
Quantitative Polynomial Functors
Georgi Nakov #

Department of Computer and Information Sciences, University of Strathclyde, UK

Fredrik Nordvall Forsberg #

Department of Computer and Information Sciences, University of Strathclyde, UK

Abstract
We investigate containers and polynomial functors in Quantitative Type Theory, and give initial
algebra semantics of inductive data types in the presence of linearity. We show that reasoning by
induction is supported, and equivalent to initiality, also in the linear setting.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Linear logic

Keywords and phrases quantitative type theory, polynomial functors, inductive data types

Digital Object Identifier 10.4230/LIPIcs.CALCO.2021.22

Category Early Ideas

1 Quantitative Type Theory

Quantitative Type Theory (QTT) [3, 12] combines linear and dependent types, allowing for
tracking and reasoning about resource usage of programs. Such a combination is non-trivial
as there is no obvious answer how to treat terms occurring in type formation. Previous
attempts include the Linear Logical Framework [6], and the work of Krishnaswami, Pradic
and Benton [11] and Vákár [14], based on Linear/Non-Linear logic [5], in which the context
is split into intuitionistic and linear parts, and each type is allowed to depend on only one of
the two. QTT differs by maintaining a single context, where each variable is annotated with
resource information (for a similar approach, see Orchard et al. [13], Fu et al. [8] and Abel
and Bernardy [2]). For example, consider the judgement (where Fin : N → Type is a type
family with Fin(n) consisting of natural numbers smaller than n):

n
0: N, x

2: Fin(n) ⊢ x + x
1: Fin(2n)

The variables on the left of the turnstile form the context of the judgement. Each one is
annotated with a quantity, taken from a fixed semiring R (here, R = (N, +, ∗)). These
quantities denote how many the times the variables must be used in the term on the right.
Hence here we see that n is used 0 times, since it only occurs in types, and x is used twice.
A context can be pointwise scaled by an element π ∈ R, and two contexts with the same
“underlying non-resource-annotated context” can be added pointwise:

π(Γ, x
ρ: S) = πΓ, x

πρ: S

(Γ1, x
ρ1: S) + (Γ2, x

ρ2: S) = (Γ1 + Γ2), x
ρ1+ρ2: S, if 0Γ1 = 0Γ2.

While arbitrary elements from R may occur as annotations in the context, only the 0 and
1 are valid annotations for the conclusion, in order to retain admissibility of substitution [3,
§ 2.3]. Such a restriction effectively splits the theory in two fragments. Terms in the so-called

© Georgi Nakov and Fredrik Nordvall Forsberg;
licensed under Creative Commons License CC-BY 4.0

9th Conference on Algebra and Coalgebra in Computer Science (CALCO 2021).
Editors: Fabio Gadducci and Alexandra Silva; Article No. 22; pp. 22:1–22:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georgi.nakov@strath.ac.uk
mailto:fredrik.nordvall-forsberg@strath.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2021.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Quantitative Polynomial Functors

0Γ ⊢ X : Type 0Γ, x
0: X ⊢ Y : Type

0Γ ⊢ (x ρ: X) → Y : Type
Γ, x

ρ: X ⊢ t : Y

Γ ⊢ λx. t : (x ρ: X) → Y

Γ1 ⊢ f : (x ρ: X) → Y Γ2 ⊢ t : S 0Γ1 = 0Γ2

Γ1 + πΓ2 ⊢ f(t) : Y [t/x]

0Γ ⊢ X : Type 0Γ, x
0: X ⊢ Y : Type

0Γ ⊢ (x ρ: X) ⊗ Y : Type

Γ1 ⊢ s : X Γ2 ⊢ t : Y [s/x] 0Γ1 = 0Γ2

ρΓ1 + Γ2 ⊢ (s, t) : (x ρ: X) ⊗ Y

Γ1 ⊢ w : (x ρ: X) ⊗ Y

0Γ1, z
0: (x ρ: X) ⊗ Y ⊢ U : Type

Γ2, x
ρ: X, y

1: Y ⊢ u : U [(x, y)/z] 0Γ1 = 0Γ2

Γ1 + Γ2 ⊢ let (x, y) = s in t : U [w/z]

Figure 1 Typing rules for the dependent function and dependent tensor types.

0-fragment bear no computational content, while the inhabitants of the 1-fragment are
computationally relevant1. The core insight is that contemplating variables in types is always
possible, even for already consumed ones, and thus type formation happens in the 0-fragment.

The typing rules in the system now carry resource tracking duty, which is especially
evident in types with binders – see Figure 1. Function type now records how many times
its arguments are used; e.g. a function f : (x ρ: X) → Y must be supplied with ρ many
copies of x. (If the type family Y does not depend on X, we will use the simplified notation
f : X

ρ→ Y for f : (x ρ: X) → Y .) In a similar vein, the second component of the dependent
pair t : (x ρ: A) ⊗ B requires ρ many copies of the first component.

2 Quantitative Containers

We want to extend QTT with data types to program with and reason about, but an ad-hoc
approach of writing out introduction and elimination rules for each data type is cumbersome
and error-prone. A principled solution to adding inductive data types in a traditional setting
is provided by the theory of polynomial functors [9] and containers [1]. We build the syntactic
category of closed types and linear functions in QTT and define polynomial functors on it.
We can then systematically derive appropriate elimination rules for their initial algebras.

2.1 Quantitative container functors on the category of (closed) types
and linear functions

In traditional type theory, a container functor is a functor on types of the form FS,P (X) =
(s : S) × (P [s] → X), where (x : A) × B[x] is the dependent pair type. We think of the
parameter S as a type of shapes, and the family P : S → Type as a type of positions for each
shape. An element of FS,P (X) is describing how to fill the container with “payloads” from
X: a choice of a shape s : S, and an element of X for every position in P [s]. The following
is the obvious transfer of this idea to a quantitative setting:

1 From now on, we omit the annotation on terms in the 1-fragment on the right of the turnstile in typing
judgements – that is, Γ ⊢ t : A tacitly means Γ ⊢ t

1: A.

G. Nakov and F. Nordvall Forsberg 22:3

▶ Proposition 1. Let C be the category of closed types and linear functions: its objects are
types ⊢ X, and morphisms are functions ⊢ f : X

1→ Y . For fixed S : Type and P : S
0→ Type,

the mapping FS,P (X) = (s 1: S) ⊗ (P [s] 1→ X) is a functor C → C.

We call any functor isomorphic to one of the form FS,P a quantitative container. The above
proposition can be generalised to types and functions over an arbitrary, fixed context of the
shape Γ = 0Γ, i.e. where all variables are annotated with 0.

2.2 Induction principles and initial algebras
Recall that an F -algebra for an endofunctor F : C → C is a pair (A, a : F (A) → A), where A

is an object of C and a is a C-morphism. A morphism between F -algebras (A, a) and (B, b)
is a map f : A → B in C, such that f ◦ a = b ◦ F (f). Inductive data types are initial algebras:
the algebra map corresponds to the introduction rule of the type, and the mediating map
corresponds to the elimination rule. A priori, this only gives non-dependent elimination rules
(also known as recursion principles), but by exploiting the uniqueness of the mediating map,
we can also derive dependent elimination rules (induction principles), and vice versa:

▶ Theorem 2. Let W := (W, c : FS,P (W) 1→ W) be an FS,P -algebra. W is initial if and
only if the following induction principle holds:

w
0: W ⊢ Q : Type ⊢ M : (s 1: S) → (h 0: P [s] 1→ W) → ((p 1: P [s]) → Q(h(p))) 1→ Q(c(s, h))

⊢ elim(Q, M) : (x 1: W) → Q[x]

Proof (sketch). The proof is based on the standard construction (see e.g. Awodey, Gambino
and Sojakova [4] or Hermida and Jacobs [9]), but accounting for linearity.

Assuming that W is initial and the premises of the elimination rule, we build an FS,P -
algebra on the dependent tensor type (w 0: W) ⊗ Q, and get a unique mediating morphism
fold : W

1→ (w 0: W) ⊗ Q by initiality. We compose with the second projection snd : (x 1: (w 0:
W) ⊗ Q) → Q[fst(x)] to get a map (x 1: W) → Q[fst(fold(x))]. Note that the use of second
projection is admissible due to the annotation of the first component w

0: W – we are free to
dispose of w, since it is used 0 times. To show that snd ◦ fold has the right type, we need to
show that Q[fst(fold(x))] = Q[x] for every x : W , but as this is a type equality, unrestricted
use of terms is permissible. The map fst : (w 0: W) ⊗ Q

1→ W is an FS,P -algebra morphism,
and thus the composite fst ◦ fold : W

1→ W is also one:

FS,P (W) W

FS,P ((w 0: W) ⊗ Q) (w 0: W) ⊗ Q

FS,P (W) W

c

fold

fst

c

Thus fst ◦ fold = id holds by uniqueness of the mediating morphism out of W .
The converse direction follows analogously. ◀

CALCO 2021

22:4 Quantitative Polynomial Functors

3 Quantitative polynomial functors

However, there is a caveat – most quantitative versions of standard data types are not
quantitative containers in the above sense. Consider, for example, the natural numbers,
the initial algebra of the polynomial functor F (X) = 1 + X, or binary trees, the initial
algebra of G(X) = A + X × X. Their representations in “container normal form” crucially
depend on isomorphisms (0 → X) ∼= 1 and (Bool → X) ∼= X × X, respectively, but
their QTT counterparts do not hold: (0 1→ X) ̸∼= I (where I is the monoidal unit) and
(Bool 1→ X) ̸∼= X ⊗ X. Thus we resort to generating the class of quantitative polynomial
functors inductively by the following grammar:

F, G ::= Id | ConstA | F⊗G | F⊕G | F & G | A
1→X (1)

Theorem 2 still holds for this class of functors, with the induction principle reformulated
using an appropriately defined predicate lifting F̂X : (Q : X → Type) → (F (X) → Type) for
the type of induction hypothesis:

▶ Theorem 3. Let F be a quantitative polynomial functor and W := (W, c : F (W) 1→ W)
an F -algebra. W is initial if and only if the following induction principle holds:

w
0: W ⊢ Q : Type ⊢ M : ((w 0: F (W)) ⊗ F̂W (Q, w)) 1→ Q(c(w))

⊢ elim(Q, M) : (x 1: W) → Q[x]

Our proof is a variation on the proof of Theorem 2, using a distributive lemma for the
dependent tensor and the predicate lifting:

▶ Lemma 4. For a quantitative polynomial functor F , we have

F ((w 0: W) ⊗ Q) ∼= (w′ 0: F (W)) ⊗ F̂W (Q, w′).

4 Existence of initial algebras

Categorical models of QTT build upon Categories with families (CwF) [7], a standard
framework for models of dependent type theories. A Quantitative CwF [3] consists of an
ordinary CwF C, a category of resourced contexts and substitutions L, and data to interpret
resourced counterparts of context extensions and terms. A faithful functor U : L → C relates
the computationally relevant 1-fragment in L to the 0-fragment in C.

A concrete model is given by choosing C = Set and L to be the category of assemblies [15]
using linear realisability [10]. We can prove existence of initial algebras of finitary quantitative
polynomial functors (i.e., generated without A

1→X) in the model by reusing the initial algebras
in Set, using their universal properties to construct the realisers. Unfortunately, this method
does not extend to non-finitary polynomial functors (i.e. those generated using A

1→X in the
grammar (1)), since the case for the type constructor A

1→X gives a realiser r(a) for every
a : A, but not a realisable function. In the future, we hope to overcome this shortcoming.

G. Nakov and F. Nordvall Forsberg 22:5

References
1 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers. Lecture Notes

in Computer Science, 2620:23–38, 2003. doi:10.1007/3-540-36576-1_2.
2 Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems.

Proceedings of the ACM on Programming Languages, 4(ICFP):1–28, 2020. doi:10.1145/
3408972.

3 Robert Atkey. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18, pages 56–65, New
York, New York, USA, 2018. ACM Press. doi:10.1145/3209108.3209189.

4 Steve Awodey, Nicola Gambino, and Kristina Sojakova. Homotopy-initial algebras in type
theory. Journal of the ACM, 63(6), 2017.

5 P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Lecture
Notes in Computer Science, volume 933, pages 121–135. Springer, Berlin, Heidelberg, 1995.
doi:10.1007/BFb0022251.

6 Iliano Cervesato and Frank Pfenning. A Linear Logical Framework. Information and Compu-
tation, 179(1):19–75, 2002. doi:10.1006/inco.2001.2951.

7 Peter Dybjer. Internal type theory. In Lecture Notes in Computer Science, volume 1158 LNCS,
pages 120–134. Springer, Berlin, Heidelberg, 1996. doi:10.1007/3-540-61780-9_66.

8 Peng Fu, Kohei Kishida, and Peter Selinger. Linear Dependent Type Theory for Quantum
Programming Languages: Extended Abstract. In Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2020: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 440–453. Association for Com-
puting Machinery, 2020. doi:10.1145/3373718.3394765.

9 Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a Fibrational
Setting. Information and Computation, 145(2):107–152, 1998. doi:10.1006/inco.1998.2725.

10 Naohiko Hoshino. Linear Realizability. In Computer Science Logic, volume 4646 LNCS,
pages 420–434. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/
978-3-540-74915-8_32.

11 Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. Integrating Linear and De-
pendent Types. ACM SIGPLAN Notices, 50(1):17–30, 2015. doi:10.1145/2775051.2676969.

12 Conor McBride. I Got Plenty o’ Nuttin’. In Lecture Notes in Computer Science, volume 9600,
pages 207–233. Springer Verlag, 2016. doi:10.1007/978-3-319-30936-1_12.

13 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. Proceedings of the ACM on Programming Languages,
3(ICFP):110:1–110:30, 2019. doi:10.1145/3341714.

14 Matthijs Vákár. In search of effectful dependent types. PhD thesis, University of Oxford, 2017.
15 Jaap van Oosten. Realizability: an introduction to its categorical side. Elsevier, 2008.

CALCO 2021

https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1006/inco.2001.2951
https://doi.org/10.1007/3-540-61780-9_66
https://doi.org/10.1145/3373718.3394765
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1007/978-3-540-74915-8_32
https://doi.org/10.1145/2775051.2676969
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3341714

	1 Quantitative Type Theory
	2 Quantitative Containers
	2.1 Quantitative container functors on the category of (closed) types and linear functions
	2.2 Induction principles and initial algebras

	3 Quantitative polynomial functors
	4 Existence of initial algebras

