hitting sets.

▶ Definition 1. A constraint C =
∑

i aili ≥ B is a core constraint of F if: i) var(C) ⊂
var(OF ) and ii) (τ(F) = 1)→ (τ(C) = 1) holds for all solutions to F .

In words, a core constraint of an instance F is a constraint over the variables in the objective
function that is satisfied by any solution to F .

▶ Example 2. Let 0 < r < n be two integers and consider the instance Fn,r with the
constraints {

∑n
i=1 bi ≥ r} and objective function O ≡

∑n
i=1 bi. Now var(F) = {b1, . . . , bn}

and any assignment τ that assigns at least r variables in var(F) to 1 is a solution to F .
The assignment τo that sets τo(bj) = 1 for j = 1 . . . r and τo(bk) = 0 for k = r + 1 . . . n is an
optimal solution to Fn,r. The cost of τo (and thus the cost of Fn,r) is O(τo) = O(Fn,r) = r.
The constraint

∑n
i=1 bi ≥ t is a core constraint of F for all t = 1 . . . r, as is C =

∑
b∈S b ≥ 1

for any set S ⊂ O of literals containing at least n− r + 1 variables. To see why C is a core
constraint, notice that any solution τ to F sets at least r of the n literals in O to 1 will also
set at least one literal in S to 1 as well.

Given a set C of core constraints of an instance F , we say that an assignment γ : var(O)→
{0, 1} that satisfies C is a hitting set of C. A hitting set γo is optimal if O(γo) ≤ O(γ) holds
for all hitting sets of C. The term hitting set stems from an important special case of core
constraints, namely, those of form C =

∑
l ≥ 1. Such constraints are satisfied by setting at

least one l ∈ C to 1, thus hitting that constraint. For our purposes, a central property of
hitting sets is that they provide lower bounds on O(F).

▶ Proposition 3. Let γo, C and F be as above. Then O(γo) ≤ O(F).

Proof. Let τ be an optimal solution of F . Then τ(C) = 1 by the definition of a core constraint
and O(γo) ≤ O(τ) = O(F) by the optimality of γo. ◀

3 Implicit Hitting Sets for Pseudo Boolean Optimization

Algorithm 1 details the PBO-IHS algorithm for computing an optimal solution to a PBO
instance F . In short, the algorithm works by iteratively refining an upper and lower bound
on O(F), represented in the pseudocode by UB and LB, respectively. The algorithm also
maintains a witness for the upper bound in the form of an assignment τbest for which
O(τbest) = UB. The search terminates when LB = UB at which point τbest is returned.

During initialization (Lines 2–5) the lower bound LB and set C of core constraints of
F are initialized to 0 and ∅, respectively. Additionally, an upper bound UB (as well as
its witness τbest) is obtained by invoking a PB solver via the function PB-Solve on the
constraints of F . The call to PB-Solve returns a boolean sat? indicating whether or not the
constraints in F are satisfiable and a solution of F if they are. Note that, if the constraints
of F are not satisfiable, then there do not exist any solutions to F , so PBO-IHS terminates.
Afterwards the main search loop is started.

CP 2021
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Algorithm 1 The base IHS algoritm for PBO.

1 PBO-IHS(F)
Input: A PBO instance F
Output: An optimal solution τ

2 (τbest , sat?)← PB-Solve(F)
3 if not sat? then
4 return “no feasible solutions”
5 UB ← O(τbest); LB ← 0; C ← ∅
6 while true do
7 γ ← Min-Hs(O, C)
8 LB ← O(γ)
9 if UB = LB then break ;

10 C ← C ∪ Extract-Cores(γ, UB, τbest ,F);
11 if UB = LB then break;
12 return τbest

Min-Hs(O, C):
minimize:

∑
(w,l)∈O

w · l

subject to:

C ∀C ∈ C

l ∈ {0, 1} ∀(w, l) ∈ O

return:
{l | l set to 1 in opt. soln}∪
{l | l set to 0 in opt. soln}

(a) An IP for computing an optimal
hitting set over a set of core constraints

Figure 1 The implicit hitting set approach to PBO.

Algorithm 2 Extracting multiple core constraints from a single hitting set.

1 Extract-Cores(γ, UB, τbest ,F)
2 A = {l | l ∈ O ∧ γ(l) = 0};
3 Cn ← ∅;
4 while true do
5 (sat?, κ, τ)← PB-Solve-A

(
F ,A);

6 if (sat?) then
7 if O(τ) < UB then τbest ← τ ; UB ← O(τ);
8 return Cn;
9 else Cn ← Cn ∪ {

∑
l∈κ l ≥ 1 | l ∈ κ}; A ← A− κ;

During each iteration of the loop (Lines 6–11), the lower bound is refined by computing an
optimal hitting set γ over C on Line 8. In our implementation, the hitting set is computed by
solving the integer program Min-Hs detailed in Figure 1a. If the new LB matches the known
UB the algorithm terminates on Line 9. Otherwise, the upper bound UB and set C are next
refined by the function Extract-Cores detailed in Algorithm 2. After refining the upper
bound and extracting new core constraints, the termination criteria is again checked. If the
new UB matches the current LB, the algorithm terminates. Otherwise, the loop reiterates.

Extract-Cores computes new core constraints of F by invoking a PB solver on the
constraints of F under a set A of assumptions. The inputs to Extract-Cores is the current
hitting set γ of C, the upper bound UB, its witness τbest and the constraints of F . The
function initialises a set A to contain all literals in O set to 0 by γ. In other words, initially
the set A contains all literals of O that do not incur cost in γ. A set Cn of new core constraints
is also initialized to ∅. New core constraints are then computed by invoking a PB solver
via the function PB-Solve-A. The function takes as input a set F of constraints and a set
A of assumptions and then solves the formula F ∪ {l = 0 | l ∈ A}. There are two options,
either the formula is satisfiable (sat? is true), or it is not (sat? is false). In the first case,
the call to PB-Solve-A returns a solution τ to F that sets τ(l) = 0 for all l ∈ A. Then O(τ)
is compared to UB which is updated if needed. Afterwards Extract-Cores terminates and
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returns the set Cn of new core constraints found. In the second case, κ ⊂ A is a set of literals
for which F ∪ {l = 0 | l ∈ κ} is also unsatisfiable. This implies that

∑
l∈κ l ≥ 1 is a core

constraint of F so it is added to Cn. The literals in κ are then removed from A and the loop
reiterated.

The following theorem establishes the correctness of PBO-IHS.

▶ Theorem 4. Given an input PBO instance F PBO-IHS terminates and returns an optimal
solution τ to F .

Proof. (Sketch) To show that τ is optimal we note that O(τ) = O(γ) for an optimal hitting
set γ over a set C of core constraints of F , which by Proposition 3 implies O(τ) ≤ O(F).

To show that PBO-IHS terminates, we first show that each call to Extract-Cores ter-
minates. This follows from each invocation of PB-Solve-A either resulting in termination
of Extract-Cores, or elements being removed from A and the fact that, by the check on
Line 2, the call PB-Solve-A(F , ∅) returns satisfiable.

For the final part of the argument, we say that a hitting set γ returned on Line 7 is
feasible if PB-Solve-A(F , {l | l ∈ O ∧ γ(l) = 0}) is satisfiable, otherwise it is infeasible. We
note that, as soon as a feasible hitting set γ is computed by Min-Hs, PB-Solve-A will find a
solution τ for which O(τ) = O(γ) = LB in the first iteration of Extract-Cores and PBO-IHS
will terminate. As there only are a finite number of possible hitting sets, we thus only need
to show that a fixed infeasible hitting set γI can be computed at most once by Min-Hs. This
follows from the fact that γI being infeasible implies that the invocation of Extract-Cores
will add (at least) one new core constraint

∑
l∈κ l ≥ 1 for some κ ⊂ O \ {l | γ(l) = 1} into

the set C. Thus γI will not be a hitting set in subsequent iterations. ◀

We end this section with an example demonstrating the execution of PBO-IHS.

▶ Example 5. Invoke PBO-IHS on the instance F5,2 from Example 2 with n = 5 and r = 2.
Assume that the first solution obtained on on line 2 is τbest = {b1, b2, b3, b4, b5}. The initial
upper bound is set to UB = O(τbest) = 4. In the first iteration of the search loop, there are
no core constraints to satisfy. As such, the first call to Min-Hs returns γ = {b1, b2, b3, b4, b5}.
As O(γ) = 0, the lower bound LB is not improved and the algorithm moves on to invoke
Extract-Cores. The set A is initialized to {b1, b2, b3, b4, b5}. The first call to PB-Solve-A
returns unsatisfiable. There are a number of subsets of the assumptions that could be
returned, let κ = {b1, b2, b3, b4} be the one obtained. Before the next call, the set A is refined
to {b5} and the core constraint

∑4
i=1 bi ≥ 1 is added to Cn. The next call returns satisfiable,

returning for example the solution τ = {b1, b2, b3, b4, b5}. The solution has O(τ) = 3 so
the upper bound and τbest are updated before Extract-Cores terminates. At this point
UB = 3 ̸= 0 = LB so PBO-IHS does not terminate.

In the next iteration, the call to Min-Hs is done with C = {
∑4

i=1 bi ≥ 1}. Assume the call
returns γ = {b1, b2, b3, b4, b5}. The lower bound LB is now updated to 1 and the function
Extract-Cores is again invoked. This time around, the first call to PB-Solve-A is done with
A = {b2, b3, b4, b5}. The first call is unsatisfiable, the only subset of assumptions that can be
returned is κ = {b2, b3, b4, b5}. The next call to PB-Solve-A will return satisfiable. Assume
that this time a solution τ = {b1, b2, b3, b4, b5} is returned. The solution has O(τ) = 2 so the
upper bound is again updated.

At this point, PBO-IHS has found an optimal solution of F5,2. However, since UB = 2 >

1 = LB, the algorithm does not terminate. Informally speaking, the algorithm has found
an optimal solution, but not proven its optimality. The “proof” of optimality is obtained
once Min-Hs returns a hitting set γ with O(γ) = 2, which in turn happens after enough

CP 2021
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core constraints have been extracted for C = {(b1 + b2 + b3 + b4 ≥ 1), (b1 + b2 + b3 + b5 ≥
1), (b1 + b2 + b4 + b5 ≥ 1), (b1 + b3 + b4 + b5 ≥ 1), (b2 + b3 + b4 + b5 ≥ 1)}. In other words for
each bi C should contain at least one constraint in which bi does not appear. Then Min-Hs
returns a hitting set γ with O(γ) = 2, which updates LB = 2 and allows the algorithm to
terminate.

4 Search Techniques and Refinements

We move on to describing a number of refinements and additional heuristics to PBO-IHS.
We will later on empirically evaluate the impact of each of the techniques on the runtime
performance of PBO-IHS.

Many of the refinements we consider are based on techniques first proposed for the IHS
algorithm in the context of MaxSAT. These are motivated by the fact that, in order for
PBO-IHS to terminate, the lower bound LB needs to be set to the optimal cost O(F) of the
instance F that is being solved. This in turns means that the Min-Hs subroutine should
compute a hitting set γ for which O(γ) = O(F). In fact, by adapting a well known result from
MaxSAT, we can show that there are families of instances on which PBO-IHS as presented in
Section 3 requires an exponential number of core constraints from Extract-Cores in order
to terminate.

▶ Proposition 6 (Adapted from [16]). For every even n ∈ N there exists a PBO instance Fn

for which Extract-Cores needs to extract Ω(2n) core constraints before PBO-IHS terminates.

Proof. (Sketch) Let r = n/2 and Fn = Fn,r from Example 2 and, following similar reasoning
as in [16] in the context of MaxSAT, to show that in order for Min-Hs to compute a hitting set
γ with O(γ) = n/2 = O(Fn,r), Extract-Cores needs to extract at least one core constraint
of form

∑
l∈S l ≥ 1 for each subset S ⊂ O with n− r + 1 literals.

More precisely, if there exists a subset Sp ⊂ O with n − r + 1 elements for which(∑
l∈Sp

l ≥ 1
)

/∈ C, then the solution γ = {l | l ∈ Sp} ∪ {l | l /∈ Sp} is a hitting set over C
that has O(γ) = n− (n− r + 1) = r−1 < r = O(Fn,r). As a consequence, the minimum-cost
hitting set γ computed by Min-Hs will have O(γ) < O(Fn,r) and the algorithm will not
terminate. In other words, Extract-Cores will need to extract at least

(
n

r+1
)

core constraints
before Min-Hs computes a hitting set γ with O(γ) = O(Fn,r). ◀

In light of Proposition 6 we expect any technique for deriving more core constraints of an
instance to improve on the empirical performance of PBO-IHS. In this work, we consider the
following techniques.

4.1 Constraint Seeding
In constraint seeding, the input instance F is scanned for constraints that only contain
variables that appear in the objective function. Such constraints trivially satisfy the second
requirement of Definition 1 and as such are core constraints of F . Any such constraints
are added to C prior to starting the main search loop (Lines 6-11 of Algorithm 1). While
a similar technique is employed in MaxSAT solving, in the context of PBO we can show
that constraint seeding can have a significant effect on the number of core constraints that
PBO-IHS needs to extract before termination.

▶ Example 7. Consider again the instance F5,2 from Example 2. On this instance constraint
seeding is able to detect the core constraint C =

∑5
i=1 bi ≥ 2 and add it to C. Assume that the

first solution τbest obtained on line 2 is {b1, b2, b3, b4, b5} implying an initial UB of 4. In the
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Algorithm 3 Computing multiple core constraints with weight-aware core extraction.

1 Extract-Cores-WCE(γ, UB, τbest ,F)
2 Cn ← ∅; W ← ∅;
3 for (w, l) ∈ O do
4 if γ(l) = 1 then W(l) = 0;
5 else W(l) = w;
6 while true do
7 (sat?, κ, τ)← PB-Solve-A

(
F , {l ∈ O | W(l) > 0});

8 if (sat?) then
9 if O(τ) < UB then τbest ← τ ; UB ← O(τ);

10 return Cn;
11 else
12 Cn ← Cn ∪ {

∑
l∈κ l ≥ 1 | l ∈ κ};

13 wκ = minl∈κ{W(l)};
14 for l ∈ κ do W(l)←W(l)− wκ;

first iteration of the search loop, the core constraint C added by seeding results in the hitting
set γ computed on Line 7 assigning at least two variables to 1. Assume γ = {b1, b2, b3, b4, b5}.
The LB is then refined to 2 and the function Extract-Cores invoked. In the first iteration
of Extract-Cores, the function PB-Solve-A is invoked with A = {b3, b4, b5}. The result is
satisfiable and the function returns the assignment τ = {b1, b2, b3, b4, b5}. Since O(τ) = 2
the UB is then updated and search terminated.

The example combined with Proposition 6 implies the following.

▶ Proposition 8. For every even n ∈ N there exists a PBO instance Fn on which the
Extract-Cores subroutine of PBO-IHS extracts Ω(2n) cores before termination if constraint
seeding is not used and no cores if seeding is used.

We observe an interesting connection between constraint seeding and abstract cores, a
recently proposed improvement to the IHS algorithm for MaxSAT [6]. Abstract cores are
a compact representation of a large number of ordinary core constraints. More specifically,
an abstraction variable ab.c[k] defined over a set of n literals ab ⊂ O that all have the
same coefficient in O has the definition ab.c[k] ↔

∑
l∈ab l ≥ k, i.e., the linear constraints∑

l∈ab l−k ·ab.c[k] ≥ 0 and
∑

l∈ab l−n ·ab.c[k] < k. Let Abs be a set of abstraction variables.
An abstract core constraint C is a linear constraint for which var(C) ⊂ var(O) ∪Abs that
is satisfied by any assignment that satisfies both F and the definitions of the abstraction
variables. Each such constraint containing an abstraction variable ab.c[k] corresponds to(

n
(n−k+1)

)
(non-abstract) core constraints of form

∑
l∈C,l ̸=ab.c[k] l +

∑
l∈abk

l ≥ 1 where
abk ⊂ ab is any subset containing n− k + 1 variables.

A central motivation for abstract cores in the context of MaxSAT is that the IHS
algorithm for MaxSAT needs to extract an exponential number of cores when solving the
CNF translation of the instance presented in Example 2. As demonstrated by Example 7,
the technique of constraint seeding in PBO already allows avoiding the need to extract a
large number of core constraints on this specific instance.

CP 2021
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4.2 Weight-Aware Core Extraction
Weight-aware core extraction (WCE), first proposed in the context of core-guided MaxSAT
solving in [7], is a technique for extracting more core constraints from a single hitting set
by using information provided by the coefficients of the objective variables. The idea has
previously been explored in the context of PBO under the name independent cores in [21].
Here we employ WCE for the first time in the context of IHS.

Algorithm 3 details Extract-Cores-WCE, the computation of new core constraints with
WCE. Given an instance F and a hitting set γ, the procedure initializes a weight W(l) for
each objective function literal l ∈ O. The weight of l equals its coefficient in O if γ(l) = 0 and
0 otherwise. Each call to PB-Solve-A is then performed with a set of assumptions containing
all literals for which W(l) is not 0. Note specifically that the first set of assumptions will
be same with and without employing WCE. After a subset κ of assumptions is obtained
from the PB oracle, the weight of each literal l ∈ κ is lowered by wκ, the minimum weight
among all literals in κ. Importantly, this lowers the weight of at least one literal to 0, thus
guaranteeing the eventual termination of Extract-Cores-WCE.

The intuition underlying WCE is that it allows for extracting not only a (variable) disjoint
set of core constraints from each hitting set, but also core constraints whose variables intersect
on a subset containing literals with large coefficients. The following example demonstrates
how WCE can decrease the number of hitting sets that the IHS algorithm needs to compute
before termination.

▶ Example 9. Consider an instance F = {(b1 + bN ≥ 1), (b2 + bN ≥ 1), . . . , (bn + bN ≥ 1)}
with O =

∑n−1
i=1 b1 + nbN . Invoke Extract-Cores (Algorithm 2) on F with γ = ∅. In

the first iteration, PB-Solve-A is invoked with A1 = {b1, . . . , bn, bN}. Since any set κ

that could be returned contains bN it will be removed from the set of assumptions after
one core has been computed. Since an assignment setting bN = 1 satisfies the instance,
Extract-Cores can only compute a single new core constraint before terminating. With
WCE (i.e., Extract-Cores-WCE) the situation changes. The initial set of assumptions will
again be A1. Since any set κ returned by PB-Solve-A will have wκ = 1, the weight W of bN

is lowered by 1 and thus remains positive. Hence bN will stay in the assumptions until either
(i) n core constraints have been extracted or (ii) all other literals are removed from the set of
assumptions.

4.3 Non-Optimal Hitting Sets
At early stages of IHS search, when C only contains a few core constraints, we expect
O(γ) < O(F) to hold for an optimal hitting set γ over C. Recalling that PBO-IHS can
terminate only when LB = O(F), this implies that we do not expect an optimal hitting
set over C to result in termination before enough cores have been extracted. However, the
Extract-Cores subroutine does not necessarily need an optimal hitting set in order to
compute new core constraints. Hence instead of spending time computing a – potentially
useless – optimal hitting set, we can instead focus our efforts on computing any hitting set
that allows Extract-Cores to derive more core constraints.

More precisely, we terminate Min-Hs once an incumbent hitting set γi is obtained which
is either optimal or satisfies O(γi) < UB. Even if the lower bound LB can only be updated if
γi is optimal, Extract-Cores will still either derive a new core constraint, or find a solution
τ for which O(τ) = O(γi) < UB. In both cases, the search progresses toward an optimal
solution. The only way in which γi can be rediscovered in subsequent iterations is if it was
in fact optimal. More formally, we can show that the requirement of the hitting set being
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computed by Min-Hs either being optimal, or having cost lower than the current UB is
sufficient for the correctness of PBO-IHS. This follows from the fact that each non-optimal
hitting set can be computed by Min-Hs at most once and each optimal one at most twice.
For a more detailed argument in the context of MaxSAT, we refer the reader to [2].

4.4 Core Shrinking through Shuffling Assumptions
The sizes of core constraints found during iterations of IHS directly impact the tightness
of the hitting set constraints. In IHS MaxSAT solving, subset-minimization of cores is
done by iteratively asking the SAT solver performing cores extraction whether some soft
clauses can be removed from the cores while maintaining unsatisfiability. However, in the
context of PBO, we observed that subset-minimization of cores through the PB solver during
IHS search often becomes too time-consuming, and hence we do not – at least currently –
attempt to subset-minimize cores in this way before turning to the hitting set solver. Instead,
we make use of another, computationally less demanding way of potentially identifying
smaller cores. In particular, at the time of termination of the PB solver (the PB-Solve-A
subroutine of Algorithm 2) at a specific iteration, the subset of assumptions from which
the core constraint is formed is obtained by propagating all assumptions one by one until
the solver reports unsatisfiable. A central fact to note is that the specific core constraint
obtained will depend on the order in which assumptions are propagated; other orders of
propagating the assumptions during this “analyzeFinal” phase may provide at times smaller
cores. With this aim, we randomly shuffle the order of the assumptions a number of times
(set to 20 repetitions in our current implementation), and choose a smallest-cardinality core
among the cores obtained this way as the core constraint that is then added to the hitting
set solver. Since this shuffling approach to shrinking cores relies only on polynomial-time
propagation within the PB solver, it avoids the worst-case exponential subset-minimization
calls if core shrinking would be performed by iteratively asking the PB solver to identify
assumptions that can be left out from a found core.

4.5 Reduced Cost Fixing
The hybrid approach of PBO-IHS combining IP solving and PB reasoning opens up the
possibility of introducing techniques from IP solving into the PB reasoning part of PBO-IHS.
One such technique that we consider in this work is reduced cost fixing, a standard technique
in the realm of IP solving [14, 15, 32]. In IHS for PBO, reduced cost fixing can be applied in
two ways: on the LP relaxation of the actual PBO instance, and on the level of solving the
hitting set programs using IP solving. In the context of IHS for MaxSAT and in particular
on the level of the hitting set IP, reduced cost fixing was first explored in [2].

First consider employing reduced costs obtained from solving the hitting set problems dur-
ing IHS search. For a set C of core constraints and an objective function O, let Min-Hs(O, C)LP

be the LP relaxation of the IP depicted in Figure 1a, i.e., the linear program obtained by
removing the requirement of the l variables being integral, and instead allowing them to take
any value in the range [0, 1]. Informally speaking, given a solution η to Min-Hs(O, C)LP, the
reduced cost rc(b) of a variable assigned to 1 (0) by η measures the effect that assigning b to
0 (1) instead would have on O(η). Since the optimal cost of Min-Hs(O, C)LP is a lower bound
on the optimal cost Min-Hs(O, C) which in turn is a lower bound on O(F), the reduced costs
of a variable b in the objective function can sometimes be used to show that either b = 1 or
b = 0 holds for at least one optimal solution to F , which allows us to fix the value of b for
the rest of the search.
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More precisely, suppose τbest is a feasible solution to F and consider a non-basic variable
x (i.e., a variable assigned to either 0 or 1 by η) of Min-Hs(O, C)LP. If η(x) = 0 and either:
(i) O(η) + rc(x) > O(τbest) or (ii) O(η) + rc(x) = O(τbest) and τbest(x) = 0, then x is fixed
to 0 in subsequent iterations of the PBO-IHS algorithm. Similarly, if η(x) = 1 and either: (i)
O(η)− rc(x) > O(τbest) or (ii) O(η)− rc(x) = O(τbest) and τbest(x) = 1, then x is fixed to 1
is subsequent iterations. We emphasise, that in both cases, the variable is fixed both in the
Min-Hs, and the Extract-Cores subroutines.

A detailed argument for the correctness of reduced cost fixing in implicit hitting set-based
MaxSAT can be found in [2]. We sketch the proof of the case η(x) = 0. First note that if
x = 1 is infeasible for the LP relaxation of Min-Hs, then it will be infeasible for the IP as
well. In other words, then no hitting set over C can set x = 1 and, by the definition of a core
constraint, neither can any solution to F . On the other hand, if x = 1 is feasible, then by
the properties of reduced costs [4], any solution ηm to the LP for which ηm(x) = 1 will have
O(ηm) ≥ O(η) + rc(x) ≥ O(τbest) ≥ O(F). Since the LP is a relaxation of the IP and the
costs of the optimal solutions γo of the IP have O(γo) ≤ O(F), it follows that fixing x = 0
can be done without removing an optimal solution of the IP.

Secondly, we note that the LP relaxation of the input PBO instance itself can be solved
for obtaining bounds information already before the IHS search, complementary to the
information obtained from reduced costs from the hitting set computations during search.
In particular, for obtaining reduced costs information on an input PBO instance F , solve
the LP relaxation FLP of F prior to starting the main search loop, and apply reduced cost
fixing based on the reduced costs obtained from an optimal solution ηi of FLP whenever the
IHS search improves the upper bound UB during search.

5 Empirical Evaluation

We turn to overviewing results from an empirical evaluation of the IHS approach to PBO
presented in this work. The experiments reported on were run on nodes with 8-core Intel
Xeon E5-2670 2.6-GHz CPUs and 64-GB RAM. We set a per-instance 3600-second time and
16-GB memory limit.

5.1 Implementation
We implemented PBO-IHS in Python, with a PB solver (as the core extractor) and an integer
programming solver (as the hitting set solver) imported as external modules. We use the
Roundingsat version 2 [24] (commit 1476bf0bcd) as the PB solver, using its most recent
configuration as described in [20]. To implement the PB-Solve-A function, we extended
the Roundingsat implementation to include an analyzeFinal function similar to the one
implemented in the MiniSat SAT solver [22, 23], so that we can call Roundingsat within
PBO-IHS under assumptions and extract unsatisfiable cores over the assumptions. As the
integer programming solver for hitting set computations we used IBM ILOG CPLEX C++
API version 12.8. We compiled both Roundingsat and CPLEX API components using
pybind11, which is a utility that allows to compile C++ libraries as python modules. In the
following, we will refer as PBO-IHS to our implementation of the IHS approach to PBO which
applies HS reduced cost fixing, constraint seeding, assumption set shuffling, non-optimal
hitting sets and weight-aware core extraction, but does not apply reduced cost fixing based
on solving the LP relaxation of the input PBO instance and does not employ abstract
cores. (To this end, we will also report on the marginal contribution of each of these search
techniques on the overall performance of PBO-IHS.) For the experiments, our implementation
of PBO-IHS runs single-threadedly. The PBO-IHS implementation is available in open source
at https://bitbucket.org/coreo-group/pbo-ihs-solver/.

https://bitbucket.org/coreo-group/pbo-ihs-solver/
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5.2 Alternative Approaches
We extensively compare the empirical performance of PBO-IHS to those of previously proposed
specialized approaches to PBO:

Open-WBO [30] encodes the PBO instance into a MaxSAT instance by transforming
the PB constraints into CNF by the well-known (generalized) totalizer encoding [29]. The
MaxSAT instance is then solved with the OLL algorithm for MaxSAT [31].
Sat4J [8] generalizes the CDCL procedure for SAT solving to PB solving and the cutting
planes proof system. The cutting planes reasoning is implemented using the weakening
and saturation rules similar to [10]. Computing an optimal solution to an instance F is
done by solution improving search, i.e., starting from ub = ∞ iteratively invoking the
solver on the formula F ∪ {

∑
(w,l)∈O wl < ub} which is satisfiable by an assignment τ iff

τ is a solution to F with O(τ) < ub. When such τ is found, ub is updated to O(τ) and
the loop reiterated. The search terminates when the solver reports the formula to be
unsatisfiable, at which point the last found (optimal) solution is returned.
NaPS [40] encodes the PBO instance into a MaxSAT instance using binary decision
diagrams (BDDs). An optimal solution to the MaxSAT instance is then computed a
combination of solution improving and binary search.
Roundingsat (RS) [24] generalizes the CDCL procedure for SAT solving to PB solving
and the cutting planes proof system. Cutting planes reasoning is implemented using the
division and rounding rules. Optimization is then done by solution improving search.
RS/lp [20], a version of RS that periodically invokes a linear programming (LP) solver
on the LP relaxation of the instance being solved. The LP calls are used to derive more
conflicts to the CDCL procedure implemented in basic roundingsat. For example, if
there are no feasible solutions to the LP relaxation of the instance under the current
partial assignment, then there will not be any feasible solutions to the PB instance either.
Computing an optimal solution is done by solution improving search.
RS/oll [21], a version of RS that combines the solution improving search with an
extension of the OLL algorithm to PBO [1]. OLL is a lower bounding approach that
extracts core constraints of the instance being solved. Based on the obtained constraints,
the instance is then relaxed in a way that allows – in a controlled way – one more of the
literals in the objective function to be set to 1 in subsequent iterations.

In addition to these academic specialized PBO solvers, we also investigate how PBO-IHS
fares against CPLEX [13].

5.3 Benchmarks
For the experiments, we collected a large number of benchmarks from different sources.
Firstly, we collected all benchmarks used in Pseudo-Boolean Competition 2016 [35] (so
far the most recent instantiation of the competition) as well as benchmarks available on
the competition website that were used in previous competition instantiations since 2005.
Secondly, we collected all 0-1 integer programs from the MIPLIB 2017 library [26] as well as
earlier MIPLIB releases. We filtered out 7914 benchmark instances that had no objective
function and 249 unsatisfiable benchmarks which do not admit solutions, as uninteresting
for benchmarking optimization solvers, as well as 206 benchmarks that have at least one
coefficient with an absolute value higher than 264 and 548 benchmarks with non-linear
constraints or non-linear terms in their objective functions. Starting from 17312 Pseudo-
Boolean Competiton benchmarks and 1273 MIPLIB benchmarks, respectively, after filtering
we were left with 8456 and 252 benchmarks, respectively, giving a total of 8708 benchmarks
that we used in the experiments reported on here.
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We categorized to the best of our knowledge the benchmarks (based on their source,
related publications, and finally, by file names) into different problem domains, obtaining the
problem domain categorization shown in Table 1. We observe that the whole benchmark
set is significantly unbalanced in terms of the number of instances originating from specific
problem domains. For a fair comparison of the overall performance of the different solvers
across the different benchmark domains, we sampled at random (without repetition) from
each problem domain 30 instances (or all of the instances from the domain, if the domain
included less that 30 instances) for the comparison. The sampled benchmark set contains
in total 1786 benchmarks. Unless explicitly stated otherwise, all results reported on in this
section are with respect to the sampled benchmark set.

5.4 Results: Comparison with Specialized PBO Solvers
We first compare the empirical performance of PBO-IHS to those of other specialized PBO
solvers on the sampled benchmark set. Figure 2(top) shows how many benchmarks each solver
was able to solve (y-axis) under different per-instance time limits, We observe that PBO-IHS
outperforms all of the other specialized solvers. The two recent variants of Roundingsat
perform the second and third best; in particular, PBO-IHS also outperforms the version
of Roundingsat (RS/lp) which is used within PBO-IHS for core extraction. To justify the
sampling of benchmarks in order to achieve a balanced benchmark set, confirmed the results
for the three best-performing solvers under 10 different random samplings. The results,
shown in Figure 2(bottom), confirm that the relative performance of the solvers is robust
against subsampling benchmarks in a balanced way. In more detail, For each solver S,
Figure 2(bottom) includes 3 lines: S-max, S-median and S-min. A point (t, x) on the S-max
line indicates that S was able to solve x benchmarks within t seconds for at least one of
the ten benchmark set samples. Analogously, a point on the S-min line indicates solving
x benchmarks within t seconds in all samples, and the S-median line indicates solving x

benchmarks within t in five of the 10 samples.
More detailed data per benchmark domain (over the full benchmark set) is reported in

Table 1, with the number of instances solved (left column) and the cumulative runtimes
over solved instances (right column) shown for each solver, with all benchmarks from each
problem domain included. Interestingly, we observe that the relative performance of the
Roundingsat versions (RS/lp and RS/oll) and PBO-IHS depends significantly on the problem
domain, suggesting that the approaches complement each other.

5.5 Results: Impact of Different Search Techniques in PBO-IHS
We also investigated the marginal impact of the different search techniques and refinements
to PBO-IHS on the empirical performance of PBO-IHS. Figure 3(top) provides a comparison of
the default configuration of PBO-IHS (with HS reduced cost fixing (hs-rc), constraint seeding,
assumption set shuffling, non-optimal hitting sets, weight-aware core extraction, but without
reduced cost fixing based on solving the LP relaxation of the input PBO instance (pb-rc) or
abstract cores) to configurations of PBO-IHS with each of HS reduced cost fixing, constraint
seeding, assumption set shuffling, non-optimal hitting set computation, and weight-aware
core extraction separately switched off, as well the configurations using reduced cost fixing
on the PBO LP and abstract cores separately. We observe that constraint seeding makes
the largest positive marginal contribution to the empirical performance of PBO-IHS, and
assumption set shuffling second largest positive marginal contribution. The third largest
positive contribution is made by using non-optimal hitting sets, followed closely by weight-
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aware core extraction. The use of abstract cores, at least as currently implemented, makes
a significant negative marginal contribution, noticeably degrading the performance of the
default version of PBO-IHS. Exploring the relationship between constraint seeding and abstract
cores in PBO, as well as alternative instantiations of the abstract cores framework, remains
interesting for future work. The two different forms of reduced cost have only a very modest
impact. While reduced cost fixing based on the PBO LP does not make a significant negative
marginal contribution, it does not appear to improve on the performance of PBO-IHS, which
justifies disabling it together with abstract cores in the default configuration of PBO-IHS.

5.6 Results: Runtime Division between Core Extraction and MCHS

Figure 4(left) details the fraction of solving time spent in the Min-Hs subroutine of PBO-IHS
on the 898 of the instances solved within the time limit. Note that since the Min-Hs and
PB-Solve-A subroutines dominate the running time of PBO-IHS, the rest of the runtime is
effectively spent in PB-Solve-A. We observe that on most of the instances, over 80% of the
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Figure 2 Top: Runtime comparison of specialized PBO solvers. Bottom: Confidence intervals
over 10 benchmark subset samples for the three best-performing solvers.
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Table 1 Comparison of specialized PBO solver per benchmark domain: number of solved instances
(#) and cumulative runtimes over solved instances in seconds (cum.)

Sat4J RS Open-WBO Naps RS/lp RS/oll PBO-IHS
Domain (#instances) # cum. # cum. # cum. # cum. # cum. # cum. # cum.
10orplus/9orless (156) 55 99459 39 64252 156 202 156 14149 154 55344 156 1406 156 23670
caixa (24) 24 13 20 16 24 2 24 179 24 70 24 3 24 64
rand.*list (118) 113 5241 59 1961 118 44 118 2218 118 692 118 125 118 2296
area_* (59) 11 626 37 11998 59 138 54 3613 54 16176 57 9469 51 11784
trarea_ac (18) 1 1 1 2 13 2314 4 4582 16 3722 5 1868 18 7751
aries-da_nrp (70) 15 1747 16 7994 25 11938 19 7325 43 15442 21 10599 32 10413
BA (1440) 85 175161 301 221066 160 116377 0 0 588 472938 356 230143 20 30038
NG (960) 2 804 59 71042 11 11990 0 0 48 115499 138 194128 0 0
MANETs (150) 29 5744 0 0 20 13648 14 17875 40 23547 29 9525 25 21152
BioRepair (30) 30 457 30 8551 30 105 30 311 30 3258 30 35 30 262
Metro (30) 30 4413 30 1270 30 3341 30 775 30 1795 29 3291 27 12595
ShiftDesign (30) 12 2258 16 5671 28 10696 30 2781 18 12824 27 3371 9 9060
Timetabling (30) 17 11920 15 8026 27 10054 25 17502 23 15419 24 3295 28 8768
EmployeeScheduling (14) 0 0 0 0 9 480 9 506 0 0 0 0 0 0
golomb-rulers (34) 14 642 14 5765 11 1656 12 3451 12 1216 12 436 12 4212
bsg (60) 0 0 10 156 10 4767 10 813 10 465 10 1963 5 16
mis/mds (120) 0 0 44 8968 48 6605 47 6245 45 3853 45 5525 57 15335
course-ass (6) 0 0 2 1225 2 29 4 3226 3 33 2 1 1 6
decomp (10) 0 0 0 0 8 1809 8 4516 0 0 2 2200 0 0
data (68) 1 2 8 1628 0 0 4 2414 13 4044 13 5837 11 2163
dt-problems (60) 37 1712 40 3573 38 2777 59 8697 60 2 60 7 60 113
domset (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
factor (186) 186 56 186 0 186 710 186 160 186 2 186 0 186 342
factor-mod-B (225) 0 0 225 67 199 39899 225 3243 225 60 225 25 225 344
fctp (35) 2 36 2 0 1 141 6 468 5 940 5 2 12 499
featureSubscription (20) 20 1266 20 2492 20 76 20 112 20 8106 20 941 20 303
frbXX-XX-opb (40) 0 0 0 0 0 0 17 11552 0 0 0 0 6 11343
flexray (9) 5 1697 4 83 4 496 4 296 4 393 4 31 4 50
fome (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
graca (100) 20 230 24 3664 97 4687 98 10487 31 21769 93 14428 84 40593
haplotype (8) 0 0 8 202 8 31 8 60 8 2385 8 57 7 4023
garden (7) 4 28 5 1 6 94 6 355 5 1 5 0 6 76
hw32/hw64/hw128 (27) 0 0 2 1 1 217 1 50 8 3470 5 889 10 12063
jXXopt (2040) 1604 32395 1613 36840 1611 34453 1621 58870 1589 51821 1603 42149 1579 64191
keeloq_tasca (4) 0 0 4 424 4 360 4 3019 4 33 4 7 4 54
kullmann (7) 0 0 1 2 1 0 0 0 1 2 1 3 3 3016
lion9-single-obj (1513) 1181 89655 687 4242 1501 12026 1400 105853 1412 113829 1482 62955 1487 120526
logic-synthesis (74) 24 7180 39 5078 49 4750 33 2581 61 11647 48 786 71 708
miplib/neos (79) 18 3516 27 1725 25 2455 25 5479 37 8377 32 6048 38 10631
miplib/other (405) 84 9044 96 7093 80 20989 95 20135 147 36264 123 15349 156 38501
unibo (36) 0 0 3 127 0 0 0 0 3 228 3 77 8 5342
market-split (20) 2 659 4 4750 0 0 4 1575 4 342 4 2670 1 1167
opb/graphpart (31) 0 0 8 2641 22 940 23 7019 12 435 14 4942 24 5211
opb/autocorr_bern (43) 0 0 5 1168 3 1768 3 337 4 3594 3 318 8 2089
opb/sporttournament (22) 0 0 4 667 7 697 4 168 4 23 6 2032 11 3121
opb/edgecross (19) 0 0 3 2869 6 1634 4 1230 6 2899 3 9 12 3984
opb/pb (8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
opb/faclay (10) 0 0 0 0 0 0 0 0 0 0 0 0 1 960
opb/other (6) 0 0 1 0 1 0 1 0 1 0 1 0 1 2
primes/aim (48) 48 15 48 0 48 0 48 0 48 4 48 0 46 234
primes/jnh (16) 16 16 16 35 16 36 16 11 16 19 16 44 16 53
primes/ii (41) 10 504 21 7087 26 9348 25 12121 23 6874 33 2792 34 5230
primes/par (30) 20 17 20 14 20 2 20 14 20 15 20 31 20 422
primes/other (13) 2 5 2 2 6 5 6 22 6 452 4 204 5 938
routing (15) 15 1030 15 19 15 2 15 17 15 7 15 1 15 26
radar (12) 0 0 6 313 0 0 0 0 6 71 1 127 12 77
synthesis-ptl-cmos (10) 2 0 2 0 8 15 3 27 9 135 8 1186 10 16
testset (6) 6 1529 6 1161 5 81 6 1721 6 0 6 1 6 8
ttp (8) 2 1 2 0 2 0 2 1 2 0 2 0 2 10
vtxcov (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
wnq (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 3 Runtime comparison of various PBO-IHS variants.
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Figure 4 Left: Ratio of solving time spent by PBO-IHS in Min-Hs subroutine for solved benchmarks.
Right: Ratio of constraints seeded on all benchmarks.

overall solving time is spent computing core constraints: on 462 of the 893 instances, only
20% of the time was spent in Min-Hs, and one over 1/3 of the instances 99% of the overall
solving time is spent in PB-Solve-A (marked by the blue line). On the other hand, the
runtimes of Min-Hs dominates on approximately 1/5 of the instances.

Figure 4(right) shows the fractons of constraints that can be seeded over all benchmark
instances. At least one constraint is seeded for 71.4% of the instancess; at least half of all
constraints are seeded for 41.6% of the instances; and all of the constraints are seeded for
33.7% of the instances. Note that while the whole instance is solved directly as an IP through
a single Min-Hs call when all constraints are seeded, we also observed that there are instances
on which the runtime of Min-Hs dominates even though all constraints are not seeded.

5.7 Results: Comparison with a Commercial IP Solver
Finally, we investigate how the prototype implementation of PBO-IHS fares in terms of
runtime performance against CPLEX, one of the de-facto commercial MIP solvers with
a significant number of person years behind it. For a fair comparison with CPLEX, we
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Figure 5 Per-instance runtime comparison of PBO-IHS (x-axis) vs CPLEX (y-axis).

used the CPLEX presolver also before calling PBO-IHS. This eliminates to an extent the
differentiating contribution of the powerful preprocessor of CPLEX in terms of runtime
performance (though it should be noted that CPLEX appears to employ further probing for
e.g. clique inequalities after the presolving stage, which we were unable to employ before
calling PBO-IHS). A per-instance runtime comparison is shown in Figure 5, with more details
per benchmark domain provided in Appendix A. We observe that, while CPLEX fairs better
in the overall number of solved instances, the two solvers exhibit noticeably complementary
performance, relative performance depending on the problem domain considered.

6 Conclusions

We described and implemented a first instantiation of the implicit hitting set approach for
pseudo-Boolean optimization. On one hand, the instantiation is motivated by the great
success of the implicit hitting set approach in the context of maximum satisfiability, which
motivates extending the approach to the more generic context of PBO. On the other hand, the
instantiation is motivated by recent advances in pseudo-Boolean solving as a generalization
of SAT solving, providing efficient unsatisfiable core extraction which is one of the critical
requirements for realizing IHS for PBO. We studied the impact of liftings of various IHS search
techniques from MaxSAT to PBO, and showed through an extensive empirical evaluation
that our IHS PBO solver implementation provides in practice a competitive as well as
complementary approach to pseudo-Boolean optimization.
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A Detailed Results: PBO-IHS vs CPLEX

Table 2 provides a per-instance comparison of the performance of PBO-IHS and CPLEX on
the full benchmark set.

Table 2 Per-domain comparison of PBO-IHS and CPLEX: number of solved instances (#) and
cumulative runtimes over solved instances in seconds (cum.)

PBO-IHS CPLEX
Domain (#instances) # cum. # cum.
10orplus/9orless (156) 156 20309 156 1709
caixa (24) 18 38 24 61
rand.*list (118) 118 878 118 301
area_* (59) 57 10735 59 789
trarea_ac (18) 17 5209 18 47
aries-da_nrp (70) 55 17508 70 2278
BA (1440) 7 17028 761 419659
NG (960) 0 0 238 224058
MANETs (150) 27 13051 61 25757
BioRepair (30) 30 223 30 862
Metro (30) 27 10911 30 2626
ShiftDesign (30) 10 9688 6 7062
Timetabling (30) 28 8019 27 6313
EmployeeScheduling (14) 0 0 13 149
golomb-rulers (34) 12 4669 10 589
bsg (60) 5 16 15 3571
mis/mds (120) 64 26665 58 15127
course-ass (6) 1 8 6 12
decomp (10) 0 0 0 0
data (68) 10 2202 24 3076
dt-problems (60) 47 74 60 358
domset (15) 0 0 0 0
factor (186) 186 348 186 242
factor-mod-B (225) 225 317 216 4204
fctp (35) 12 622 12 936
featureSubscription (20) 20 301 1 2644
frbXX-XX-opb (40) 5 5397 3 3615
flexray (9) 4 69 3 14
fome (3) 0 0 0 0
graca (100) 62 20019 27 14459

PBO-IHS CPLEX
Domain (#instances) # cum. # cum.
haplotype (8) 7 2992 0 0
garden (7) 6 76 6 60
hw32/hw64/hw128 (27) 6 1324 18 5072
jXXopt (2040) 1581 47081 1487 136243
keeloq_tasca (4) 4 124 4 1412
kullmann (7) 3 3016 3 3183
lion9-single-obj (1513) 1487 33403 1480 57923
logic-synthesis (74) 71 767 71 690
miplib/neos (79) 36 9962 58 14578
miplib/other (405) 161 32009 217 50306
unibo (36) 8 4764 8 6826
market-split (20) 0 0 8 6075
opb/graphpart (31) 24 3795 28 715
opb/autocorr_bern (43) 8 1838 8 2180
opb/sporttournament (22) 11 3056 13 3089
opb/edgecross (19) 12 3433 15 6316
opb/pb (8) 0 0 0 0
opb/faclay (10) 1 879 1 1004
opb/other (6) 1 2 3 4106
primes/aim (48) 44 236 46 235
primes/jnh (16) 16 52 16 42
primes/ii (41) 34 5148 34 5060
primes/par (30) 20 369 20 426
primes/other (13) 5 1512 5 976
routing (15) 15 32 15 28
radar (12) 11 62 12 39
synthesis-ptl-cmos (10) 10 17 10 18
testset (6) 6 8 6 12
ttp (8) 2 12 2 4
vtxcov (15) 0 0 0 0
wnq (15) 0 0 0 0
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