
Preorder-Constrained Simulation for
Nondeterministic Automata
Koko Muroya #

RIMS, Kyoto University, Japan

Takahiro Sanada #

RIMS, Kyoto University, Japan

Natsuki Urabe #

National Institute of Informatics, Tokyo, Japan

Abstract
We describe our ongoing work on generalizing some quantitatively constrained notions of weak
simulation up-to that are recently introduced for deterministic systems modeling program execution.
We present and discuss a new notion dubbed preorder-constrained simulation that allows comparison
between words using a preorder, instead of equality.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases simulation, weak simulation, up-to technique, language inclusion, preorder

Digital Object Identifier 10.4230/LIPIcs.CALCO.2021.21

Category Early Ideas

Funding The first and second authors are supported by JST, ACT-X Grant No. JPMJAX190U,
Japan. The third author is supported by JST ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603).

1 Introduction: Simulation Notions with Bounded Number of Steps

In the literature of program semantics, coinductive techniques have often been used to
establish equivalence between program behaviors. A recent approach utilizes weak simulations
with quantitative constraints on the length of terminating runs. These constraints enable
comparison of execution cost for programs, in terms of the number of execution steps it takes
for a program to terminate.

One example is Accattoli et al.’s notion called improvement [1]. It was used to show that
certain rewriting of a program before execution not only preserves the execution result, but
also improves the execution cost by requiring less execution steps. Another example was used
in the first author’s previous work [9]. It is dubbed (Q, Q1, Q2)-simulation, parameterized by
a triple (Q, Q1, Q2) of preorders on natural numbers, i.e. on lengths of runs. The first preorder
Q is used to compare lengths of accepted runs, and it generalizes the “greater-than-or-equal”
preorder ≥ used by improvements. The other two preorders Q1, Q2 are for additionally
incorporating the so-called up-to technique. Subtle conditions on these preorders are identified
in loc. cit. to make the combination of weak simulations and the up-to technique work.

These two notions are both designed for unlabeled deterministic transition systems,
which can model execution of deterministic programs only. We aim to pursue the idea of
constraining terminating, or accepted, runs, in a more general setting. This abstract describes
our ongoing work on generalizing (Q, Q1, Q2)-simulations to nondeterministic automata. We
present a novel notion of preorder-constrained simulation that is a weak simulation up-to
constrained by preorders on words, not on natural numbers. It entails a generalized notion
of language inclusion that compares words using a preorder instead of equality.

© Koko Muroya, Takahiro Sanada, and Natsuki Urabe;
licensed under Creative Commons License CC-BY 4.0

9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021).
Editors: Fabio Gadducci and Alexandra Silva; Article No. 21; pp. 21:1–21:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kmuroya@kurims.kyoto-u.ac.jp
mailto:tsanada@kurims.kyoto-u.ac.jp
mailto:urabenatsuki@nii.ac.jp
https://doi.org/10.4230/LIPIcs.CALCO.2021.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Preorder-Constrained Simulation for Nondeterministic Automata

x

R

y w′

∗//
y′

x

R

∗//
xk

R

∗//
xn

y w′

∗//
y′

Figure 1 Def. 3 (Final and Step).

x

x1

x21 x22

y

y11 y12

y21 y22

OO
⟨a2+b2≤1⟩
OO

⟨|a|≤1⟩

WW
⟨|b|≤1⟩

GG

OO
⟨|a|+|b|≤1⟩

WW
⟨|a|+|b|

≤1⟩

GG

⟨|a|≤1⟩
OO

⟨|b|≤1⟩
OO

Figure 2 Ex. 4.

x

R

∗//
xk

R1

∗//
x

◦
R◦
R2

y
w′∗//

y′

Figure 3 Def. 9.

2 Main Contribution

Let Ak = (Xk, Σ,⇝k⊆ Xk × Σ × Xk, Fk ⊆ Xk) (k ∈ {1, 2}) be nondeterministic automata,
x ∈ X1 and y ∈ X2, and L∗

A1
(x), L∗

A2
(y) ⊆ Σ∗ be the set of words accepted from x and y

respectively. The ordinary simulation notion [7] proves language inclusion L∗
A1

(x) ⊆ L∗
A2

(y).
Instead, our simulation notion proves Q-trace inclusion.

▶ Def. 1. For a preorder Q ⊆ Σ∗ × Σ∗, we write x ⪯Q y and say Q-trace inclusion holds
between x and y when ∀w ∈ L∗

A1
(x). ∃w′ ∈ L∗

A2
(y). wQw′.

▶ Example 2.
i) when Q is the equality, x ⪯Q y iff L∗

A1
(x) ⊆ L∗

A2
(y).

ii) When Σ contains a special letter τ , and wQw′ means that w and w′ are the same except
for τ , then x ⪯Q y iff weak language inclusion, i.e. language inclusion ignoring τ , holds.

iii) When wQw′ means that w is a subword of w′, x ⪯Q y iff for each w ∈ L∗
A1

(x) there
exists w′ ∈ L∗

A2
(y) such that w is a subword of w′.

iv) When Σ is the powerset 2AP of some set AP and a1 . . . akQa′
1 . . . a′

k′ means that k = k′

and ai ⊆ a′
i for each i ∈ {1, . . . , k}, then x ⪯Q y iff for each a1 . . . ak ∈ L∗

A1
(x) there

exists a′
1 . . . a′

k ∈ L∗
A2

(y) such that ai ⊆ a′
i for each i ∈ {1, . . . , k}.

2.1 Preorder-Constrained Simulation without up-to
We hereby introduce a new simulation notion for witnessing Q-trace inclusion.

▶ Def. 3. We call R ⊆ X1 × X2 a Q-constrained simulation from A1 to A2 if, for any
(x, y) ∈ R, the following holds (see also Fig. 1).
Final: If x ∈ F1 then there exist w′ ∈ Σ∗ and y′ ∈ F2 such that εQw′ and y

w
⇝∗

2 y′.
Step: For each a1 . . . an ∈ Σ+ and x1 . . . xn ∈ X+

1 such that x
a1⇝ x1

a2⇝ · · · an⇝ xn and
xn ∈ F1, there exist k ∈ {1, . . . , n}, w′ ∈ Σ∗ and y′ ∈ X2 such that a1, . . . , akQw′,
y w′
⇝∗

2 y′ and i) xkRy′ or ii) k = n and y′ ∈ F2 .

▶ Example 4. We continue Ex. 2(iv). Let AP := R2. For a formula φ(a, b) with free variables
a and b, let ⟨φ⟩ := {(a, b) ∈ R2 | φ(a, b)} . For nondeterministic automata illustrated in
Fig. 2, as ⟨a2 + b2 ≤ 1⟩ ⊆ ⟨|a|+ |b| ≤ 1⟩, R := {(x, y), (x21, y21), (x22, y22)} is a Q-constrained
simulation. Note that x1, y11 and y12 are not involved by R.

▶ Prop. 5 (soundness). If Q is closed under concatenation (i.e. w1Qw′
1 and w′

2Qw′
2 imply

w1w2Qw′
1w′

2), xRy implies x ⪯Q y. ◀

Unfortunately, it seems that Q-constrained simulation is not practicable as it is hard to
check if given R satisfies Step in Def. 3 for all a1 . . . an ∈ Σ+ and x1 . . . xn ∈ X+. In fact,
by letting R := {(x, y) | x ⪯Q y}, we can easily see that ⪯Q is a Q-constrained simulation.

▶ Prop. 6 (completeness). If Q is closed under concatenation, there exists a Q-constrained
simulation R such that x ⪯Q y implies xRy. ◀

K. Muroya, T. Sanada, and N. Urabe 21:3

Position Player Moves
(w, x, y)

∈ Σ∗ × X1 × X2
Challenger (wa, x′, y) s.t. x

a
⇝1 x′ choose a successor state

and enqueue the label
(✓, w, x, y) when x ∈ F1 declare the last turn

(w, x′, y)
∈ Σ+ × X1 × X2 Simulator

(w, x′, y) skip the turn
(ε, x′, y′) s.t.
∃w′ ∈ Σ∗. y

w′
⇝∗

2 y′ and wQw′
dequeue all,
and simulate it

(✓, w, x, y)
∈ {✓} × Σ+ × X1 × X2

sim-win if ∃w′ ∈ Σ∗. y
w′
⇝∗

2 y′,

wQw′ and y′ ∈ F2

dequeue all and
simulate it so that
accepting state is reached

Figure 4 Two-player game characterizing Q-constrained simulation. Simulator wins if sim-win is
reached, Challenger gets stuck, or a play continues infinitely.

This means that existence of a Q-constrained simulation relating two states is very
difficult to determine in many cases. For example, ordinary language inclusion between
nondeterministic automata (i.e. Q-trace inclusion when Q is the equality) is known to be
PSPACE-complete [8]. We therefore consider approximating Q-constrained simulation. We
consider fixing M ∈ N and replacing Step with the following (here A[m,M] :=

⋃
m≤i≤M Ai):

Step≤M : For each a1 . . . an ∈ Σ[1,M] and x1 . . . xn ∈ X
[1,M]
1 such that x

a1⇝ x1
a2⇝ · · · an⇝ xn

and either xn ∈ F1 or n = M , there exist k ∈ {1, . . . , n}, w′ ∈ Σ∗ and y′ ∈ X2 such that
a1, . . . , akQw′, y w′

⇝∗
2 y′ and i) xkRy′ or ii) k = n < M and y′ ∈ F2 .

▶ Prop. 7. Given x ∈ X1 and y ∈ X2, existence of R satisfying Final , Step≤M and xRy

can be checked in polynomial time to |Σ|, |X1|, |X2| and TM (|Σ|, |X2|)). Here TM (p, q) is
the computation time for the following problem: given w ∈ Σ[1,M] and a nondeterministic
automaton whose alphabet and state space have sizes of p and q, check if the set {w′ | wQw′}
intersects with the language of the automaton. ◀

As Step≤M implies Step, Prop. 5 still holds after the modification. Moreover, by Prop. 7,
if M is fixed and TM (|Σ|, |X2|) is polynomial to |X2| and |Σ| (it holds for all Q illustrated
above), then existence of a Q-constrained simulation relating two states can be checked in
polynomial time.

We conclude this section by giving a game theoretic characterization for Q-constrained
simulations, namely the safety game in Fig. 4 played by Challenger and Simulator.

▶ Prop. 8. Simulator is winning in the two-player game in Fig. 4 from a state (ε, x, y) if
and only if there exists a Q-constrained simulation R such that xRy. ◀

Intuitively, w ∈ Σ∗ in Fig. 4 is understood as a queue that saves labels executed on A1
by Challenger. Basically, Simulator can skip the turn until she can construct a path labeled
by a word w′ ∈ Σ∗ such that wQw′. However, when an accepting state is reached on A1,
Challenger can also declare the last turn and force Simulator to construct a path immediately,
although if Simulator succeeded in constructing a path then Challenger loses.

The modification of Q-constrained simulation stated above, i.e. replacing Step with
Step≤M, corresponds to replacing Σ∗ and Σ+ with Σ[0,M] and Σ[1,M] respectively, and
prohibiting Simulator from skipping the turn when |w| = M in Fig. 4.

CALCO 2021

21:4 Preorder-Constrained Simulation for Nondeterministic Automata

2.2 Preorder-Constrained Simulation with up-to
We can think of an up-to variant of Q-constrained simulations from A1 to A2.

▶ Def. 9. Let R1 ⊆ X1 × X1 and R2 ⊆ X2 × X2. A Q-constrained simulation R up-to
(R1, R2) is defined in almost the same manner as Def. 3, except that xkRy′ at the end of
Step is replaced by xkR1RR2y′ (see also Fig. 3).

We are in particular interested in R1 ⊆ ⪯Q1 and R2 ⊆ ⪯Q2 . Naturally, R1 and R2
cannot be arbitrary to verify soundness xRy =⇒ x ⪯Q y. They have to be compatible with
⪯Q. We should also be aware of that a naïve combination of weak simulations and up-to
techniques is known to be unsound, and requires special care [10, 11]. Ex. 2(ii) suggests that
Q-constrained simulation is a variant of weak simulation. It turns out that restrictions can
be simply on the preorders Q, Q1, Q2.

▶ Prop. 10. Assume Q is closed under concatenation. If R1 ⊆ ⪯Q1 and R2 ⊆ ⪯Q2 for
preorders Q1, Q2 ⊆ Σ∗ × Σ∗ satisfying the following conditions, then xRy implies x ⪯Q y: i)
Q1QQ2 ⊆ Q; and ii) wQ1w′ implies |w| ≥ |w′|. ◀

Cond. (i) ensures compatibility of ⪯Q1 , ⪯Q2 with ⪯Q, and Cond. (ii) ensures safe in-
tegration of the up-to technique. They are strongly inspired by (Q, Q1, Q2)-simulation for
unlabeled and deterministic automata [9].

3 Related Work

The above notion is similar to buffered simulation [3], which was developed to enable more
relations to witness language inclusion. Buffered simulations allow Simulator to skip his turn,
to buffer Challenger’s moves and to simulate them later together, which has a similar flavor
to our simulation notion (cf. Ex. 4). Hence our simulation notion can be also thought of as a
generalization of buffered simulation.

Preorder-constrained simulations allow a quantitative reasoning such as comparing lengths
of accepted runs. There exist quantitative simulation notions for comparing costs of weighted
automata. Many of them are for probabilistic systems [6, 5, 4]. One simulation notion
for automata weighted with costs was introduced as a matrix over real numbers [12]. A
methodology for comparing infinite runs of weighted automata is also known [2]. In contrast
to weighted automata, which are labeled with both letters and weights, our target is automata
labeled with letters only. Quantities appear in the set of words, in our approach.

4 Research Directions

Our simulation notion focuses on finite languages. As is the case for the ordinary simulation
notion, our notion may fail to prove inclusion of finite languages when there is no inclusion
of infinite languages. We are looking into possible solutions.

We suspect that Cond. (ii) of Prop. 5, whose analogues are also in existing notions of
weak simulation up-to, is too strong. We think Q1 violating Cond. (ii) can be allowed finitely
many times. However, at the same time, we should note that the relaxation makes the
definition of simulations a global one, which can result in a more complicated algorithm for
finding it. We should make sure that it does not ruin efficiency gained by up-to techniques.

Ex. 4 suggests that our simulation notion works well with systems whose alphabet Σ
carries an order. Such a system also arises in the study of linear temporal logic (LTL). An LTL
formula induces a Büchi automaton labeled with the powerset 2AP of atomic propositions [13].
The alphabet 2AP is ordered by the inclusion, which induces a preorder on (2AP)∗.

K. Muroya, T. Sanada, and N. Urabe 21:5

We are also interested in a categorical study of our simulation notion. One possible
strategy would be to use the category PreOrd of preordered sets as the base category. The
nondeterministic branching would be then captured by the powerset functor (or possibly a
monad) P lifted to PreOrd. The categorical generalization might allow us to transfer our
simulation notion to systems with other branching types, e.g. probabilistic one.

References
1 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The machinery of interaction. In

PPDP 2020, pages 4:1–4:15. ACM, 2020.
2 Suguman Bansal, Swarat Chaudhuri, and Moshe Y. Vardi. Comparator automata in quant-

itative verification. In FoSSaCS 2018, volume 10803 of Lecture Notes in Computer Science,
pages 420–437. Springer, 2018.

3 Milka Hutagalung, Martin Lange, and Étienne Lozes. Buffered simulation games for büchi
automata. In Zoltán Ésik and Zoltán Fülöp, editors, AFL 2014, volume 151 of EPTCS, pages
286–300, 2014.

4 Bart Jacobs and Jesse Hughes. Simulations in coalgebra. Electronic Notes in Theoretical
Computer Science, 82(1):128–149, 2003.

5 Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic
processes. In LICS 1991, pages 266–277. IEEE Computer Society, 1991.

6 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991.

7 Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. Untimed
systems. Inf. Comput., 121(2):214–233, 1995. doi:10.1006/inco.1995.1134.

8 A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In 13th Annual Symposium on Switching and Automata
Theory (swat 1972), pages 125–129, 1972. doi:10.1109/SWAT.1972.29.

9 Koko Muroya. Hypernet Semantics of Programming Languages. PhD thesis, University of
Birmingham, 2020.

10 Damien Pous. Up-to techniques for weak bisimulation. In Luís Caires, Giuseppe F. Italiano,
Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580 of
Lecture Notes in Computer Science, pages 730–741. Springer, 2005.

11 Damien Pous. New up-to techniques for weak bisimulation. Theoretical Computer Science,
380(1):164–180, 2007. Automata, Languages and Programming.

12 Natsuki Urabe and Ichiro Hasuo. Generic forward and backward simulations III: quantitative
simulations by matrices. In CONCUR 2014, volume 8704 of Lecture Notes in Computer
Science, pages 451–466. Springer, 2014.

13 Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, 1994.

CALCO 2021

https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1109/SWAT.1972.29

	1 Introduction: Simulation Notions with Bounded Number of Steps
	2 Main Contribution
	2.1 Preorder-Constrained Simulation without up-to
	2.2 Preorder-Constrained Simulation with up-to

	3 Related Work
	4 Research Directions

