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Abstract
The algebraic path problem provides a general setting for shortest path algorithms in optimization
and computer science. We explain the universal property of solutions to the algebraic path problem
by constructing a left adjoint functor whose values are given by these solutions. This paper extends
the algebraic path problem to networks equipped with input and output boundaries. We show that
the algebraic path problem is functorial as a mapping from a double category whose horizontal
composition is gluing of open networks. We introduce functional open matrices, for which the
functoriality of the algebraic path problem has a more practical expression.
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1 Introduction

The algebraic path problem is a generalization of the shortest path problem to probability,
computing, matrix multiplication, and optimization [18, 9]. Let ([0,∞],min,+) be the rig
of positive real numbers with min as the “additive” monoid and + as the “multiplicative”
monoid. A matrix M valued in [0,∞] is regarded as a distance network and the shortest
paths of M between all pairs of vertices may be computed using the geometric series
formula: F (M) =

∑
n≥0 M

n. The algebraic path problem frames many existing problems
as generalizations of the shortest path problem by allowing [0,∞] to be replaced by a
sufficiently nice rig R. Many popular shortest path algorithms can be extended to this more
general setting [10] and the algebraic path problem can also be implemented generically using
functional programming [5]. In Section 2, we show that finding solutions to the algebraic
path problem can be understood as the left adjoint of an adjunction

RMat RCat
F

⊥
U

between matrices valued in R and categories enriched in R.
The algebraic path problem deals only with closed systems, i.e. systems which are isolated

from their surroundings. On the other hand, open systems are equipped with input and
output boundaries, from which they can be composed to form larger and more complicated
networks. A research program intiated by Baez, Courser, and Fong aims to provide a
theoretical foundation for open systems using cospan formalisms [7, 1]. For a category of
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20:2 The Open Algebraic Path Problem

networks C, Baez and Courser defined a symmetric monoidal double category which provides
a syntax for composition of open systems in C [1]. In Section 3, we set C equal to RMat,
the category of matrices weighted in a quantale R, to obtain a symmetric monoidal double
category Open(RMat). The essence of this double category is gluing. Open R-matrices are
represented as cospans with feet given by 0-matrices. Given two such open R-matrices, take
their pushout

M +0Y
N

M N

0X 0Y 0Z

to obtain an open R-matrix whose apex is synthesized from joining M and N along their
shared boundary. This, along with the other data and structure of Open(RMat), provide
a syntax for manipulating open R-matrices. The axioms of a symmetric monoidal double
category guarantee that this syntax is well-behaved. For example, the word problem for
double categories is solvable in quadratic time and double categories are equipped with a
string diagram calculus [4, 14].

RCat, the category of R-enriched categories provides a choice of semantics for R-matrices,
and can be expressed as R-matrices satisfying some regularity properties. In Section 2, we
show how the solution to the algebraic path problem forms the left adjoint F of an adjunction
below left

RMat RCat
F

⊥
U

⋆ : Open(RMat) → Open(RCat)

which provides a mapping from the syntax of R-matrices to the semantics of R-categories.
R-categories equipped with input and output boundaries form the horizontal morphisms of a
symmetric monoidal double category Open(RCat). In Section 4, we show how the algebraic
path problem functor lifts to a symmetric monoidal double functor providing a coherent
semantics for the syntax of open R-matrices as shown above right. This symmetric monoidal
double functor provides a framework for studying how solutions to the algebraic path problem
can be built inductively from gluings of smaller open R-matrices. The axioms of a symmetric
monoidal double functor guarantee that this inductive process is well-behaved.

This result is more theoretical than practical. However, there is a subclass of open R-
matrices, functional open R-matrices, for which the theory provides useful insight. Functional
open R-matrices are roughly open R-matrices where the inputs are all sources and the outputs
are all sinks. In Section 5 we show that there is a strict double functor

■ ◦ ⋆fxn : Open(RMat)fxn → MatR

where MatR is a double category of R-matrices whose horizontal composition is matrix
multiplication. This strict double functor gives a series of coherent compositional relationships
for the algebraic path problem on functional open R-matrices based on matrix multiplication.
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2 The Algebraic Path Problem

The algebraic path problem arises from the observation that various optimization problems
can be framed in the same way by varying a sufficiently nice sort of rig. The level of generality
for this work will be a commutative quantale, which is sufficient to guarantee existence and
uniqueness of solutions to these optimization problems.

▶ Definition 1. A quantale is a monoidal closed poset with all joins. Explicitly, a quantale
is a poset R with an associative, unital, and monotone multiplication · : R × R → R such
that for every index set I

all joins,
∑

i∈I xi, exist
· preserves all joins, i.e.

a ·
∑
i∈I

xi =
∑
i∈I

a · xi.

A quantale is commutative if its multiplication operation, ·, is commutative.

A motivating example of such a quantale is the poset [0,∞] with + as its monoidal product
and with join given by infimum. Note that this poset is equipped with the reverse of the usual
ordering on [0,∞]. Fong and Spivak show how the shortest path problem on this quantale
computes the shortest paths between all pairs of vertices in a given [0,∞]-weighted graph
[8, §2.5.3]. Other motivating examples include the rig ([0, 1], sup, ·) (whose algebraic path
problem corresponds to most likely path in a Markov chain) and the powerset of the language
generated by an alphabet (whose algebraic path problem corresponds to the language decided
by a nondeterministic finite automata (NFA))[9].

▶ Definition 2. For a commutative quantale R and sets X and Y , an R-matrix M : X → Y

is a function M : X × Y → R. For R-matrices M : X → Y and N : Y → Z, their matrix
product MN is defined by the rule

MN(i, k) =
∑
j∈Y

M(i, j)N(j, k)

where juxtaposition denotes the multiplication of R.

If R is a commutative quantale, R-matrices form a quantale as well.

▶ Definition 3. Let RMat(X) be the set of X-by-X matrices M : X × X → R. RMat(X)
is equipped with the partial order ≤ where M ≤ N if and only if M(i, j) ≤ N(i, j) for all
i, j ∈ X.

▶ Proposition 4. RMat(X) is a quantale with
join given by pointwise sum of matrices,
and multiplication given by matrix product.

The proof of this proposition is left to the reader. All the required properties of RMat(X)
follow from the analogous properties in R.

A square matrix M : X ×X → R represents a complete R-weighted graph whose vertex
set is given by X.

▶ Definition 5. Let M : X × X → R be a square matrix. A vertex of M is an element
i ∈ X. An edge of M is a tuple of vertices (a, b) ∈ X × X. A path in M from a0
to an is a list of adjacent edges p = ((a0, a1), (a1, a2), . . . , (an−1, an)). The weight of p
is defined as the product l(p) = Πn−1

i=0 M(ai, ai+1) in R. For vertices i, j ∈ X, let PM
ij =

{ paths in M from i to j }

CALCO 2021



20:4 The Open Algebraic Path Problem

Let i and j be vertices of a square matrix M : X ×X → R. The algebraic path problem asks
to compute the quantity

∑
p∈P M

ij
l(p) in the quantale R. If R is the quantale ([0,∞], inf,+)

then the weight of an edge Mij represents the distance between vertex i and vertex j and the
weight of a path l(p) represents the total distance traversed by p. Summing the weights of all
paths between a pair of vertices corresponds to finding the path with the minimum weight.

A more tractable framing of the algebraic path problem can be found by considering
matrix powers. The entries of M2 are given by

M2(i, j) =
∑
l∈X

M(i, l)M(l, j) = inf l∈X{M(i, l) +M(l, j)}.

Because M(i, l) and M(l, j) represent the distance from i to l and from l to j, this infimum
computes the cheapest way to travel from i to j while stopping at some l in between. More
generally, the entries of Mn for n ≥ 0 represent the shortest paths between nodes of your
graph that occur in exactly n steps. To compute the shortest paths which can occur in any
number of steps, we must take the infimum of the matrices Mn over all n ≥ 0. This pattern
replicates for other choices of quantale. Therefore, the algebraic path problem seeks to
compute

F (M) =
∑
n≥0

Mn (1)

where M is an R-matrix. The following table summarizes some instances of the algebraic
path problem for different choices of R. Fink provides an explanation of the algebraic path
problems for ([0,∞],≤) and {T, F} and Foote provides an explanation for the quantales
([0, 1],≤) and (P(Σ),⊆) [6, 9].

poset join multiplication solution of path problem
([0, ∞], ≥) inf + shortest paths in a weighted graph
([0, ∞], ≤) sup inf maximum capacity in the tunnel problem
([0, 1], ≤) sup × most likely paths in a Markov process

{T, F } OR AND transitive closure of a directed graph
(P(Σ∗), ⊆)

⋃
concatenation decidable language of a NFA

Note that in this table, P(Σ∗) denotes the power set of the language generated by an alphabet
Σ.

Equation (1) is known to category theorists by a different name: the free monoid on M .
Framing it in this way gives a categorical proof of existence and uniqueness of F (M). A
classic result from [12, §V11] gives a construction of free monoids. MacLane’s construction is
defined as an adjunction into a category of internal monoids.

▶ Definition 6. Let (C,⊗, I) be a monoidal category. A monoid internal to C is an object
A of C equipped with morphisms

m : A⊗A → A and i : I → A

satisfying the axioms of associativity and unitality expressed as commutative diagrams. A
monoid homomorphism from a monoid A to a monoid B is a morphism f : A → B in C

which commutes with the maps m and i of each monoid. Let Mon(C) be the category where
objects are monoids internal to C and morphisms are their homomorphisms.
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▶ Proposition 7 (MacLane). Let (C,⊗, I) be a monoidal category with countable coproducts
such that tensoring on both sides preserves these coproducts. Then there is an adjunction
below left

C Mon(C)

F

⊥
U

F (X) =
∑
n≥0

Xn

whose left adjoint is given by the countable coproduct of cartesian powers as shown above
right.

The poset RMat(X) when viewed as a category satisfies the hypotheses of Proposition 7 and
therefore admits a free monoid construction.

▶ Proposition 8. There is an adjoint pair

RMat(X) Mon(RMat(X))

FX

UX

where FX is the monotone map which produces the solution to the algebraic path problem on
a matrix and UX is the natural forgetful map.

Proof. Because RMat(X) is a quantale, it can be regarded as a monoidal category with all
coproducts such that tensoring distributes over these coproducts. The result follows from
applying Proposition 7 and noticing that MacLane’s construction of free monoids matches
Equation 1 in the case when C = RMat(X). ◀

Monoids internal to RMat(X) are R-enriched categories.

▶ Definition 9. An R-category C with object set X consists of an element C(x, y) in R for
every x, y ∈ X such that

1 ≤ C(x, x) (the identity law), and
C(x, y)C(y, z) ≤ C(x, z) (the composition law).

Let RCat(X) be the poset whose elements are R-enriched categories with object set X. For
R-categories C and D,

C ≤ D ↔ C(i, j) ≤ D(i, j) ∀i, j ∈ X

▶ Proposition 10. Mon(RMat(X)) is isomorphic to RCat(X), the poset of categories enriched
in R with object set X.

Proof. The isomorphism in question assigns a matrix M : X×X → R to the R-category with
hom(x, y) = M(x, y). The identity law follows from the inequality 1 ≤ M and the inequality
M2 ≤ M implies that for all y ∈ X,

∑
y∈X M(x, y)M(y, z) ≤ M(x, z). The composition law

follows from the fact that any element of R is less than a join which contains it. ◀

Proposition 8 says that each matrix valued in R has a unique, universally characterized
solution to the algebraic path problem: namely the free R-category on that matrix. This
adjunction can be extended to matrices over an arbitrary set.

CALCO 2021



20:6 The Open Algebraic Path Problem

▶ Definition 11. Let f : X → Y be a function and let M : X × X → R be an R-matrix.
Then the pushforward of M along f is the matrix f∗(M) : Y × Y → R defined by

f∗(M)(y, y′) =
∑

(x,x′)∈(f×f)−1(y,y′)

M(x, x′).

▶ Definition 12. Let RMat be the category where objects are square matrices M : X×X → R

on some set X and where a morphism of R-matrices from M : X×X → R to N : Y ×Y → R

is a function f : X → Y satisfying f∗(M) ≤ N . Let RCat be the full subcategory of RMat
consisting of matrices satisfying the axioms of an R-category (see Definition 9).

The above adjunction may be extended to square matrices over an arbitrary set. We leave
the proof of the following proposition to Appendix A.

▶ Proposition 13. The free monoid construction of Proposition 8 extends to an adjunction

RMat RCat.
F

⊥
U

The following proposition will be useful in the next section.

▶ Proposition 14. The above adjunction F ⊣ U is idempotent.

Proof. Every adjunction between posets is idempotent. Therefore the smaller adjunctions
FX ⊣ UX are idempotent. Because F and U are stitched together using these adjunctions, it
is idempotent as well. ◀

3 Open R-Matrices

R-matrices are made open by designating some of their vertices to be either inputs or outputs.
In this section we show how these open R-matrices are composed by joining the output
vertices of one to the input vertices of another and joining the data on the overlap. To define
open R-matrices, we need a notion of a discrete R-matrix on a set X i.e. a matrix whose
entries are all zero. The map sending a set to its discrete R-matrix is a functor and a left
adjoint.

▶ Proposition 15. Let R : RMat → Set be the functor which sends an R-matrix to its
underlying set of vertices and sends a morphism to its underlying function. Then U has a
left adjoint

0: Set → RMat 0X : X ×X → Y

which sends a set X to the R-matrix defined by 0X(i, j) = 0 for all i and j in X. F sends a
function f : X → Y to the morphism of R-matrices which has f as its underlying function
between vertices.

Proof. The natural isomorphism ϕ : RMat(0X , G) ∼= Set(X,R(G)) is formed by noting that
a morphism 0X → R(G) is uniquely determined by its underlying function on vertices and
every such function obeys the inequality in Definition 12. ◀

A weighted graph can be opened up to its environment by equipping it with inputs and
outputs.
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▶ Definition 16. Let M : A×A → R be an R-matrix. An open R-matrix M : X → Y is
a cospan in RMat of the form

M

0X 0Y

The idea is that the maps of this cospan point to input and output nodes of the matrix M .
Let M : X → Y and N : Y → Z

M N

0X 0Y 0Z

be open R-matrices. The underlying sets of M and N form a diagram

R(M) R(N)

X Y Z

l m n o

which generate a pushout

R(M) +Y R(N)

R(M) R(N)

Y

a b

m n

The functions a and b of this pushout allow the matrices M and N to be compared on equal
footing: the pushforwards a∗(M) and b∗(N) both have R(M) +Y R(N) as their underlying
set. The matrices a∗(M) and b∗(N) are combined using pointwise sum.

▶ Definition 17. For open R-matrices M : X → Y and N : Y → Z as defined above, their
composite is defined by

N ◦M : X → Z =
a∗(M) + b∗(N)

0X 0Z

ϕ−1(a◦l) ϕ−1(b◦r)

where ϕ−1 gives the unique morphism out of a discrete R-matrix defined by a function on its
underlying set.

An R-matrix M : X ×X → R can represent a graph with vertex set X weighted in R.
Similarly, an open R-matrix, represents an R-weighted graph equipped with inputs and
outputs. For example, the [0,∞]-matrices on the sets {a, b, c} and {d, e} 1 2 .1

3 0 .2
∞ 1 .2

 [
6 ∞
0 9

]

CALCO 2021
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respectively may be upgraded to open [0,∞]-matrices as follows. The first matrix has input
set {1, 2} and output set {3}. The mappings of the cospan are given by 1 7→ a, 2 7→ b and
3 7→ c. Similarly, the second matrix has left input set given by {3} and right input set given
by {4}. The mappings in the cospan for this open [0,∞]-matrix are given by the assignments
3 7→ d and 4 7→ e. These two open [0,∞]-matrices are drawn as follows:

23

.1

1

.2

0

X Y1

0

.2

Z

96

In this picture, edges are ommitted when their value is ∞ and a label on a vertex indicates the
weight of the edge from that vertex to itself. These two open [0,∞]-matrices are composed
by identifying vertices mapped to by a common element of Y .

23

.1

1

.2

0

X Z1

0

.2 9

where edges are omitted if their weight is infinite in both directions. The matrix on the apex
of this composite is computed by pushing each component matrix forward to the pushout of
their underlying sets and adding them together i.e.

1 2 .1 ∞
3 0 .2 ∞
∞ 1 .2 ∞
∞ ∞ ∞ ∞

 +


∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ 6 ∞
∞ ∞ 0 9

 =


1 2 .1 ∞
3 0 .2 ∞
∞ 1 .2 ∞
∞ ∞ 0 9


where + denotes the pointwise join of the quantale [0,∞]. The entries of this matrix represent
the shortest distances between pairs of vertices in the composite open [0,∞]-matrix. This
composition forms the horizontal composition of a symmetric monoidal double category.
Note that the double categories considered here are called pseudo–double categories.

▶ Theorem 18. For a quantale R, there is a symmetric monoidal double category Open(RMat)
where

objects are sets X,Y ,Z . . .
vertical morphisms are functions f : X → Y ,
a horizontal morphism M : X → Y is an open R-matrix below left

M

0X 0Y

0X M 0Y

0′
Y N 0′

Y

0f g 0h
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vertical 2-morphisms are commutative rectangles shown above right,
vertical composition is ordinary composition of functions,
and horizontal composition is given by the composite operation defined above.

The symmetric monoidal structure is given by
coproducts in Set on objects and vertical morphisms,
pointwise coproducts on horizontal morphisms i.e. for open R-matrices,

M M ′

0X

>>

0Y

``

0′
X

==

0′
Y

``

their coproduct is

M ⊔M ′

0X⊔X′ 0Y ⊔Y ′

and pointise coproduct for two vertical 2-morphisms i.e. for vertical 2-morphisms,

0X M 0Y

0Z N 0Q

0f g 0h

0′
X M ′ 0′

Y

0′
Z N ′ 0′

Q

0′
f

g′ 0′
h

their coproduct is

0X⊔X′ M ⊔M ′ 0Y ⊔Y ′

0Z⊔Z′ N ⊔N ′ 0Q⊔Q′

0f⊔f′ g⊔g′ 0h⊔h′

Proof. Theorem 3.2.3 of [3] constructs this symmetric monoidal double category as long as
RMat has coproducts and pushouts, and
0: Set → RMat preserves pushouts and coproducts.

Because 0 is a left adjoint (Proposition 15) it preserves pushouts and coproducts when they
exist so it suffices to prove the following lemma which we do in Appendix A. ◀

▶ Lemma 19. RMat has coproducts and pushouts.

4 Compositionality of the Algebraic Path Problem

In this section we show how the algebraic path problem functor F : RMat → RCat extends to
a symmetric monoidal double functor

Open(F ) : Open(RMat) → Open(RCat).

This double functor describes how the syntax of gluing open R-matrices extends to a series
of coherent compositionality laws for the algebraic path problem.

CALCO 2021



20:10 The Open Algebraic Path Problem

For composable open R-matrices

M N

0X 0Y 0Z

we may apply the algebraic path problem functor F to the entire diagram to get cospans of
R-categories

F (M) F (N)

1X 1Y 1Z

where 1X is the identity matrix on X with respect to matrix multiplication. The pushout in
RMat, F (M) +1Y

F (N), is not equal to the solution F (M +0Y
N). The former optimizes

only over paths which start in M and end in N . On the other hand, F (M +0Y
N) optimizes

over paths which may zig-zag back and forth between M and N , as many times as they
like, before arriving at their destination. Therefore, to construct F (M +0Y

N) from its
components we turn to the pushout in RCat.

▶ Proposition 20. RCat has pushouts and coproducts.

Proof. More generally, RCat has all colimits by Corollary 2.14 of [19]. These colimits are
constructed via the transfinite construction of free algebras [11]. The idea behind the
transfinite construction is that colimits in a category of monoids can be constructed by first
taking the colimit of their underlying objects, taking the free monoid on that colimit, and
then quotienting out by the equations in your original monoids. Next we provide an explicit
description in the case of R-categories. ◀

▶ Proposition 21. For a diagram D : C → RCat, its colimit is given by the formula

colimc∈CD(c) ∼= F (colimc∈CU(D(c)))

Proof. It suffices to show that F (colimc∈CU(D(c))) satisfies the universal property of
colimc∈CD(c). Let α : ∆d ⇒ D be a cocone from an object d ∈ RCat to our diagram
D. Because α can be regarded as a cocone in RMat, the universal property of colimits induces
a unique map colimc∈CU(D(c)) → U(d) of R-matrices. Applying F to this morphism gives a
map F (colimc∈CU(D(c))) → FU(d) = d where the last equality follows from the adjunction
F ⊣ U being idempotent as shown in Proposition 14. The above map is a unique morphism
satsifying the universal property for colimc∈CD(c). ◀

▶ Corollary 22. For a diagram below left

M N

K

M +K N ∼= F (U(M) +U(K) U(N))

in RCat, the pushout is given by the isomorphism above right.

This pushout forms the horizontal composition of a double category of open R-categories.
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▶ Theorem 23. There is a symmetric monoidal double category Open(RCat) where
objects are sets,
vertical morphisms are functions,
horizontal morphisms are cospans shown below left

M

1X 1Y

1X M 1Y

1′
X N 1′

Y

1f g 1h

where the apex M satisfies the axioms of an R-category, and
vertical 2-morphisms are commuting rectangles shown above right
The horizontal composition is given by pushout of open R-categories i.e. for open R-
categories

M N

1X 1Y 1Z

their pushout is the cospan

F (U(M) +U(K) U(N))

1X 1Y

The symmetric monoidal structure of Open(RCat) is given by
coproduct of sets and functions,
pointwise coproduct on horizontal morphisms,
and pointiwise coproduct on vertical 2-morphisms.

Proof. To construct the desired symmetric monoidal double category, we apply Corollary
2.4 of [1] to the composite left adjoint Set RMat RCat.0 F ◀

So far we have the commutative diagram of functors

RMat RCat

Set

F

10

where 1: Set → RCat is the functor which sends a set X to the identity matrix 1X . The
definition of Open is functorial with respect to this sort of diagram i.e. it induces a symmetric
monoidal double functor between the relevant double categories.

▶ Theorem 24. There is a symmetric monoidal double functor

⋆ : Open(RMat) → Open(RCat)

which is
the identity on objects and vertical morphisms,

CALCO 2021



20:12 The Open Algebraic Path Problem

sends an open R-matrix M : X → Y below left

M

0X 0Y

7→
FM

1X 1Y .

to the solution of its algebraic path problem ⋆(M) : X → Y above right, and
a vertical 2-morphism of open R-matrices α : M ⇒ N below left

0X M 0Y

0Z N 0Q

0f g 0h 7→
1X FM 1Y

1′
X FN 1′

Y

1f F g 1h

is sent to the 2-morphism ⋆(α) : M ⇒ N above right given by pointwise application of F .

Proof. Theorem 4.3 of [1] proves functoriality of the “Open” construction on squares below
left

X X ′

A A′

F1

F0

L L′

RMat RCat

Set Set

F

0 1

commuting up to natural isomorphism. The result follows from applying this result to the
square shown above right. ◀

The definition of symmetric monoidal double functor packages up a lot of information very
succinctly. In particular, it contains coherent comparison isomorphism relating the solution
of the algebraic path problem on a composite matrix to the solution on its components. For
open R-matrices M : X → Y and N : Y → Z, there is a composition comparison

ϕMN : ⋆(M) ◦ ⋆(N) ∼−→ ⋆(M ◦N) (2)

and monoidal comparison

ψMM ′ : ⋆(M +M ′) ∼−→ ⋆(M) + ⋆(M ′) (3)

giving recipes to break solutions to the algebraic path problem into their components. In
other words, the left-hand side of each comparison is computed to determine the right-hand
side

Pouly and Kohlas present a similar relationship in the context of valuation algebras. [15,
§6.7]. For matrices M and N representing weighted graphs on vertex sets s and t respectively,
the solution to the algebraic path problem on the union of their vertex sets is given by

F (M) ⊗ F (N) = F
(
F (M)↑s∪t + F (N)↑s∪t

)
In this formula, ↑ s ∪ t indicates that the matrix is trivially extended to the union of the
vertex sets. This formula is less general than comparison (2): it corresponds to the special
case when the legs of the open R-matrices are inclusions.

A typical algorithm for the algebraic path problem has spacial complexity Θ(n3) where n
is the number of vertices in your weighted graph [10]. The comparisons (2) and (3) suggest
a strategy for computing the solution to the algebraic path problem which reduces this
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complexity. First cut your weighted graph into smaller chunks, compute the solution to
the algebraic path problem on those chunks, then combine their solutions using (2) and
3). Unfortunately, this strategy will in general take more time to compute the solution to
the algebraic path problem on a composite because the right hand side of comparison (2)
requires three applications of the functor F . However, the situation improves if the open
R-matrices are functional.

5 Functional Open Matrices

In this section we define functional open R-matrices, a class of open R-matrices for which
the composition comparison ϕMN : ⋆(M) ◦⋆(N) ∼= ⋆(M ◦N) can be expressed in terms of
matrix multiplication. The one caveat is that this expression requires that the open matrices
be restricted to their inputs and outputs. For this we borrow a concept from engineering
called “blackboxing” which forgets the internal workings of a system and concentrates only
on the relationship it induces between its inputs and outputs.

▶ Definition 25. Let M : X → Y be the open R-category

M

1X 1Y .

i o

Then the blackboxing of M is the matrix below left

■(M) : X × Y → R ■(M)(x, y) = M(i(x), o(y))

given by the expression above right.

The ■ operation is extended to all of RCat but the composition is only preserved laxly. The
codomain of this extension is the following:

▶ Definition 26. Let MatR be the double category where
an object is a set X,Y ,Z,. . .
a vertical morphism is a function f : X → Y ,
a horizontal morphism M : X → Y is a matrix M : X × Y → R,
a vertical 2-morphism from M : X → Y to N : X ′ → Y ′ is a square below left

X Y

X ′ Y ′

f

M

g

N

∑
x∈f−1(x′), y∈g−1(y′)

M(x, y) ≤ N(x′, y′)

satisfing the inequality above right for all x′ ∈ X ′ and y′ ∈ Y ′.
Vertical composition is function composition,
and horizontal composition is given by matrix multiplication.

In this double category, the composite of matrices M and N is written as the juxtaposition
MN . Blackboxing is extended to the double category of open R-categories.

▶ Proposition 27. There is a lax double functor

■ : Open(RCat) → MatR

which

CALCO 2021
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is the identity on objects,
sends an open R-category M : X → Y to its blackbox ■(M),
and sends a vertical 2-cell below left

1X M 1Y

1X′ N 1Y ′

1f g 1h
7→

X Y

X ′ Y ′

f

■(M)

g

■(N)

to the vertical 2-cell above right.
The blackboxing functor is composed with the algebraic path problem functor to get a lax
symmetric monoidal double functor

Open(RMat) ⋆−→ Open(RCat) ■−→ MatR

This lax symmetric monoidal double functor sends an open R-matrix to the solution of its
algebraic path problem only on nodes which start with an input and end with an output. It is
natural to ask when this mapping is strictly functorial, as this yields a simple compositional
formula for the algebraic path problem:

■(⋆(M ◦N)) = ■(⋆(M))■(⋆(N)).

The double functor ■ ◦ ⋆ is strictly functorial on functional open matrices.

▶ Definition 28. Let M : A×A → R be an R-matrix. An element a ∈ X is a source if for
every b ∈ X, M(b, a) = 0 and a sink if M(a, b) = 0. A functional open R-matrix is an
open R-matrix

M

0X 0Y

l r

such that for every x ∈ X, l(x) is a source and for every y ∈ Y , r(y) is a sink.

Because the pushout of functional open R-matrices is also functional, we can form the
following sub-double category.

▶ Definition 29. Let Open(RMat)fxn be the full sub-symmetric monoidal double category
generated by the open R-matrices which are functional.

▶ Theorem 30. The composite ■ ◦ ⋆ restricts to a strict double functor

■ ◦ ⋆fxn : Open(RMat)fxn → MatR

The proof of this theorem relies on a lemma which resembles the the binomial expansion of
(a+ b)n in a ring where ba = 0. If a and b represent blackboxings of functional open matrices,
then the identity ba = 0 indicates that there are no paths which go backwards.

▶ Lemma 31. For functional open R-matrices M : X → Y and N : Y → Z we have that

■(M +1Y
N)n =

∑
i+j=n

■(M i)■(N j)
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Proof. The entries of the left hand side are expanded as

■((M +1Y N)n)(a0, an) =
∑

a1,··· ,an−1

(M +1Y N)(a0, a1)(M +1Y N)(a1, a2) · · · (M +1Y N)(an−1, an)

where the ai are equivalence classes in RM +Y RN . For a particular term of this sum, let
1 ≤ k ≤ n be the first natural number such that ak contains an element of RN . Because M
and N are functional, for k ≤ i ≤ n the equivalence classes ai must also contain an element
of RN if our term is nonzero. Therefore for a fixed k the contribution to the above sum is
given by ∑

M(a0, a1) . . .M(ak−1, ak)N(ak, ak+1) . . . N(an−1, an)

which simplifies to

■(Mk)■(Nn−k)(a0, an).

Because k can occur in any entry we have that

■((M +1Y
N)n) =

∑
k≤n

■(Mk)■(Nn−k) =
∑

i+j=n

■(M i)■(N j)

and this completes the proof. ◀

Proof of Theorem 30: It suffices to prove that for functional open R-matrices
0X M 0Y and 0Y N 0Z the equation

■(⋆(M ◦N)) = ■(⋆(M))■(⋆(N))

holds. Consider the left-hand side:

■⋆M ◦N = ■
∑
n≥0

(M ◦N)n

=
∑
n≥0

■(M ◦N)n

=
∑
n≥0

∑
i+j=n

■(M i)■(N j)

on the other hand,

■(⋆(M))■(⋆(N)) =
∑
i≥0

■(M i)
∑
j≥0

■(N j)

=
∑

i,j≥0
■(M i)■(M j)

Both sums contain the term ■(M i)■(N j) for every value of i and j, but the left hand side
may contain repeated terms. However, because addition is idempotent, repeated terms don’t
contribute to the sum and the two sides are the same. ◀

CALCO 2021
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6 Conclusion

The functoriality of Theorem 30 might not be surprising. It says that if your open matrices
are joined together directionally along bottlenecks, then the computation of the algebraic
path problem can be reduced to a computation on components. This strategy has already
proven sucessful. In [17], Sairam, Tamassia, and Vitter show how choosing one way separators
as cuts in a graph, allow for an efficient divide and conquer parallel algorithm for computing
shortest paths. In [16] Rathke, Sobocinksi, and Stephens show how the reachability problem
on a 1-safe Petri net can be computed more efficiently by cutting it up into more manageable
pieces. Theorem 24 provides a framework for compositional formulas of this type. In future
work we plan on extending the construction of this theorem to many other sorts of discrete
event dynamic systems.

Lemma 31 also holds independent computational interest. The equation given there gives
a novel compositional formula for computing the solution to the algebraic path problem.
The author has implemented this formula for the special case of Markov processes [13]. We
hope that this is the start of a more extensive library, made faster and more reliable by the
mathematics developed in this paper.
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A Ommitted Proofs

▶ Proposition 32. The free monoid construction of Proposition 8 extends to an adjunction

RMat RCat.
F

⊥
U

Proof. Let A : Set → Cat be the functor which sends a set X to the poset RMat(X) regarded
as a category and sends a function f : X → Y to the pushforward functor

f∗ : RMat(X) → RMat(Y ).

from Definition 11. Analogously, let B : Set → Cat be the functor which sends a set X to the
poset RCat(X) and sends a function f to its pushforward functor. The functors FX for each
set X form the components of a natural transformation F : A ⇒ B. Similarly, the functors
UX form the components of a natural transformation U : B ⇒ A. Furthermore, these natural
transformations form an adjoint pair in the 2-category [Set,Cat] of functors Setop → Cat,
natural transformations between them, and modifications. F and U are adjoint because an
adjoint pair in [Set,Cat] is the same as a pair of natural transformations which are adjoint in
each component. To summarize, we have a pair of adjoint natural transformations as follows:

Set Cat

A

B

F ⊣ U

A restriction of the Grothendieck construction [2] defines a 2-functor∫
: [Set,Cat] → CAT

where CAT is the 2-category of large categories. Because every 2-functor preserves adjunctions,
the above diagram maps to an adjunction

∫
A

∫
B.⊥

∫
F

∫
U

The result follows from the equivalences
∫
A ∼= RMat and

∫
B ∼= RCat. The desired functors

F and U are obtained by composing
∫

F and
∫

U with these equivalences. ◀

▶ Lemma 33. RMat has coproducts and pushouts.

CALCO 2021
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Proof. This is a consequence of Proposition 2.4 of [19] after noting that RMat is the category
of R-graphs, the generating data for R-enriched categories. For concreteness and practicality,
we offer an explicit construction of pushouts and coproducts here. Let

G H

K
fg

be a diagram in RMat with

X Y

Z
fg

as the underlying diagram of sets. To compute the pushout G+K H first we take the pushout
of sets

X +Y Z

X Y

Z

iX iY

fg

push them forward to get matrices iX∗ (G) and iY∗ (H) and join them together to get

G+Y H : (X +Y Z) × (X +Y Z) → R = iX∗ (G) + iY∗ (H)

This does indeed define a pushout in RMat. Suppose we have a commutative diagram of
R-matrices as follows:

L

G+K H

G H

K.

c1 c2

f g

then the underlying diagram of sets induces a unique function u

C

X +Z Y

X Y

Z.

u
c1 c2

f g
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commuting suitable with c1 and c2. The map u is certainly unique, it remains to show that
it is well-defined i.e. it satisfies the inequality

u∗(G+K H) ≤ L

Indeed, for (x, y) ∈ C × C,

u∗(G+K H)(x, y) =
∑

(a,b)∈(u×u)−1(x,y)

G+K H(a, b)

=
∑

(a,b)∈(u×u)−1(x,y)

iX∗ (G)(a, b) + iY∗ (H)(a, b)

=
∑

(a,b)∈(u×u)−1(x,y)

iX∗ (G)(a, b) +
∑

(a,b)∈(u×u)−1(x,y)

iY∗ (H)(a, b)

= u∗(iX∗ (G))(x, y) + u∗(iY∗ (H))(x, y)

However, because

u∗(iX(G)) = c1
∗(G) and u∗(iY (H)) = c2

∗(G)

the above expression is equal to

c1
∗(G)(x, y) + c2

∗(H)(x, y)

which is less than or equal to L(x, y) because each term is and + is the least upper bound.
For R-matrices G : X × X → R and H : Y × Y → R, their coproduct is given by the

pushout

G+ϕ H

G H

ϕ
!G !H

where ϕ is the unique R-matrix on the empty set and !G and !H are the unique morphisms
into G and H respectively. ◀

▶ Proposition 34. There is a lax double functor

■ : Open(RCat) → MatR

which
is the identity on objects,
sends an open R-category M : X → Y to its blackbox ■(M),
and sends a vertical 2-cell below left

1X M 1Y

1X′ N 1Y ′

1f g 1h

X Y

X ′ Y ′

f

■(M)

g

■(N)

to the vertical 2-cell above right.
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Proof. First observe that this lax double functor is well-defined on 2-cells. This amounts to
showing that the inequality∑

x∈f−1(x′), y∈h−1(y′)

M(i(x), j(y)) ≤ N(i′(x′), j′(y′)) (4)

holds. Because g is a morphism of R-matrices, we have that∑
a∈g−1(i′(x′)), b∈g−1(j′(y′))

M(a, b) ≤ N(i′(x′), j′(y′)) (5)

Let M(i(x), j(y)) be a term on the left hand side of inequality (4). Then by definition,
x′ = f(x) and y′ = h(y) so a ∈ g−1(i′(f(x)) and b ∈ g−1(j′(h(y)). However, because we
started with a 2-cell in Open(RCat), i′ ◦f = g ◦ i and j′ ◦h = g ◦ j so we can rewrite inequality
(5) as ∑

a∈g−1(g◦i(x)), b∈g−1(g◦j(y))

M(a, b) ≤ N(i′(x′), j′(y′))

The term M(i(x), j(y)) of the left hand side of inequality (4) is also a term of the left hand
side of inequality (5) so we have that

M(i(x), i(y)) ≤
∑

a∈g−1(g◦i(x)), b∈g−1(g◦j(y))

M(a, b) ≤ N(i′(x′), j′(y′))

Because each term on the left hand side of (4) is less than the desired quantity, the join of
all the terms will be as well. Therefore the lax double functor is well-defined on 2-cells. Note
that MatR is locally posetal i.e. for every square below left

X Y

X ′ Y ′

f

M

g

N

1X

1X 1X

there is at most one 2-cell filling it. This property makes it so many of the axioms in the
definition of lax double functor are satisfied trivially. It suffices to show that the globular
composition and identity comparisons exist. The identity morphism in Open(RCat) on a set X
is the cospan above right. The blackbox of this cospan is equal to the identity matrix on X, so
the identity comparison is the identity. The composition comparison ■(M)■(N) ≤ ■(M ◦N)
follows from the chain of inequalities

■(M)■(N) =
∑
y∈Y

■(M)(x, y)■(N)(y, z)

=
∑
y∈Y

M(i(x), j(y))N(i′(y), j′(z))

= (M +1Y
N)2

≤
∑
n≥0

(M +1Y
N)n(i(x), j′(z))

= ■(M ◦N)(x, z)

Therefore, ■ is a lax double functor. ◀
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