
Differential Programming via OR Methods
Shannon Sweitzer #

Department of Industrial and Systems Engineering,
University of Southern California, Los Angeles, CA, USA

T. K. Satish Kumar #

Department of Computer Science, Department of Physics and Astronomy,
Department of Industrial and Systems Engineering, Information Sciences Institute,
University of Southern California, Los Angeles, CA, USA

Abstract
Systems of ordinary differential equations (ODEs) and partial differential equations (PDEs) are
extensively used in many fields of science, including physics, biochemistry, nonlinear control, and
dynamical systems. On the one hand, analytical methods for solving systems of ODEs/PDEs mostly
remain an art and are largely insufficient for complex systems. On the other hand, numerical
approximation methods do not yield a viable analytical form of the solution that is often required
for downstream tasks. In this paper, we present an approximate approach for solving systems of
ODEs/PDEs analytically using solvers like Gurobi developed in Operations Research (OR). Our main
idea is to represent entire functions as Bézier curves/surfaces with to-be-determined control points.
The ODEs/PDEs as well as their boundary conditions can then be reformulated as constraints on
these control points. In many cases, this reformulation yields quadratic programming problems
(QPPs) that can be solved in polynomial time. It also allows us to reason about inequalities. We
demonstrate the success of our approach on several interesting classes of ODEs/PDEs.

2012 ACM Subject Classification Applied computing

Keywords and phrases Differential Programming, Operations Research, Bézier Curves

Digital Object Identifier 10.4230/LIPIcs.CP.2021.53

1 Introduction

Systems of ordinary differential equations (ODEs) and partial differential equations (PDEs)
are so extensively used that they are the mathematical language of many sciences. The
following are just a few examples. In physics, they are used to describe harmonic motion,
radioactive decay, and propagation of electromagnetic waves [18]. In biochemistry, they
are used to model biological processes ranging from the biosynthesis of phospholipids and
proteins to the growth of cancer cells and viral dynamics [2]. In control theory, they are
used to describe the behavior of dynamical systems and optimal strategies for controlling
them [6]. An abundance of other applications can be found in many other sciences.

Plenty of analytical methods have been developed for solving ODEs/PDEs. These include
standard techniques like separation of variables, the method of characteristics, integral
transform, change of variables, fundamental solutions, and superposition [14], and newer
techniques that utilize Lie groups [13] and Bäcklund transforms [9]. Despite the existence of
many such techniques, the applicability of analytical methods has been restricted to special
classes of systems of ODEs/PDEs such as first-order systems, second-order systems with
constant coefficients, and second-order systems with variable coefficients. A comprehensive
study of ODEs/PDEs amenable to different analytical methods can be found in [14].

Many numerical approximation methods have also been developed to address the lim-
itations of analytical methods. These include the finite element method (FEM) [20], the
finite difference method (FDM) [10], and the finite volume method (FVM) [3]. Although
numerical approximation methods have very general applicability, they too have drawbacks

© Shannon Sweitzer and T. K. Satish Kumar;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 53; pp. 53:1–53:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sweitzer@usc.edu
mailto:tkskwork@gmail.com
https://doi.org/10.4230/LIPIcs.CP.2021.53
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


53:2 Differential Programming via OR Methods

of their own. They don’t return a solution in an analytical form. Instead, they return a
solution as a set of values calculated at discrete points on a meshed geometry. This makes
the solution unviable for downstream tasks in which analytical operations may be involved.

While fitting high-order polynomials on the set of values calculated at discrete points
can sometimes salvage an analytical form and enable some downstream derivatives, it is
not a satisfactory method either. This is because enforcing a desired property, such as an
inequality constraint, at the discrete points does not enforce it everywhere. For example,
in a system of ODEs that describes the velocity profile of a robot, enforcing a maximum
velocity constraint on a finite number of discrete time points doesn’t enforce it at all time
points if high-order polynomials are used for interpolation.1

Because of the problems associated with both analytical and numerical approximation
methods, controller design and synthesis problems in many domains still remain very hard.
Such problems involve decision variables in addition to ODEs/PDEs. Typically, the ODEs/P-
DEs can be solved in a “simulation” phase only when decision variables have assigned values.
Neither the analytical nor the numerical approximation method can facilitate the search for
optimal values of the decision variables themselves. For example, in nanoscale photonics,
a set of teflon dielectric cylinders are used to focus electromagnetic power. Given values
for the decision variables, i.e., positions of the dielectric cylinders, the PDEs that describe
the resulting distribution of electromagnetic power can be solved numerically. However, the
optical filter design problem of choosing where to optimally place the dielectric cylinders
themselves is very hard.

In this paper, we present an approximate approach for solving systems of ODEs/PDEs
analytically using solvers like Gurobi developed in Operations Research (OR). Our main
idea is to represent entire functions as Bézier curves/surfaces with to-be-determined control
points. Bézier curves have a number of useful mathematical properties [11]. They can
uniformly approximate any continuous function; their derivatives are also Bézier curves; and
a Bézier curve lies entirely within the convex hull of its control points. Because of their
attractive mathematical properties, Bézier curves have been widely used in many application
domains, including computer graphics [12], computer-aided design [5], path planning [1], and
trajectory planning [16]. Using the Bézier curve/surface representation in our case, we show
that ODEs/PDEs as well as their boundary conditions can be reformulated as constraints on
their control points.

Our proposed approach has several advantages. First, not only does it have the general
applicability of numerical approximation methods but it also produces an analytical form that
is useful for downstream tasks. Such downstream tasks are commonplace in physics-based
machine learning where the principle of least action can be expressed as a second-order PDE,
known as the Euler-Lagrange equation [15], on which further data-driven inferences must be
carried out.

Second, our approach uses control points instead of a discretization of the independent
variables’ domains. For example, consider a function f(t) with t ∈ [0, T ]. Numerical
approximation methods require the discretization of the interval [0, T ]. However, discretization
not only necessitates an increase in the number of discrete points for growing values of T

but also creates a dependency on interpolation methods for values of t between the discrete

1 There exist other numerical approximation methods, called meshfree methods [7], useful for simulations
in which the discrete points can be dynamically created or destroyed. Meshfree methods can also be
combined with FEM, FDM, or FVM to yield hybrid methods [4]. But, in general, they too have the
same drawbacks.



S. Sweitzer and T. K. S. Kumar 53:3

0 2 4 6 8

3.0

3.5

4.0

4.5

5.0

5.5

6.0

p0

p1

p2

p3

Bézier curve

control point

convex hull of control points

Figure 1 Illustrates an important property of Bézier curves: A Bézier curve is enclosed entirely
within the convex hull of its control points. Here, the Bézier curve has 4 control points in a
2-dimensional space.

points. In contrast, our approach represents f(t) as a linear combination of Bernstein basis
polynomials on t. The to-be-determined coefficients of the linear combination are its control
points. f(t) is therefore automatically defined for all values of t ∈ [0, T ]. Moreover, the
number of control points depends on the complexity of f(t) and not on the domain size
of t. In fact, some of the benefits of such a representation are used in recent numerical
approximation methods like isogeometric analysis [8].

Third, although our approach uses only a finite number of control points, it allows us
to enforce desired properties at all points on the resulting solution rather than at a set of
discrete points. In particular, our approach also allows for inequalities, e.g., to enforce the
maximum acceleration of a robot at all times. For this reason, we say that our method is
more generally applicable to differential programming.

Fourth, since our approach reformulates ODEs/PDEs and their boundary conditions as
constraints on their control points, they can be combined with other decision variables. This
allows us to cast controller design and synthesis problems as optimization problems that don’t
require expensive simulation. In addition, the nature of the resulting constraints provides
insights into the nature of the ODEs/PDEs, allowing us to draw parallels between the
mathematical theory of ODEs/PDEs and the computational theory of optimization. In fact,
upon reformulation, many interesting classes of ODEs/PDEs yield quadratic programming
problems (QPPs) that can be solved in polynomial time.

In this paper, we demonstrate the success of our approach on several interesting classes
of ODEs/PDEs. However, given the enormous literature relevant to ODEs/PDEs, our paper
can only qualify as a feasibility study in an important direction with preliminary results.

2 Background

In mathematics, Bernstein basis polynomials of degree n are defined to be

Bi,n(t) =
(

n

i

)
ti (1 − t)n−i , i ∈ {0, 1 . . . n},

where
(

n
i

)
is the binomial coefficient equal to n!

i!(n−i)! .
A k-dimensional Bézier curve of degree n is of the form

B(t) =
n∑

i=0
piBi,n(t), t ∈ [0, 1],

CP 2021



53:4 Differential Programming via OR Methods

where P = {p0, p1 . . . pn} is the set of n + 1 k-dimensional control points. Therefore, it
is a curve parameterized by t and interpretable as a linear combination of the Bernstein
basis polynomials of degree n. The coefficients of the linear combination are the n + 1
k-dimensional control points.

A Bernstein polynomial B(t) of degree n is a 1-dimensional Bézier curve of degree n.
Therefore, it is a linear combination of the Bernstein basis polynomials of degree n. The
coefficients of the linear combination are n + 1 real numbers acting as 1-dimensional control
points.

Bernstein polynomials and Bézier curves have many useful mathematical properties.
For example, the Weierstrass Approximation Theorem [11] establishes that any continuous
real-valued function defined on the interval [0, 1] can be uniformly approximated by Bernstein
polynomials.

Two other useful properties of Bernstein polynomials and Bézier curves are with respect
to their derivatives and their control points. The derivative of a Bézier curve B(t) of degree
n is a Bézier curve of degree n − 1. In particular,

dB(t)
dt

=
n−1∑
i=0

p′
iBi,n−1(t),

where the control point p′
i = n (pi+1 − pi), for i ∈ {0, 1 . . . n − 1}.

A Bézier curve B(t) is bounded by the convex hull of its control points P for t ∈ [0, 1], as
shown in Figure 1. Intuitively, this is because for any given value of t ∈ [0, 1]: (a) Bi,n(t) ≥ 0
for i ∈ {0, 1 . . . n}, and (b)

∑n
i=0 Bi,n(t) = 1. Therefore, B(t) for t ∈ [0, 1] is interpretable as

a non-negative linear combination of its control points, necessitating its presence in the convex
hull. In particular, B(0) = p0 and B(1) = pn. In the case of Bernstein polynomials, the
control points are 1-dimensional real numbers, and B(t) lies entirely within [inf(P ), sup(P )].

3 Solving ODEs

To solve ODEs/PDEs using Bézier curves/surfaces, we have to develop the general theory
in stride. It is best illustrated through examples and case studies. In this and the next
sections, we apply our proposed methodology to a series of examples that are chosen to be
in increasing order of complexity and generality. Unless stated otherwise, we use the interval
[0, 1] for all independent variables since the Bernstein basis polynomials are also defined
within the same interval.

3.1 First-Order Homogeneous Linear ODEs with Constant Coefficients
An ODE is said to be linear if it is of the form

a0(t)y(t) + a1(t)y′(t) . . . am(t)y(m)(t) + b(t) = 0, (1)

where a0(t), a1(t) . . . am(t) and b(t) are differentiable functions of t, and the functions
y(t), y′(t) . . . y(m)(t) are the successive derivatives of the to-be-determined function y(t).

A first-order linear ODE has m = 1. Moreover, a first-order homogeneous linear ODE
has b(t) = 0. Consider a first-order homogeneous linear ODE with constant coefficients, i.e.,
a0(t) and a1(t) are constants denoted by a0 and a1, respectively. Therefore, the ODE is of
the form

a0y(t) + a1y′(t) = 0. (2)



S. Sweitzer and T. K. S. Kumar 53:5

(a) 3y(t) + y′(t) = 0; y(0) = 2. (b) y(t) + y′(t) = 0; y(0) = 5.

Figure 2 Shows the solutions of two first-order homogeneous linear ODEs with constant coefficients.
The solutions generated by the Bézier curve method (blue) match the analytical solutions (orange)
exactly. (The blue color is not visible because of the exact match.) The analytical solution for (a) is
y(t) = 2e−3t. The analytical solution for (b) is y(t) = 5e−t. In both cases, 6 control points and 6
test points were used, resulting in a running time of 0.60 s for (a) and 0.45 s for (b).

The above ODE has a known family of solutions of the form {Ce(−a0/a1)t : C ∈ R}. A
particular solution from this family can be identified based on the initial conditions. Consider
the example

3y(t) + y′(t) = 0, (3)

with the accompanying initial condition y(0) = 2.
Suppose we represent y(t) using a 1-dimensional Bézier curve B(t) of degree n and n + 1

to-be-determined control points P = {p0, p1 . . . pn}. By substituting B(t) for y(t) and its
derivative B′(t) for y′(t), the problem reduces to

3
n∑

i=0
piBi,n(t) +

n−1∑
i=0

n(pi+1 − pi)Bi,n−1(t) = 0. (4)

The initial condition reduces to p0 = 2. In essence, this reduced formulation enforces the
polynomial g(t) = 3

∑n
i=0 piBi,n(t)+

∑n−1
i=0 n(pi+1 −pi)Bi,n−1(t) of degree n to be identically

equal to 0. Since this can happen only when all the coefficients of the powers of t are
individually equal to 0, the problem further reduces to linear equalities on the control points.

Although linear equalities can be solved very efficiently, our first attempt fails for the
following reason. We have n + 1 linear constraints coming from g(t) ≡ 0; and we have 1
linear constraint coming from the initial condition. This accounts for a total of n + 2 linear
constraints on n + 1 variables, creating an over-constrained problem that doesn’t necessarily
have a solution.

In a second attempt, we split the constraints to hard and soft constraints. The linear
constraints coming from the initial conditions are retained as hard constraints, while the
linear constraints coming from g(t) ≡ 0 are relaxed to be soft constraints, with a penalty
for violation measured using squared error. Of course, the soft constraints should fully
incentivize enforcing g(t) ≡ 0. Therefore, the squared error is measured on g(t) evaluated at
M ≥ n + 1 test points sampled from the interval [0, 1].

CP 2021



53:6 Differential Programming via OR Methods

(a) 2y(t) + y′(t) = 5t − 3; y(0) = 4.

Figure 3 Shows the solution of a first-order non-homogeneous linear ODE with constant coeffi-
cients, when b(t) is a polynomial. The solution generated by the Bézier curve method (blue) matches
the analytical solution (orange) exactly. (The blue color is not visible because of the exact match.)
The analytical solution is y(t) = 27

4 e−2t + 5
2 t − 11

4 . Here, 6 control points and 6 test points were
used, resulting in a running time of 0.61 s.

Let t1, t2 . . . tM be the test points. We formulate the following QPP:

Minimize
p0,p1...pn

M∑
i=1

(g(ti))2 (5)

s.t. p0 = 2.

Solving the QPP yields optimal values of p0, p1 . . . pn, which in turn can be used to
construct the desired B(t) as an approximation for y(t). Figure 2(a) shows the Bézier curve
solution to the above problem. Figure 2(b) shows the Bézier curve solution to another
first-order homogeneous linear ODE with constant coefficients given by

y(t) + y′(t) = 0, (6)

with the accompanying initial condition y(0) = 5.
For the QPP solver, we used CVX, a MatLab R2020b package for specifying and solving

convex programs. We report the CVX running times for all examples discussed in this paper.
All experiments were conducted on a laptop with a 2.8GHz Quad-Core Intel Core i7 processor
and 16GB 2133MHz DDR4 memory. We used the default CVX settings for all experiments.

3.2 First-Order Non-Homogeneous Linear ODEs with Constant
Coefficients

We now examine first-order non-homogeneous linear ODEs with constant coefficients. This
is similar to the previous subsection, except that b(t) is not necessarily 0. We refer to a
non-zero b(t) as the non-homogeneity term.

If b(t) is a polynomial, the formulation using Bézier curves again reduces to a case of
polynomial equivalence, and our proposed methodology continues to be directly applicable.
However, we note that if the degree of b(t) exceeds n, then the number of test points M

should be ≥ deg(b(t)) + 1.



S. Sweitzer and T. K. S. Kumar 53:7

(a) 2y(t) + y′(t) = sin (30t) − 3; y(0) = 1. (b) 2y(t) + y′(t) = sin (30t) − 3; y(0) = 1.

Figure 4 Shows the solutions of a first-order non-homogeneous linear ODE with constant
coefficients, when b(t) is not a polynomial. The solution generated by the Bézier curve method
(blue) better approximates the analytical solution (orange) with an increasing number of test points.
The analytical solution is y(t) = (1145e−2t + sin (30t) − 15 cos (30t) − 678)/452. In (a), 6 control
points and 6 test points were used, resulting in a running time of 0.38 s. In (b), 6 control points and
20 test points were used, resulting in a running time of 0.57 s.

Consider the following example:

2y(t) + y′(t) = 5t − 3 (7)
y(0) = 4.

The analytical solution of this ODE is given by y(t) = 27
4 e−2t + 5

2 t − 11
4 . Figure 3 shows this

analytical solution and the Bézier curve solution obtained using n = 5 and M = 6. Once
again, the Bézier curve solution provides very accurate results.

If b(t) is not a polynomial, the formulation is not reducible to one of polynomial equivalence.
Nonetheless, our method can still be used since Bézier curves can uniformly approximate
any function [11].

Consider the following example:

2y(t) + y′(t) = sin (30t) − 3 (8)
y(0) = 1.

The non-homogeneity term b(t) is no longer a polynomial and is in fact very oscillatory. The
analytical solution of this ODE is given by y(t) = (1145e−2t+sin (30t)−15 cos (30t)−678)/452.
Figure 4(a) shows that the Bézier curve solution has a large deviation from the analytical
solution when n = 5 and M = 6. However, Figure 4(b) shows that the accuracy of the Bézier
curve solution improves significantly as M increases, i.e., when n = 5 and M = 20.

3.3 Higher-Order Linear ODEs
In this subsection, we discuss higher-order linear ODEs. These are linear ODEs with m > 1.
They can be classified as homogeneous or non-homogeneous, depending on b(t). If b(t) = 0,
the ODE is homogeneous; otherwise, it is non-homogeneous with b(t) referred to as the
non-homogeneity term. We consider two illustrative types of higher-order linear ODEs.

Consider an ODE of the form

a0y(t) + a1y′(t) + a2y′′(t) = 0, (9)

CP 2021



53:8 Differential Programming via OR Methods

(a) −6y(t) + y′(t) + y′′(t) = 0; y(0) = 0, y′(0) = 1. (b) 13
t2 y(t)− 5

t y′(t)+y′′(t) = 0; y(1) = 1, y′(1) = 0.

Figure 5 Shows the solutions of two higher-order linear ODEs. (a) shows an ODE with constant
coefficients, and (b) shows an Euler-Cauchy ODE. In (a), the solution generated by the Bézier
curve method (blue) matches the analytical solution (orange) exactly. (The blue color is not visible
because of the exact match.) In (b), the solution generated by the Bézier curve method (blue)
approximates the analytical solution (orange). The analytical solution for (a) is y(t) = 1

5 (e2t − e−3t).
The analytical solution for (b) is y(t) = 0.5t3(2 cos(2 log t) − 3 sin(2 log t)). In (a), 6 control points
and 6 test points were used, resulting in a running time of 0.45 s. In (b), 6 control points and 20
test points were used, resulting in a running time of 0.71 s.

where a0, a1 and a2 are constants. This type of ODE can be solved using the method of
characteristic equations, i.e., by finding the roots of the polynomial a0 + a1λ + a2λ2 = 0 and
using them to form linearly independent solutions of the ODE.

We can apply our Bézier curve method to this class of ODEs as well. This is because the
second derivative d2B(t)

dt2 of a Bézier curve B(t) is also a Bézier curve. If B(t) is of degree n,
d2B(t)

dt2 is of degree n−2. Moreover, the control points of d2B(t)
dt2 are simple linear combinations

of the control points of B(t).
When a0 = −6, a1 = 1 and a2 = 1, the analytical solution is given by y(t) = 1

5 (e2t − e−3t)
for the initial conditions y(0) = 0, y′(0) = 1. Figure 5(a) shows the solution generated by the
Bézier curve method. This solution matches the analytical solution exactly.

Now consider the Euler-Cauchy ODE of the form

q

t2 y(t) + p

t
y′(t) + y′′(t) = 0, (10)

where p and q are constants. This class of ODEs also has well-studied analytical methods
for finding general solutions. When p = −5 and q = 13, the analytical solution is given by
y(t) = 0.5t3(2 cos(2 log t) − 3 sin(2 log t)) for the initial conditions y(1) = 1, y′(1) = 0.
Figure 5(b) shows the solution generated by the Bézier curve method. This solution
approximates the analytical solution fairly well.

The Bézier curve solution of the Euler-Cauchy ODE improves with increasing n and M .
Similarly, the Bézier curve approximations improve with increasing n and M when b(t) is
oscillatory.

4 Solving Systems of ODEs

In this section, we apply our methods to systems of ODEs. In such cases, we have to solve
for a vector of unknown functions ȳ(t) that satisfy differential equations involving their
derivatives. Although systems of ODEs invoke matrices to describe the relationships between



S. Sweitzer and T. K. S. Kumar 53:9

(a) ȳ′(t) = Aȳ(t); ȳ(0) = (1, 1)⊤. (b) ȳ′(t) = Aȳ(t); ȳ(0) = (1, 1)⊤.

Figure 6 Shows the solutions of a system of ODEs. The solution generated by the Bézier curve
method (blue and green for y1(t) and y2(t), respectively) better approximates the analytical solution
(red and pink, respectively) with increasing n. The analytical solution is ȳ(t) = 1

7 (1, −1)⊤e−t +
2
7 (3, 4)⊤e6t. In (a), 8 control points and 20 test points were used, resulting in a running time of
1.03 s. In (b), 11 control points and 20 test points were used, resulting in a running time of 0.90 s.
(The blue and green colors are not visible because of the exact match.) The columns of A are (2, 4)⊤

and (3, 3)⊤ in that order.

the various unknown functions and their derivatives, they involve only one independent
variable t. We focus our discussion on an example that illustrates the generality of our Bézier
curve method.

Consider the system of ODEs

ȳ′(t) = Aȳ(t), (11)

where ȳ(t) : R → R2 and A is a 2 × 2 matrix of real numbers. We have to solve for
ȳ(t) = (y1(t), y2(t))⊤.

The family of solutions for this system of ODEs is intimately related to the eigenvalues of
A. If A has two distinct real eigenvalues, λ1 and λ2, with corresponding eigenvectors v̄1 and
v̄2, the general solution is given by C1v̄1eλ1t + C2v̄2eλ2t, for constants C1 and C2. If A has
complex conjugate eigenvalues, λ1 ± iλ2, with corresponding eigenvectors v̄1 ± iv̄2, the general
solution is given by C1(v̄1 cos (λ2t) − v̄2 sin (λ2t))eλ1t + C2(v̄1 sin (λ2t) + v̄2 cos (λ2t))eλ1t. If
A has a repeated real eigenvalue λ and the eigenvectors v̄1 and v̄2 are linearly independent,
the general solution is given by C1v̄1eλt + C2v̄2eλt. If A has only one linearly independent
eigenvector v̄, the general solution is given by C1v̄eλt + C2(v̄teλt + η̄3λt), where η̄ is any
solution of (A − λI)η̄ = v̄.

For illustration, suppose A =
(

2 3
4 3

)
. Its eigenvalues are λ1 = −1 and λ2 = 6, with

corresponding eigenvectors v̄1 = (1, −1)⊤ and v̄2 = (3, 4)⊤. When accompanied by the initial
condition ȳ(0) = (1, 1)⊤, the analytical solution is ȳ(t) = 1

7 (1, −1)⊤e−t + 2
7 (3, 4)⊤e6t.

We can also solve for ȳ(t) using our Bézier curve method. The idea is to represent it
as a Bézier curve B(t) with 2-dimensional control points. If B(t) is chosen to be of degree
n, it has n + 1 to-be-determined control points P = {p̄0, p̄1 . . . p̄n}. Using the test points
t1, t2 . . . tM , we formulate the following QPP:

CP 2021



53:10 Differential Programming via OR Methods

Minimize
p̄0,p̄1...p̄n

M∑
i=1

ϵ2
i (12)

s.t. B(0) =
(

1
1

)
∀1 ≤ i ≤ M :

(
−ϵi

−ϵi

)
≤ B′(ti) − AB(ti) ≤

(
ϵi

ϵi

)
.

The constraints in this problem are linear since B(t) and B′(t) yield linear combinations of
the to-be-determined control points when evaluated at a specific t.

Figure 6 shows the solutions generated by the Bézier curve method. The solutions
approximate the analytical solution very well; and the accuracy increases with increasing n

and M .

5 Solving PDEs

In this section, we apply our methods to PDEs. In such cases, we have multiple independent
variables; and the required function is a surface in high-dimensional space. The differential
equations specifying the characteristics of the required function can involve its partial
derivatives. We generalize our Bézier curve method to the Bézier surface method. For
illustration, we focus our discussion on solving PDEs for a function f(t, u) on two independent
variables t and u.

A k-dimensional Bézier surface B(t, u) of degrees nt × nu is characterized by the k-
dimensional control points pi,j , for 0 ≤ i ≤ nt and 0 ≤ j ≤ nu. It is given by

B(t, u) =
nt∑

i=0

nu∑
j=0

pi,jBi,nt
(t)Bj,nu

(u), (13)

where Bi,nt
(t) and Bj,nu

(u) are the Bernstein basis polynomials. The partial derivatives of
B(t, u) are given by

∂B(t, u)
∂t

= nt

nt−1∑
i=0

nu∑
j=0

(pi+1,j − pi,j)Bi,nt−1(t)Bj,nu(u)

∂B(t, u)
∂u

= nu

nu−1∑
j=0

nt∑
i=0

(pi,j+1 − pi,j)Bi,nt
(t)Bj,nu−1(u)

Bézier surfaces have attractive mathematical properties equivalent to those of Bézier
curves [17]. These include their ability to approximate any surface with a sufficient number
of control points, being closed under the operations of differentiation, and being entirely
within the convex hull of their control points. For a function f(t, u) represented as a Bézier
surface B(t, u) of degrees nt × nu, there are (nt + 1) × (nu + 1) to-be-determined control
points. Evaluating B(t, u) at a specific test point (t, u) yields a linear combination of these
control points that can be easily incorporated into the formulation of a QPP.

Consider the following example PDE:

ft(t, u) + fu(t, u) + 2 = 0 (14)
f(t, 0) = t2,

where ft(t, u) and fu(t, u) denote the partial derivatives of f(t, u) with respect to t and u,
respectively, and f(t, 0) = t2 is a boundary condition.



S. Sweitzer and T. K. S. Kumar 53:11

(a) ft(t, u) + fu(t, u) + 2 = 0; f(t, 0) = t2.
(b) ft(t, u) − 4fuu(t, u) = 0; f(0, u) =
6 sin (πu), f(t, 0) = 0, f(t, 1) = 0.

(c) ft(t, u) − 4fuu(t, u) = 0; f(0, u) =
6 sin (πu), f(t, 0) = 0, f(t, 1) = 0.

(d) ft(t, u) − 4fuu(t, u) = 0; f(0, u) =
6 sin (πu), f(t, 0) = 0, f(t, 1) = 0.

Figure 7 Shows the solutions of some PDEs. The solutions generated by the Bézier surface
method are good approximations to the analytical solutions. The quality of the solutions increases
with the number of test points and the degrees used in the Bézier surface. In (a), the analytical
solution is f(t, u) = 2u + (t − u)2. In (b)-(d), the analytical solution is f(t, u) = 6 sin (πu)e−4π2t. In
(a), 4 × 4 control points and 17 test points were used, resulting in a running time of 2.36 s. In (b),
3 × 3 control points and 10 test points were used, resulting in a running time of 1.85 s. In (c), 6 × 6
control points and 37 test points were used, resulting in a running time of 2.33 s. In (d), 11 × 11
control points and 122 test points were used, resulting in a running time of 20.45 s. In (a) and (d),
the Bézier surface solution is an exact match to the analytical solution.

Using the test points (t1, u1), (t2, u2) . . . (tM , uM ), we formulate the following QPP:

Minimize
pi,j :0≤i≤nt,0≤j≤nu

M∑
l=1

(ϵ2
l + ε2

l ) s.t. (15)

∀1 ≤ l ≤ M : − ϵl ≤ ∂B(t, u)
∂t

+ ∂B(t, u)
∂u

+ 2 ≤ ϵl

∀1 ≤ l ≤ M : − εl ≤ B(tl, 0) − t2
l ≤ εl.

Our test points are chosen from [0, 1] × [0, 1]. Unlike the initial conditions in ODEs that were
imposed as hard constraints at specific points, the boundary conditions in PDEs typically
involve entire subspaces. For example, the boundary condition f(t, 0) = t2 involves all
t ∈ [0, 1]. While we can express this condition as a hard constraint equating two polynomials,
it risks posing an over-constrained problem. Therefore, we include it as a soft constraint in
the objective function, with each test point contributing a term to it.

CP 2021



53:12 Differential Programming via OR Methods

0 2 4 6
time t

0

2

4

6

8

ve
lo

cit
y 

d
(t) dt

(a) vmax = 8 m/s.

0 2 4 6
time t

0

2

4

6

8

ve
lo

cit
y 

d
(t) dt

(b) vmax = 4 m/s.

Figure 8 Shows the result of applying our Bézier curve method to the motion profile problem.
The orange curves are the optimal velocity profiles derived from physical interpretation. The blue
curves are close approximations produced by our method. In both cases, 40 control points were used
for the approximation. In both (a) and (b), L = 12 m, amax = 4 m/s2 and amin = −4 m/s2. In (a),
vmax = 8 m/s, and in (b), vmax = 4 m/s.

Figure 7(a) shows the result of our method for the above PDE with nt = 3, nu = 3 and
M = 17. The result is an exact match to the known analytical solution f(t, u) = 2u+(t−u)2.

We now consider a popular Heat Equation widely used in physics [18]. With Dirichlet
boundary conditions, the PDE is as follows:

ft(t, u) − 4fuu(t, u) = 0 (16)
f(0, u) = 6 sin (πu)
f(t, 0) = 0, f(t, 1) = 0.

Here, fuu(t, u) refers to the second partial derivative ∂2f(t,u)
∂u2 . The analytical solution is given

by f(t, u) = 6 sin (πu)e−4π2t.
Figures 7(b)-(d) show the results of our method for the Heat Equation with different

values of nt, nu and M . The accuracy improves with increasing degrees and number of test
points. In fact, an exact match to the analytical solution is achieved relatively quickly, as
shown in Figure 7(d).

6 Differential Programming with Inequalities

In the foregoing sections, we demonstrated the viability of our approach on various kinds
of ODEs and PDEs. As already outlined in the Introduction, we conducted this feasibility
study in anticipation of reaping the many benefits of our approach compared to existing
methods. In this section, we show one such benefit in allowing the use of inequalities.

Inequalities and differential operators are commonplace in robotics, physics, and hybrid
systems, among many other areas of science and engineering. For example, in robotics, a
robot might have a maximum acceleration or deceleration capability that is posed as an
inequality involving the second derivative of its motion profile. Existing analytical techniques
are not capable of handling inequalities; and existing numerical techniques do not produce
an analytical solution that may be required for downstream tasks. However, our Bézier curve
method is viable in such situations.



S. Sweitzer and T. K. S. Kumar 53:13

Consider the following simple motivating example. Suppose a robot is required to travel
a distance L in a straight line between two points A and B. Suppose it is required to start at
A and end at B with 0 velocities; and suppose it has maximum velocity vmax ≥ 0, maximum
acceleration amax ≥ 0 and minimum acceleration amin ≤ 0. The goal is to minimize the
traversal time T . Intuitively, the optimal solution is to start with maximum acceleration
amax and stop with maximum deceleration |amin|. In between, the robot should cap off at
the maximum velocity vmax. The two possible scenarios are illustrated in Figure 8.

Stated purely mathematically, the differential programming problem involves inequalities
and is as follows:

Find ℓ(t) : [0, T ] → R and minimum T s.t. (17)
∀t : ℓ′(t) ≤ vmax

∀t : amin ≤ ℓ′′(t) ≤ amax

ℓ(0) = 0, ℓ(T ) = L

ℓ′(0) = 0, ℓ′(T ) = 0.

As such, solving this mathematical problem without the physical interpretation is not
straightforward even from the perspective of techniques available in calculus. This is
primarily because of the inequalities imposed on the derivatives of continuous functions.

In contrast, our Bézier curve method solves this problem efficiently since inequalities
are naturally allowed in OR solvers. Figure 8 shows the Bézier curve solutions for ℓ(t), the
distance function that represents the distance covered at time t starting from A, for the two
possible scenarios. (See [19] for more details on this approach to solve the motion profile
problem and its generalization to the multi-robot scenario.)

We also note that our Bézier curve method is not just any polynomial-fitting method.
General polynomial-fitting methods cannot enforce global conditions on a function since they
are required to hold for all t. In our method, the convex hull property of Bézier curves is
invoked to ensure that satisfying inequalities at only the control points entails that they are
also globally satisfied.

7 Discussion

There are many anticipated benefits of our approach since it casts differential operators in the
language of OR, and consequently, in the language of search. Many optimization problems in
science and engineering that may not be directly amenable to analytical methods can instead
be solved programmatically using OR solvers. In turn, powerful OR solvers like Gurobi
are scalable to millions of variables. They also employ efficient parallelization techniques.
Moreover, since OR is already being studied in relation to constraint programming (CP)
and artificial intelligence (AI), our framework paves the way for combining the strengths
of variational techniques used in calculus, primal-dual techniques used in OR, constraint
propagation techniques used in CP, and heuristic search techniques used in AI.

Many problems in the real world can also benefit from rendering differential operators
in the language of search. In addition to scalability and reasoning with inequalities, this
reformulation allows us to introduce extra decision variables. Testing and verification
of complex systems involving ODEs/PDEs can be done via highly scalable search-based
methods instead of prohibitively expensive simulation-based methods. Optimization problems
in computational physics, e.g., how to optimally place a set of teflon dielectric cylinders to
focus electromagnetic power, can be solved using search-based methods after rendering the
PDEs of electromagnetism in the language of OR.

CP 2021



53:14 Differential Programming via OR Methods

8 Conclusions and Future Work

In this paper, we presented an OR-based approach for differential programming to address the
drawbacks of existing analytical and numerical methods. Analytical methods mostly remain
an art and are largely insufficient for complex systems. Numerical approximation methods
do not yield a viable analytical form of the solution that is often required for downstream
tasks. Our main idea was to represent entire functions as Bézier curves or Bézier surfaces
with to-be-determined control points. The ODEs/PDEs as well as their boundary conditions
can then be reformulated as constraints on these control points. In many cases, we showed
that this reformulation yields QPPs that can be solved efficiently. We also demonstrated the
use of our approach in differential programming with inequalities.

More generally, our work facilitates search-based methods for solving problems that
involve differential operators and sets the stage for combining the strengths of variational
methods used in calculus and search-based pruning methods used in OR, CP and AI. There
are many avenues of future work based on the foregoing discussions. We are also interested
in the idea of representing local regions of functions using separate Bézier curves/surfaces
and “stitching” them together under conditions of continuity to achieve more efficiency.

References
1 Ji-wung Choi, Renwick Curry, and Gabriel Elkaim. Path planning based on bézier curve for

autonomous ground vehicles. In Advances in Electrical and Electronics Engineering – IAENG
Special Edition of the World Congress on Engineering and Computer Science, pages 158–166,
2008.

2 Ken Dill and Sarina Bromberg. Molecular Driving Forces: Statistical Thermodynamics in
Biology, Chemistry, Physics, and Nanoscience. Garland Science, 2012.

3 Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. Finite volume methods. Handbook
of Numerical Analysis, 7:713–1018, 2000.

4 N. Fallah and N. Nikraftar. Meshless finite volume method for the analysis of fracture problems
in orthotropic media. Engineering Fracture Mechanics, 204:46–62, 2018.

5 Gerald Farin. Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide.
Elsevier, 2014.

6 Torkel Glad and Lennart Ljung. Control Theory. CRC Press, 2018.
7 Antonio Huerta, Ted Belytschko, Sonia Fernández-Méndez, Timon Rabczuk, Xiaoying Zhuang,

and Marino Arroyo. Meshfree methods. Encyclopedia of Computational Mechanics (Second
Edition), pages 1–38, 2018.

8 Thomas Hughes, Giancarlo Sangalli, and Mattia Tani. Isogeometric Analysis: Mathematical
and Implementational Aspects, with Applications. Lecture Notes in Mathematics Book Series
(LNM, volume 2219), 2018.

9 I. Krasilshchik and A. Vinogradov. Nonlocal trends in the geometry of differential equations:
Symmetries, conservation laws, and bäcklund transformations. In Symmetries of Partial
Differential Equations, pages 161–209. Springer, 1989.

10 Tadeusz Liszka and Janusz Orkisz. The finite difference method at arbitrary irregular grids
and its application in applied mechanics. Computers & Structures, 11(1-2):83–95, 1980.

11 George Lorentz. Bernstein Polynomials. American Mathematical Soc., 1986.
12 Michael Mortenson. Mathematics for Computer Graphics Applications. Industrial Press Inc.,

1999.
13 Lev Ovsiannikov. Group Analysis of Differential Equations. Academic Press, 2014.
14 Michael Renardy and Robert Rogers. An Introduction to Partial Differential Equations.

Springer, 2006.



S. Sweitzer and T. K. S. Kumar 53:15

15 Alberto Rojo and Anthony Bloch. The Principle of Least Action: History and Physics.
Cambridge University Press, 2018.

16 Sarah Tang and Vijay Kumar. Safe and complete trajectory generation for robot teams with
higher-order dynamics. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1894–1901, 2016.

17 Lianqiang Yang and Xiao-Ming Zeng. Bézier curves and surfaces with shape parameters.
International Journal of Computer Mathematics, 86:1253–1263, 2009.

18 Hugh Young, Roger Freedman, and Albert Ford. Sears and Zemansky’s University Physics.
Pearson Addison-Wesley, 2006.

19 Han Zhang, Neelesh Tiruviluamala, Sven Koenig, and T. K. Satish Kumar. Temporal reasoning
with kinodynamic networks. In Proceedings of the Thirty-First International Conference on
Automated Planning and Scheduling, 2021.

20 Olgierd Zienkiewicz, Robert Taylor, Perumal Nithiarasu, and J. Zhu. The Finite Element
Method. McGraw-Hill London, 1977.

CP 2021


	1 Introduction
	2 Background
	3 Solving ODEs
	3.1 First-Order Homogeneous Linear ODEs with Constant Coefficients
	3.2 First-Order Non-Homogeneous Linear ODEs with Constant Coefficients
	3.3 Higher-Order Linear ODEs

	4 Solving Systems of ODEs
	5 Solving PDEs
	6 Differential Programming with Inequalities
	7 Discussion
	8 Conclusions and Future Work

