
Integrating Tree Decompositions into Decision
Heuristics of Propositional Model Counters
Tuukka Korhonen #Ñ

HIIT, Department of Computer Science, University of Helsinki, Finland

Matti Järvisalo # Ñ

HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract
Propositional model counting (#SAT), the problem of determining the number of satisfying assign-
ments of a propositional formula, is the archetypical #P-complete problem with a wide range of
applications in AI. In this paper, we show that integrating tree decompositions of low width into
the decision heuristics of a reference exact model counter (SharpSAT) significantly improves its
runtime performance. In particular, our modifications to SharpSAT (and its derivant GANAK) lift
the runtime efficiency of SharpSAT to the extent that it outperforms state-of-the-art exact model
counters, including earlier-developed model counters that exploit tree decompositions.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases propositional model counting, decision heuristics, tree decompositions,
empirical evaluation

Digital Object Identifier 10.4230/LIPIcs.CP.2021.8

Category Short Paper

Supplementary Material Software (Source code and experimental data): https://github.com/
Laakeri/modelcounting-cp21

archived at swh:1:dir:fd1a6eaa9d3ba301b7151f077f51e1da29801ffe

Funding Work financially supported by Academy of Finland under grants 322869 and 328718.

1 Introduction

Propositional model counting (#SAT), the problem of determining the number of satisfying
assignments of a propositional formula, is the archetypical #P-complete problem [34]. Im-
proving the scalability of state-of-the-art model counters is a challenging task, motivated by
a wide range of applications in AI, including probabilistic reasoning, planning, quantified
information flow analysis, differential cryptanalysis, and model checking [29, 5, 25, 20, 2].

Many current exact model counters rely heavily on search techniques adapted from
Boolean satisfiability (SAT) solving and employ component caching to avoid repeatedly
counting over the same residual formulas seen during the counting process. In particular,
these techniques are applied both by “search-based” exact model counters (such as Cachet,
SharpSAT and GANAK [28, 33, 30]) and “compilation-based” counters (such as c2d, minic2d,
and D4 [7, 24, 21]) in which the compilation process is based on SAT solver traces. Hence
improvements to decision heuristics in the underlying model counters have the promise of
speeding up various state-of-the-art model counters.

In this work, we propose and evaluate the effects of integrating information on tree
decompositions of CNF formulas to guide the decision heuristics in search-based exact
propositional model counters. In theory, it is known that #SAT can be solved in time
poly(|ϕ|)2w, where |ϕ| is the size of the formula and w the width of a given tree decomposition
of the primal graph of the formula ϕ. If clause learning is not employed, search-based counters

© Tuukka Korhonen and Matti Järvisalo;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 8; pp. 8:1–8:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tuukka.m.korhonen@helsinki.fi
https://tuukkakorhonen.com/
https://orcid.org/0000-0003-0861-6515
mailto:matti.jarvisalo@helsinki.fi
https://www.cs.helsinki.fi/u/mjarvisa/
https://orcid.org/0000-0003-2572-063X
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://github.com/Laakeri/modelcounting-cp21
https://github.com/Laakeri/modelcounting-cp21
https://archive.softwareheritage.org/swh:1:dir:fd1a6eaa9d3ba301b7151f077f51e1da29801ffe;origin=https://github.com/Laakeri/modelcounting-cp21;visit=swh:1:snp:49a7ab123dd2b632f8ccf869033700445c419fb9;anchor=swh:1:rev:39fe67cb47f1985729ee3c185a4705d90b8cb048
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Integrating Tree Decompositions into Model Counters

achieve this time complexity if they employ component caching and a variable selection
algorithm based on the tree decomposition [1, 6, 9]. Tree decompositions have recently
been employed in dynamic programming based model counters [12, 15, 17], and recent
exact model counters have adapted alternative graph-based techniques, including heuristic
graph partitioning algorithms [8, 21, 24] and graph centrality measures [3], for deciding
variable orderings and decision heuristics. (For more discussion, see section on Related Work.)
However, we are not aware of earlier work on integrating tree decompositions directly as a
decision heuristic component in the context of search-based propositional model counters.

In this paper, we show that, in practice, exploiting tree decompositions of low width is easy
and effective in speeding up state-of-the-art search-based exact model counters SharpSAT
and GANAK on instances with treewidth as high as 150 (or even higher). In particular,
motivating the approach through theoretical observations, we describe how to integrate tree
decomposition guidance to the decision heuristics of these model counters. We show through
extensive empirical evaluation that the tree decomposition guided modifications of SharpSAT
and GANAK noticeably outperform other state-of-the-art exact model counters, including
the counters themselves in their default settings. Beyond the empirical evidence provided in
this paper, we note that our SharpSAT-based model counter SharpSAT-TD, implementing the
ideas presented in this work, ranked first in tracks 1, 2, and 4 of Model Counting Competition
2021 (see https://mccompetition.org/).

2 Preliminaries

We consider the problem of counting the number of satisfying truth assignments (or models)
of a conjunctive normal form (CNF) propositional formula, i.e., #SAT. A CNF formula is
denoted by ϕ, its variables by V (ϕ), clauses by cls(ϕ), and variables of a clause c by V (c).
The size of a formula ϕ is |ϕ| = |V (ϕ)|+ |cls(ϕ)|. We denote by ϕ|x=1 the formula obtained
from ϕ by assigning a variable x ∈ V (ϕ) to 1 (true), i.e., the formula ϕ with x removed from
the variable set, each clause containing literal x removed, and each occurrence of ¬x in any
clause removed. The formula ϕ|x=0 is defined analogously. The formula obtained by applying
unit propagation, i.e., setting ϕ ← ϕ|x=0 whenever there is a clause (¬x) and ϕ ← ϕ|x=1
whenever there is a clause (x), is denoted by UP(ϕ). The number of models of ϕ is #(ϕ). For
any variable x it holds that #(ϕ) = #(ϕ|x=0) + #(ϕ|x=1). Note also that #(ϕ) = #(UP (ϕ)).
We denote the union of two formulas ϕ1 and ϕ2 with disjoint variable sets by ϕ1 ⊔ ϕ2. The
fact that #(ϕ1 ⊔ ϕ2) = #(ϕ1) ·#(ϕ2) allows for separately counting the number of models in
the variable-disjoint formulas ϕ1 and ϕ2 to obtain the model count of ϕ1 ⊔ ϕ2 [19].

We consider tree decompositions of primal graphs of CNF formulas (aka Gaifman graphs).
A graph G has a set of vertices V (G) and a set of edges E(G). For a vertex set X ⊆ V (G)
we denote by X2 the set of all possible edges within X. The primal graph G(ϕ) of a formula
ϕ is a graph with V (G(ϕ)) = V (ϕ) and E(G(ϕ)) =

⋃
c∈cls(ϕ) V (c)2. In words, the vertices

of the primal graph are the variables and the edges are created by inducing a clique on the
variables of each clause.

▶ Example 1. Consider the CNF formula ϕ with variables V (ϕ) = {x1, . . . , x6} and clauses
cls(ϕ) as shown in Figure 1 (left). The primal graph G(ϕ) is in Figure 1 (middle). The
vertices of G(ϕ) are the variables of ϕ and the edges of G(ϕ) are defined by the clauses of ϕ.
For example, G(ϕ) contains the edge {x1, x2} because ϕ contains the clause (x1 ∨ ¬x2 ∨ x5).

A tree is a connected graph T with |E(T)| = |V (T)| − 1. A tree decomposition [26, 4]
of a graph G is a tree T whose each node t corresponds to a bag T [t] ⊆ V (G) containing
vertices of G and which satisfies the properties

https://mccompetition.org/

T. Korhonen and M. Järvisalo 8:3

1. V (G) ⊆
⋃

t∈V (T) T [t],
2. E(G) ⊆

⋃
t∈V (T) T [t]2, and

3. for each v ∈ V (G), the nodes {t ∈ V (T) | v ∈ T [t]} form a connected subtree of T .
The width of a tree decomposition T is w(T) = maxt∈V (T) |T [t]| − 1, and the treewidth of a
graph G is the minimum width over all tree decompositions of G. We use the convention that
one of the nodes of the tree decomposition is chosen as the root of the tree decomposition.
The root can be chosen arbitrarily. We denote by dT (t) the distance from the root to the
node t in the tree decomposition T , i.e., the depth of the node t.

▶ Example 2. Consider the CNF formula ϕ with variables V (ϕ) = {x1, . . . , x6} and clauses
cls(ϕ) as shown in Figure 1 (left). The primal graph G(ϕ) is shown in Figure 1 (middle),
and a tree decomposition T of G(ϕ) in Figure 1 (right). The bags of T are {x2, x3, x5},
{x1, x2, x5}, {x3, x5, x6}, and {x1, x4}. The width of T is 2 because the largest bag has size
3, and thus the treewidth of G(ϕ) is at most 2. Let t1 denote the node of T with the bag
T [t1] = {x2, x3, x5} and t2 the node with the bag T [t2] = {x1, x4}. If t1 is the root, then
dT (t1) = 0 and dT (t2) = 2.

3 Tree Decomposition Guided Model Counting

Consider the basic DPLL-style algorithm with component caching for model counting [1]
presented as Algorithm 1, consisting of unit propagation (Line 1), detection of disconnected
components (Line 4), component caching (cache check on Line 6, caching on Line 9), and
making decisions by selecting and assigning currently unassigned variables (Line 7).

Our focus in this work is on the decision heuristics, i.e., implementation of Line 7.
Algorithm 2 specifies the tree decomposition guided variable selection algorithm. By using
Algorithm 2 as the variable selection procedure in Algorithm 1, we obtain a DPLL-style tree
decomposition guided model counter.

▶ Example 3. Consider the run of Algorithm 1 on the formula ϕ of Figure 1 (left) using
Algorithm 2 with the tree decomposition T of Figure 1 (right), rooted on the node t1 with
the bag T [t1] = {x2, x3, x5}. In the first recursive call, the variable selected is x2 because
it is the lowest index variable in the bag of the root node. Consider a recursive call after
variable decisions x2 = 1, x3 = 1 by unit propagation, and x5 = 1. The remaining formula
has variables x1, x4, and x6, and only the clause (x1 ∨ ¬x4). On Line 4 it is partitioned to
two formulas, one with variable set {x1, x4}, and one with variable set {x6}. On a recursive
call on the former formula, the variable x1 is selected by Algorithm 2, because it is the only
variable left in the lowest-depth bag {x1, x2, x5} intersecting the variable set of the formula.

The time complexity of Algorithm 1 equipped with Algorithm 2 for variable selection is
poly(|ϕ|)2w(T), where T is the tree decomposition given as input. This time complexity and
similar observations have been already made earlier [1, 6, 9, 27].

{(¬x2 ∨ x3),
(x3 ∨ ¬x6),
(x5 ∨ x6),
(x1 ∨ ¬x2 ∨ x5),
(x1 ∨ ¬x4)}

x2 x3x1

x5 x6x4

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Figure 1 An example formula (left), its primal graph (middle), and one of tree decompositions of
the primal graph (right).

CP 2021

8:4 Integrating Tree Decompositions into Model Counters

Algorithm 1 DPLL-style model counter.

Input : Formula ϕ

Output : The number of satisfying assignments of ϕ

1 ϕ← UP(ϕ)
2 if ∅ ∈ cls(ϕ) then return 0
3 if V (ϕ) = ∅ then return 1
4 if ϕ = ϕ1 ⊔ ϕ2 then
5 return Count(ϕ1) · Count(ϕ2)
6 if ϕ in cache then return cache[ϕ]
7 x← VariableSelect(ϕ)
8 R← Count(ϕ|x=0) + Count(ϕ|x=1)
9 cache[ϕ] ← R

10 return R

Algorithm 2 Tree decomposition guided variable selection.

Input : Formula ϕ and tree decomposition T of G(ϕ)
Output : Variable x ∈ V (ϕ)

1 t← The lowest depth node of T with |T [t] ∩ V (ϕ)| ≥ 1
2 return The variable in T [t] ∩ V (ϕ) with the lowest index

▶ Proposition 4 ([6]). If Algorithm 1 implements the variable selection of Algorithm 2, then
the number of cache entries created during Algorithm 1 is at most |V (T)|(w(T) + 1)2w(T).

Proof. Suppose that the execution of Algorithm 1 is at Line 7. We show that there can be at
most 2w(T) different formulas ϕ for a fixed node t of T determined on Line 1 of Algorithm 2
and a fixed variable x returned by Algorithm 2. This implies the proposition because there
are at most |V (T)| choices for t and at most (w(T) + 1) choices for x.

Let p be the parent node of t in T . The formula ϕ can be obtained from the original
input formula by assigning all variables in T [p] ∩ T [t] and the variables in T [t] with lower
index than x, then applying unit propagation, and then selecting the component containing
x. There are at most w(T) such variables, so the number of choices is 2w(T). ◀

As each recursive call of Algorithm 1 is polynomial-time, time complexity poly(|ϕ|)2w(T)

follows from Proposition 4. Although Proposition 4 does not necessarily hold when equipping
Algorithm 1 with clause learning, we will show that tree decomposition guidance provides
significant performance improvements in practice also when clause learning is employed.

4 Integrating Tree Decompositions into Model Counters

In SharpSAT [33] and GANAK [30] (a SharpSAT derivative), variable selection is based on
variable scores, maintained as an array score mapping variables to floating point numbers.
The variable selection algorithm works by selecting the variable x with the highest score(x).
The score of each variable is based on two components: it is the sum of the frequency
score of the variable and the activity score of the variable. The frequency score is the
number of occurrences of the variable in the current formula, and an activity score similar
to VSIDS in SAT solvers [23]. The resulting heuristic, score(x) = act(x) + freq(x), with
both frequency and activity is called VSADS. Further, GANAK makes use of another score

T. Korhonen and M. Järvisalo 8:5

called CacheScore for prioritizing variables whose components were not recently added to
the cache. The resulting heuristic is called CSVSADS. We implement tree decomposition
based variable selection by modifying the score array in both SharpSAT and GANAK. In
principle, implementing tree decomposition based variable selection with the score array
amounts to just setting the score of a variable x to −min{t|x∈T [t]} dT (t), where dT (t) is the
distance from the root of T to the node t. However, as we show in our experiments it is
sometimes beneficial to use hybrid scores, even though the theoretical bound will not hold in
that case. In particular, we propose the following integration of tree decomposition guidance
as a modification of VSADS into both SharpSAT and GANAK:

score(x) = act(x) + freq(x)− C min
{t|x∈T [t]}

dT (t) (1)

where C is a per-instance chosen positive constant and dT (t) is normalized to take values
between 0 and 1. As default we use C = 100 exp(n/w)/n, where n is the number of variables
and w the width of the tree decomposition. We empirically justify this choice in Section 5.

For computing tree decompositions of low width in practice, we use FlowCutter [16, 32]
FlowCutter was ranked second in the 2nd Parameterized Algorithms and Computational Ex-
periments Challenge (PACE 2017) heuristic treewidth track, and was observed to outperform
the winning implementation on large graphs [10]. It is also used in the recent DPMC model
counter [12]. FlowCutter is an anytime algorithm, meaning that we can terminate it anytime
to get the best tree decomposition computed thus far. As the root of the tree decomposition
we choose a centroid node, i.e., a node t such that each component of G(ϕ) \ T [t] has at most
|V (G(ϕ))|/2 vertices. Before computing the tree decomposition we preprocess the formula
with the standard techniques of unit propagation and failed literal elimination.

Finally, although not on the level of internal decision heuristics, we note that both c2d [7]
and minic2d [24] can take as an input a structure to control the variable ordering inside
the compiler. In particular, c2d can take a decision tree (dtree) as an input and minic2d a
variable tree (vtree) as an input. Both of these structures can be constructed from a tree
decomposition so that the variable selection algorithm of the compiler implements Algorithm 2.
For empirically evaluating the impact of tree decompositions obtained with FlowCutter on
c2d and minic2d, we construct both of these structures from a tree decomposition by placing
all variables of the root bag to the top of the tree, and recursing to the subtrees.

5 Empirical Evaluation

We provide results from an extensive empirical evaluation, comparing the impact of integrating
tree decomposition based heuristics on the runtime performance of SharpSAT, GANAK,
c2d, and minic2d. We also compare to the extend possible the performance of these four
model counters with tree decomposition heuristics to the performance of the recent model
counters D4 [21], DPMC [12], gpusat [15] and NestHDB [17]; and SharpSAT with the recently
proposed centrality-based heuristics [3]. DPMC has both a tensor and a decision diagram
based implementation. We compare to the decision diagram based implementation, as it has
been reported to perform significantly better [12]. The decision diagram based implementation
has two versions, DPMC-LG which exploits tree decompositions and DPMC-HTB, and we
compare to both of them. (DPMC-HTB is equivalent to ADDMC [11].)

As benchmarks we used 2424 instances from recent empirical evaluations of model
counters. In particular, we merged an instance set of 1952 instances from http://www.
cril.univ-artois.fr/KC/benchmarks.html used in e.g. [21, 3, 12, 14] with an instance
set of 1619 instances from https://github.com/dfremont/counting-benchmarks used

CP 2021

http://www.cril.univ-artois.fr/KC/benchmarks.html
http://www.cril.univ-artois.fr/KC/benchmarks.html
https://github.com/dfremont/counting-benchmarks

8:6 Integrating Tree Decompositions into Model Counters

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1000 1200 1400 1600 1800 2000

Ti
m

e
 (

s)

Instances solved

SharpSAT-TD (1970)
GANAK-TD (1970)

D4 (1880)
c2d-TD (1831)

SharpSAT-Cen (1790)
c2d (1780)

DPMC-LG (1724)
SharpSAT (1664)

minic2d-TD (1648)
GANAK (1623)

DPMC-HTB (1609)
minic2d (1583)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
h
a
rp

S
A
T-

T
D

SharpSAT

Figure 2 Left: Empirical runtime comparison of different model counters. Right: average number
of variables in component cache hits, SharpSAT vs SharpSAT-TD.

Table 1 Pairwise comparison of original versions of SharpSAT, GANAK, c2d and minic2d against
their tree decomposition guided versions.

Family #Ins VBS VBS-O VBS-TD SharpSAT SharpSAT-TD GANAK GANAK-TD c2d c2d-TD minic2d minic2d-TD
BN-Ratio 389 387 333 387 177 385 163 386 329 345 289 330
BN-DQMR 660 629 627 629 627 629 620 629 577 593 598 584
BN-Ace 31 22 22 22 22 22 22 22 22 22 19 16
BN-other 5 4 3 4 1 2 1 2 3 4 2 2
Plan recognition 11 11 11 11 11 11 11 11 10 11 10 11
Planning-pddl 529 458 451 447 417 446 405 446 426 428 415 390
Planning-other 17 16 16 16 15 16 15 16 13 13 11 13
Circuit-iscas 132 117 117 116 112 116 109 116 110 109 109 104
Circuit-other 17 10 10 10 10 10 10 10 9 9 10 9
BMC-symb-markov 130 118 112 118 52 118 53 114 94 108 20 20
BMC-other 18 14 13 11 12 11 12 11 7 8 3 7
Symbolic-sygus 138 22 21 17 19 15 20 16 1 0 0 0
QIF-maxcount-qif 127 12 11 12 11 12 6 12 10 10 4 4
QIF-other 7 5 4 5 4 5 4 5 4 5 2 3
Handmade 68 36 36 36 36 34 35 36 31 33 33 35
Configuration 35 35 35 35 35 35 34 35 33 32 21 21
Random 104 103 103 103 103 103 103 103 101 101 37 99
Scheduling 6 0 0 0 0 0 0 0 0 0 0 0
Total 2424 1999 1925 1979 1664 1970 1623 1970 1780 1831 1583 1648

in e.g. [15, 14, 17], removing duplicates and instances found unsatisfiable using a SAT
solver. The benchmark set divides into 18 families from applications in e.g. probabilistic
reasoning, planning, model checking, synthesis [29, 25, 21]. The experiments were run
single-threaded on computers with 2.6-GHz Intel Xeon E5-2670 processors. A time limit of 2
hours and memory limit of 16 GB was used. Please consult https://github.com/Laakeri/
modelcounting-cp21 for source code and detailed data.

Figure 2(left) overviews the relative performance of the model counters (apart from gpusat
and NestHDB). SharpSAT and GANAK using the tree decomposition heuristics (*-TD)
solved the greatest number of instances (1970), resulting in state-of-the-art performance
over all the considered counters. After SharpSAT-TD and GANAK-TD, the best-performing
counters are D4, c2d-TD (i.e., the tree decomposition guided c2d), and SharpSAT using
centrality-based heuristics, solving 1880, 1831, and 1790 instances, respectively. Note that
here we allowed a fixed 900 seconds for tree decomposition computation using FlowCutter
on each instance for SharpSAT-TD, GANAK-TD, c2d-TD, and minic2d-TD (as well as
DPMC-LG; see Related Work section). This 900-second runtime is included in the results, as
can be clearly seen in Figure 2(left). However, using this relatively high number of seconds
is not necessary: when using 5, 60, 900, and 1800 seconds, respectively, the numbers of

https://github.com/Laakeri/modelcounting-cp21
https://github.com/Laakeri/modelcounting-cp21

T. Korhonen and M. Järvisalo 8:7

Table 2 Pairwise comparison grouped by width of tree decompositions used by SharpSAT-TD.

Width #Ins VBS VBS-O VBS-TD SharpSAT SharpSAT-TD GANAK GANAK-TD c2d c2d-TD minic2d minic2d-TD
≤ 20 810 810 809 810 798 810 791 810 809 810 809 810
21 . . . 30 526 525 509 525 405 524 385 524 467 489 483 451
31 . . . 50 378 307 286 303 173 302 164 302 254 266 165 185
51 . . . 100 259 164 131 155 101 152 95 153 106 117 60 71
101 . . . 150 57 27 26 27 25 26 25 27 18 23 8 13
151 . . . 200 128 115 114 115 114 115 114 115 112 110 44 108
201 . . . 300 43 31 31 27 31 26 31 26 11 13 11 7
301 ≤ 223 20 19 17 17 15 18 13 3 3 3 3
Total 2424 1999 1925 1979 1664 1970 1623 1970 1780 1831 1583 1648

Table 3 Comparison of gpusat, NestHDB, and SharpSAT-TD, grouped by width of the tree
decomposition used by SharpSAT-TD.

Width #Ins VBS gpusat NestHDB SharpSAT-TD
≤ 30 1232 1232 1232 1232 1232
31 . . . 50 21 14 1 10 14
51 . . . 100 15 10 0 7 9
101 . . . 200 18 16 0 16 16
201 . . . 266 21 11 0 8 10
267 ≤ 187 0 0 0 0
Total 1494 1283 1233 1273 1281

instances solved by SharpSAT-TD are, respectively, 1962, 1971, 1970, and 1967. In particular,
using the much lower time limit of 5 seconds would result in very much the same overall
performance for SharpSAT-TD.

Table 1 gives a per benchmark family comparison of the impact of tree decomposition
based heuristics on the number of instances solved by SharpSAT, GANAK, c2d and minic2d.
SharpSAT-TD improves significantly on SharpSAT (1970 vs 1664 solved), and similarly
GANAK-TD improves significantly on GANAK (1970 vs 1623). Furthermore, SharpSAT-TD
and GANAK-TD solve only 9 instances less that the virtual best solver VBS-TD, which is
considered to solve an instance if at least one of SharpSAT-TD, GANAK-TD, c2d-TD, and
minic2d-TD solves the instance. VBS-TD also outperforms the virtual best solver VBS-O
over the original four model counters which evidently are more different from each other than
their modifications, each using the same tree decomposition to guide the counting process;
Indeed, the difference between VBS-O and the best original model counter is 145 instances,
in contrast to the difference of 9 instance between VBS-TD and SharpSAT-TD.

The number of instances solved, with instances grouped by the width of the tree de-
composition found with FlowCutter in 900 seconds, is shown in Table 2. We observe to a
great extent consistent performance improvement for each of the four model counters up to
width 150 and at times even up to width 200. For instances of width ≤ 20, SharpSAT-TD,
GANAK-TD, c2d-TD, and minic2d-TD each solve all instances, while the original SharpSAT,
GANAK, c2d, and minic2d each fail to solve some instances.

Due to the techniques gpusat and NestHDB implement – gpusat relies on certain GPU
hardware, and NestHDB relies on a database management system – we were unable to
run them ourselves. Hence we are forced to resort to comparing our runtimes with the
empirical results provided for gpusat and NestHDB in their respective papers [15, 17] using
the benchmark instances used therein. For this indirect comparison, following [17], we
enforced a per-instance time limit of 900 s, memory limit of 16 GB, and tree decomposition
computation time limit of 60 s on SharpSAT-TD. Table 3 provides the indirect comparison
with instances grouped by the width of the tree decomposition used by SharpSAT-TD. On
this set of 1494 instances, gpusat solves 1233 instances and NestHDB solves 1273, while
SharpSAT-TD solves 1281 instances. Note that in [17] NestHDB was found to be the best

CP 2021

8:8 Integrating Tree Decompositions into Model Counters

against a range of other model counters on these benchmarks, and minic2d second-best
solving 1243 instances. Here SharpSAT-TD outperforms gpusat and NestHDB on all ranges
of width apart from ≤ 30 and [101..200], where it solves the same instances as VBS.

Finally, we shortly overview further observation on the impact of the tree decomposition
based heuristics in SharpSAT. We considered modifications of the variable selection heuristics
(Equation 1) for SharpSAT-TD. Recall that SharpSAT-TD solved 1970 instances using
the heuristic with default activity and frequency components and C determined as C =
100 exp(n/w)/n. When selecting C as 103, 107, and 100 exp(n/w), SharpSAT-TD solves
1922, 1964, and 1960 instances, respectively. We note that the choice 107 leads to the
tree decomposition based component always dominating in the equation, with activity
and frequency serving only as tiebreakers. When C = 100 exp(n/w)/n and the activity
component is removed, SharpSAT-TD solves 1965 instances, while when the frequency
component is removed SharpSAT-TD solves 1962 instances. Hence the impact of each of
these two components on their own, when including the tree decomposition component, is
relatively small. However, when both the activity and the frequency component are removed,
SharpSAT-TD solves only 1855 instances. Putting all of these observations together, we
believe that the activity and frequency components act mainly as a secondary tiebreaking
mechanism for choosing between variables in the same bag of the decomposition. Furthermore,
the impact of the choice between using activity vs frequency as the tiebreaking mechanism
appears to be small, and the primary heuristic component leading to the observed performance
improvements is indeed the tree decomposition component.

The tree decomposition based heuristics appears to have a positive impact on average
cache hit size, i.e., the number of variables of the components found to be in cache during
checks to the component cache. Intuitively, the larger the cache hits, the earlier SharpSAT
can determine the number of models in the current search branch, thereby saving time due to
the component cache. Figure 2 (right) shows average cache hit sizes reported by SharpSAT
and SharpSAT-TD on instances which both of them solved using at least 60 seconds on
search (267 instances). The tree decomposition guided variable selection increases average
cache hit size for most of the instances. (We did not observe clear effects on cache hit rates;
cache hit rates do not distinguish hits on small components from hits on large component.)

6 Related Work

The idea of exploiting low-width tree decompositions in model counters has recently gained
popularity with the model counters gpusat [15], NestHDB [17] and DPMC-LG [12] explicitly
exploiting low-width tree decompositions. In contrast to our work, gpusat, NestHDB, and
the tensor implementation of DPMC-LG exploit tree decompositions by manipulating dense
dynamic programming tables. The model counters gpusat and the tensor implementation of
DPMC-LG are “pure” dynamic programming implementations that suffer from best-case time
complexity exponential in treewidth, while NestHDB also incorporates hybrid techniques,
including falling back to SharpSAT in subproblems with high treewidth. The decision
diagram implementation of DPMC-LG uses tree decompositions via project join trees to
build an algebraic decision diagram using the CUDD package [31].

In the context of #CSP, tree decompositions have been exploited in the #BTD [13]
and #EBTD[18] backtracking algorithms. The method of exploiting tree decompositions in
#BTD and #EBTD is similar to SharpSAT-TD when selecting a high value of the constant
C, although many techniques exploited in these counters are CSP-specific.

T. Korhonen and M. Järvisalo 8:9

Instead of tree decompositions, heuristic graph partitioning is used in compilation-based
model counters: D4 uses the PaToH graph partitioner [21], c2d uses Hmetis [8], and minic2d
uses the min-fill heuristic for variable ordering [24]. GANAK introduced a variable selection
heuristic CSVSADS aiming to increase the cache hit rate by discouraging branching from
variables whose components were recently cached [30]. In the context of constraint networks,
heuristics aiming to promote decomposition into components have been evaluated in [22].

7 Conclusion

We proposed a simple approach for integrating tree decomposition guidance into the decision
heuristics of exact model counters. As a decision heuristic, the approach is directly applicable
to both unweighted and weighted model counting. The empirical results suggest that tree
decomposition guided SharpSAT dominates in performance standard exact model counters.
and provides significant performance improvements in practice.

References
1 Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity results

for #SAT and Bayesian inference. In 44th Symposium on Foundations of Computer Science,
FOCS 2003, pages 340–351. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238208.

2 Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay, Kuldeep S. Meel, and Jean
Quilbeuf. Scalable approximation of quantitative information flow in programs. In Isil Dillig
and Jens Palsberg, editors, Verification, Model Checking, and Abstract Interpretation – 19th
International Conference, VMCAI 2018, volume 10747 of Lecture Notes in Computer Science,
pages 71–93. Springer, 2018. doi:10.1007/978-3-319-73721-8_4.

3 Bernhard Bliem and Matti Järvisalo. Centrality heuristics for exact model counting. In 31st
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019, pages 59–63.
IEEE, 2019. doi:10.1109/ICTAI.2019.00017.

4 Hans L. Bodlaender. Discovering treewidth. In Peter Vojtás, Mária Bieliková, Bernadette
Charron-Bost, and Ondrej Sýkora, editors, SOFSEM 2005: Theory and Practice of Computer
Science, 31st Conference on Current Trends in Theory and Practice of Computer Science,
volume 3381 of Lecture Notes in Computer Science, pages 1–16. Springer, 2005. doi:10.1007/
978-3-540-30577-4_1.

5 Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7):772–799, 2008. doi:10.1016/j.artint.2007.11.002.

6 Adnan Darwiche. Decomposable negation normal form. Journal of the ACM, 48(4):608–647,
2001. doi:10.1145/502090.502091.

7 Adnan Darwiche. New advances in compiling CNF into decomposable negation normal form.
In Ramón López de Mántaras and Lorenza Saitta, editors, Proceedings of the 16th European
Conference on Artificial Intelligence, ECAI’2004, pages 328–332. IOS Press, 2004.

8 Adnan Darwiche. The C2D compiler user manual. Technical Report D-147, UCLA Department
of Computer Science, 2005.

9 Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. Artificial
Intelligence, 171(2-3):73–106, 2007. doi:10.1016/j.artint.2006.11.003.

10 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
parameterized algorithms and computational experiments challenge: The second iteration.
In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on
Parameterized and Exact Computation, IPEC 2017, volume 89 of LIPIcs, pages 30:1–30:12.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.IPEC.2017.
30.

CP 2021

https://doi.org/10.1109/SFCS.2003.1238208
https://doi.org/10.1007/978-3-319-73721-8_4
https://doi.org/10.1109/ICTAI.2019.00017
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1145/502090.502091
https://doi.org/10.1016/j.artint.2006.11.003
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30

8:10 Integrating Tree Decompositions into Model Counters

11 Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC: Weighted model counting with
algebraic decision diagrams. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, pages 1468–1476. AAAI Press, 2020. URL: https://aaai.org/ojs/index.php/
AAAI/article/view/5505.

12 Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi. DPMC: Weighted model counting
by dynamic programming on project-join trees. In Helmut Simonis, editor, Principles and
Practice of Constraint Programming – 26th International Conference, CP 2020, volume
12333 of Lecture Notes in Computer Science, pages 211–230. Springer, 2020. doi:10.1007/
978-3-030-58475-7_13.

13 Aurélie Favier, Simon de Givry, and Philippe Jégou. Exploiting problem structure for solution
counting. In Ian P. Gent, editor, Principles and Practice of Constraint Programming – CP
2009, 15th International Conference, CP 2009, volume 5732 of Lecture Notes in Computer
Science, pages 335–343. Springer, 2009. doi:10.1007/978-3-642-04244-7_27.

14 Johannes K. Fichte, Markus Hecher, and Florim Hamiti. The Model Counting Competition
2020. CoRR, abs/2012.01323, 2020. arXiv:2012.01323.

15 Johannes Klaus Fichte, Markus Hecher, and Markus Zisser. An improved GPU-based SAT
model counter. In Thomas Schiex and Simon de Givry, editors, Principles and Practice of
Constraint Programming – 25th International Conference, CP 2019, volume 11802 of Lecture
Notes in Computer Science, pages 491–509. Springer, 2019. doi:10.1007/978-3-030-30048-7_
29.

16 Michael Hamann and Ben Strasser. Graph bisection with pareto optimization. ACM Journal
of Experimental Algorithmics, 23, 2018. doi:10.1145/3173045.

17 Markus Hecher, Patrick Thier, and Stefan Woltran. Taming high treewidth with abstraction,
nested dynamic programming, and database technology. In Luca Pulina and Martina Seidl,
editors, Theory and Applications of Satisfiability Testing – SAT 2020 – 23rd International
Conference, volume 12178 of Lecture Notes in Computer Science, pages 343–360. Springer,
2020. doi:10.1007/978-3-030-51825-7_25.

18 Philippe Jégou, Hanan Kanso, and Cyril Terrioux. Improving exact solution counting for
decomposition methods. In 28th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2016, pages 327–334. IEEE Computer Society, 2016. doi:10.1109/ICTAI.
2016.0057.

19 Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek. Counting models using connected
components. In Henry A. Kautz and Bruce W. Porter, editors, Proceedings of the Seventeenth
National Conference on Artificial Intelligence , AAAI 2000, pages 157–162. AAAI Press / The
MIT Press, 2000. URL: http://www.aaai.org/Library/AAAI/2000/aaai00-024.php.

20 Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON block cipher
family. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO
2015 – 35th Annual Cryptology Conference, volume 9215 of Lecture Notes in Computer Science,
pages 161–185. Springer, 2015. doi:10.1007/978-3-662-47989-6_8.

21 Jean-Marie Lagniez and Pierre Marquis. An improved decision-DNNF compiler. In Carles
Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, pages 667–673. ijcai.org, 2017. doi:10.24963/ijcai.2017/93.

22 Jean-Marie Lagniez, Pierre Marquis, and Anastasia Paparrizou. Defining and evaluating
heuristics for the compilation of constraint networks. In J. Christopher Beck, editor, Principles
and Practice of Constraint Programming – 23rd International Conference, CP 2017, volume
10416 of Lecture Notes in Computer Science, pages 172–188. Springer, 2017. doi:10.1007/
978-3-319-66158-2_12.

23 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, pages 530–535. ACM, 2001. doi:10.1145/378239.379017.

24 Umut Oztok and Adnan Darwiche. An exhaustive DPLL algorithm for model counting. Journal
of Artificial Intelligence Research, 62:1–32, 2018. doi:10.1613/jair.1.11201.

https://aaai.org/ojs/index.php/AAAI/article/view/5505
https://aaai.org/ojs/index.php/AAAI/article/view/5505
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-642-04244-7_27
http://arxiv.org/abs/2012.01323
https://doi.org/10.1007/978-3-030-30048-7_29
https://doi.org/10.1007/978-3-030-30048-7_29
https://doi.org/10.1145/3173045
https://doi.org/10.1007/978-3-030-51825-7_25
https://doi.org/10.1109/ICTAI.2016.0057
https://doi.org/10.1109/ICTAI.2016.0057
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.1007/978-3-319-66158-2_12
https://doi.org/10.1007/978-3-319-66158-2_12
https://doi.org/10.1145/378239.379017
https://doi.org/10.1613/jair.1.11201

T. Korhonen and M. Järvisalo 8:11

25 Markus N. Rabe, Christoph M. Wintersteiger, Hillel Kugler, Boyan Yordanov, and Youssef
Hamadi. Symbolic approximation of the bounded reachability probability in large Markov
chains. In Gethin Norman and William H. Sanders, editors, Quantitative Evaluation of
Systems – 11th International Conference, QEST 2014, volume 8657 of Lecture Notes in
Computer Science, pages 388–403. Springer, 2014. doi:10.1007/978-3-319-10696-0_30.

26 Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

27 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. Journal of
Discrete Algorithms, 8(1):50–64, 2010. doi:10.1016/j.jda.2009.06.002.

28 Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi. Combining
component caching and clause learning for effective model counting. In SAT 2004 – The
Seventh International Conference on Theory and Applications of Satisfiability Testing, 2004.
URL: http://www.satisfiability.org/SAT04/programme/21.pdf.

29 Tian Sang, Paul Beame, and Henry A. Kautz. Performing Bayesian inference by weighted
model counting. In Manuela M. Veloso and Subbarao Kambhampati, editors, The Twentieth
National Conference on Artificial Intelligence, AAAI 2005, pages 475–482. AAAI Press / The
MIT Press, 2005. URL: http://www.aaai.org/Library/AAAI/2005/aaai05-075.php.

30 Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. GANAK: A scalable
probabilistic exact model counter. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2019, pages 1169–1176. ijcai.org,
2019. doi:10.24963/ijcai.2019/163.

31 Fabio Somenzi. CUDD: CU decision diagram package–release 3.0.0, 2015. URL: https:
//github.com/ivmai/cudd.

32 Ben Strasser. Computing tree decompositions with FlowCutter: PACE 2017 submission.
CoRR, abs/1709.08949, 2017. arXiv:1709.08949.

33 Marc Thurley. sharpSAT – counting models with advanced component caching and implicit
BCP. In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability
Testing – SAT 2006, 9th International Conference, volume 4121 of Lecture Notes in Computer
Science, pages 424–429. Springer, 2006. doi:10.1007/11814948_38.

34 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979. doi:10.1137/0208032.

CP 2021

https://doi.org/10.1007/978-3-319-10696-0_30
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/j.jda.2009.06.002
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
https://doi.org/10.24963/ijcai.2019/163
https://github.com/ivmai/cudd
https://github.com/ivmai/cudd
http://arxiv.org/abs/1709.08949
https://doi.org/10.1007/11814948_38
https://doi.org/10.1137/0208032

	1 Introduction
	2 Preliminaries
	3 Tree Decomposition Guided Model Counting
	4 Integrating Tree Decompositions into Model Counters
	5 Empirical Evaluation
	6 Related Work
	7 Conclusion

