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1 Introduction

In his dissertation in 1963 Lawvere not only introduced algebraic theories. He also character-
ized finitary single-sorted varieties as precisely those categories, up to equivalence, which
have
(1) finite limits and coequalizers,
(2) effective equivalence relations, and
(3) an abstractly finite, regularly projective regular generator G.
Regular projectivity means that the hom-functor of G preserves regular epimorphisms.
Abstract finiteness states that every morphism from G to a copower of G factorizes through
a finite subcopower; this is much weaker than being finitely generated.

In Condition (1) of the dissertation coequalizers are not included. But they are used in
the proof with no explanation, so this is just a small typo. Condition (2) can be avoided if a
bit more than regular projectivity is required of G, as observed by Pedicchio und Wood [11].
We follow their idea and call an object G effective if its hom-functor preserves coequalizers
of equivalence relations. Given a regularly projective regular generator G in a category K,
then it is effective iff K has effective equivalence relations (Proposition 25 below).

In software specification one typically works with many-sorted algebras, and the purpose
of our paper is to generalize Lawvere’s result to that case and improve it slightly: in (1) we
need only to assume that kernel pairs and reflexive coequalizers exist. In (3) it is sufficient
(in case of single-sorted varietie) to assume that G is an abstractly finite, effective, strong
generator. For many-sorted varieties the concept of an abstractly finite set of objects was
presented [1]. In case of finitely many sorts we obtain a completely analogous result to that
above: a category with kernel pairs and reflexive coequalizers is equivalent to a finitary
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S-sorted variety iff it has an abstractly finite strong generator formed by finitely many
effective objects. The proof is based on the fact that for a monad T on SetS to be finitary
it is sufficient that it be finitely bounded (which, for S finite, has been shown in [3]). This
means that every element of TX lies in the image of Tm for some finite S-sorted subset
m : M ↪→ X.

For infinitely many sorts an analogous, but slightly weaker result, is proved: in place
of abstract finiteness one has to work with finitely presentable objects in the generator. In
Example 39 below we demonstrate that the (expected) stronger result does not hold.

The results presented here are not substantially new. For example in [1] single-sorted
varieties are characterized as cocomplete categories with a finitely generated, effective regular
generator. But the message of our paper is that the beautiful result of Lawvere can be
sharpened a little bit and extended to many-sorted varieties by applying the categorical
methods developed in the subsequent 58 years. Many-sorted varieties have also been
characterized as precisely the strongly locally presentable categories in [5]. We show that
this result is an easy corollary of our main theorems.

Related Work. The concept of an abstractly finite set of objects was introduced in [1] and
[2], where it was claimed that for many-sorted varieties the result of Lawvere completely
generalizes. But the proof (based on the Birkhoff Variety Theorem) was not correct: see
Example 39 which shows that the assumption of finitely many sorts is essential.

2 Abstractly Finite Objects

There are several concepts generalizing finite sets to “finite” objects of a category. Among the
most important ones are that an object A of K is finitely presentable or finitely generated if
its hom-functor K(A, −) preserves directed colimits (or directed colimits of monomorphisms,
resp.). Lawvere [9] used in his characterization of varieties a weaker concept, abstract
finiteness. He commented that it had been introduced by Peter Freyd.

We denote by

M • G =
∐
M

G

the copower of an object G indexed by a set M . By a subcopower is meant the morphism

i • M ′ : M ′ • G → M • G

where i : M ′ ↪→ M is the inclusion map of a subset M ′ ⊆ M .

▶ Definition 1. An object G is called abstractly finite if it has copowers, and every morphism
f : G → M • G factorizes through a finite subcopower:

M ′ • G

i • G

��
G

;;w
w

w
w

w

f
// M • G

(M ′ ⊆ M finite)

▶ Remark 2.
(1) Let G be an object with copowers. If it is finitely generated, then it is abstractly finite –

but not vice versa, as we demonstrate in Example 3 below.
In fact, for every set M ̸= ∅ we form a directed diagram of all finite non-empty
subcopowers of M • G. It has the colimit M • G. Its connecting morphisms are
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j • G : M ′ • G → M ′′ • G for inclusion maps j : M ′ ↪→ M ′′. Since j splits in Set, j • G

is a split monomorphism. Thus the hom-functor of G preserves this directed colimit.
Equivalently, G is abstractly finite.

(2) In a single-sorted variety of algebras, a free algebra G on a set X is abstractly finite iff
X is finite. This follows easily from the fact that M • G is the free algebra on M × X

for every set M .

▶ Examples 3.
(1) In Set abstractly finite means finite. In the category of vector spaces it means finite-

dimensional. So here finitely generated = abstractly finite.
(2) In the category of posets the abstractly finite objects are precisely the posets with finitely

many connected components. Thus, an abstractly finite object can have an arbitrarily
large cardinality.
The same is true in the category of unary algebras on one operation or in the category of
graphs.

(3) In the category DCPO of dcpo’s, i.e. posets with directed joins (and continuous maps)
no nonempty object is finitely generated. In contrast, a dcpo is abstractly finite iff it has
finitely many connected components.

▶ Remark 4. Our focus is on varieties of S-sorted algebras, which we now shortly recall from
[5, Chapter 14].
(1) By an S-sorted signature (for a set S) is meant a collection Σ of (operation) symbols σ

with prescribed arities in S∗×S. We write σ : s0 . . . sn−1 → s if σ has arity (s1 . . . sn−1, s).
(2) The category of S-sorted sets is denoted by SetS . Let X ∈ SetS be an S-sorted set of a

variables. The S-sorted set FΣX of terms is the least one containing X and such that
given an operation symbol σ : s0 . . . sn−1 → s and terms pi of sort si, then σ(p0, . . . , pn−1)
is a (composite) term of sort s.

(3) A Σ-algebra is a sorted set A equipped with operations σA : As0 × · · · × Asn−1 → As for
every operation symbol σ : s0 . . . sn−1 → s. Given another Σ-algebra B, a homomorphism
is a sorted map f : A → B preserving the operations: for every σ : s0 . . . sn−1 → s we
have

fs · σA = σB · (fs0 × · · · × fsn−1) .

We denote by Σ- Alg the category of Σ-algebras and homomorphisms.
Example: FΣX is a Σ-algebra w.r.t. composite terms as operations. This is a free
Σ-algebra on X w.r.t. the inclusion map η : X ↪→ FΣX.

(4) An equation using variables xi of sort si (i = 0, . . . , k − 1) is an expression

∀x0 . . . ∀xk−1(t = t′)

where t, t′ are terms in FΣ{x0, . . . , xn−1} of the same sort. A Σ-algebra A satisfies this
equation if for every sorted function f : {x0, . . . , xn−1} → A the free homomorphism
f̄ : FΣ{xi} → A fulfils f̄(t) = f̄(t′).

(5) For every set E of equations we denote by

(Σ, E)- Alg

the full subcategory of Σ-Alg of all algebras satisfying all equations in E . It is easy to
see that this is a reflective subcategory of Σ-Alg, thus, it has free algebras on all sorted
sets. And it is a complete and cocomplete category.
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▶ Definition 5. By a variety is meant a category (Σ, E)-Alg for some many sorted signature
Σ and some set E of equations.

▶ Remark 6. In a variety the usual meaning of “finitely generated”, that is, having a finite
set of generators, is equivalent to the categorical concept. The same is true about “finitely
presentable”, that is, presentable by finitely many generators and finitely many relations.
See [4] 3.11 and 3.12.

For many-sorted varieties we need to generalize the concept of an abstractly finite object
to sets of objects:

▶ Definition 7. A set G of objects is abstractly finite if all coproducts of collections of
objects from G exist, and given a morphism f : G →

∐
i∈I

Gi with G and all Gi in G, then f

factorizes through a finite subcoproduct of
∐
i∈I

Gi.

The factorization of f is not required to be unique (and coproduct injections are not required
to be monic).

▶ Example 8. In an S-sorted variety we form the free algebra Gs on one generator of sort s

for each s ∈ S. The set {Gs}s∈S is abstractly finite. Indeed, the coproduct
∐
i∈I

Gsi
is precisely

a free algebra on the S-sorted set X with Xs = {i ∈ I, si = s}. Every homomorphism
f : Gs →

∐
i∈I

Gsi maps the generator x ∈ Gs to a term over X. If Y ⊆ X is the set of all

variables that appear in the term f(x), then f(x) lies in the finite subcoproduct
∐

si∈Y

Gsi
.

Consequently, f factorizes through this subcoproduct.

▶ Remark 9. Recall that a strong generator is a set G of objects such that coproducts of
collections of objects from G exist, and for every object X there exists an epimorphism
c :

∐
i∈I

Gi → X with Gi ∈ G for i ∈ I which is extremal (i.e., c does not factorize through

any proper subobject of X).
A regular generator has the stronger property that the following canonical morphism

cX = [f ] :
∐

G∈G

∐
f : G→X

G → X

is a regular epimorphism.

▶ Example 10.
(1) In a single-sorted variety K the free algebra G on one generator is an abstractly finite

regular generator. Indeed, for every algebra X the coproduct
∐

f : G→X

G is the free algebra

of K generated by K(G, X), and the canonical morphism cX is surjective, i.e., a regular
epimorphism.

(2) In an S-sorted variety the set {Gs}s∈S from Example 8 is an abstractly finite regular
generator. The argument is as above.

▶ Remark 11.
(1) In the next theorem we use the standard construction of colimits via coproducts and

coequalizers [10] Thm. V.2.2. Let D : D → K be a diagram with objects Di (i ∈ I).
Suppose that the following coproducts exist: A =

∐
i∈I

Di with injections ai, and B =∐
f : Di→Dj

Di with injection bf , where the f ’s range over all morphisms of D. Then
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we form the morphisms p, q : B → A with f -components ai and aj · f , resp. for all
f : Di → Dj . Suppose a coequalizer c of p and q exists:

Di

ai

��
B

p //

q
// A c

// C

Then the cocone of c · ai (i ∈ I) is a colimit of D.
(2) We recall the concept of dense subcategory. Given a full subcategory G of K, for every

object K we form the slice category G/K of all morphisms f : G → K with G ∈ G. The
forgetful functor DK : G/K → K sending f : G → K to G has the cocone formed by all
f ’s. Then G is dense if this cocone is a colimit of DK (for every object K).

The proof of the following theorem uses ideas of Lawvere’s thesis [9]. A shorter proof
presented in [1] was not correct.

▶ Theorem 12. Let G be an abstractly finite, regular, singleton generator. Then the full
subcategory of finite copowers of G is dense.

Proof. Denote by G the full subcategory of all n • G, n ∈ N. For every object K we prove
that K = colim DK . In detail, given an object L and a cocone of DK denoted by (−)′:

n • G
f // K

n • G
f ′

// L
(n ∈ N)

we prove that there exists a unique morphism h : K → L with f ′ = h · f for all f . The fact
that (−)′ is a cocone means that

f = g · u implies f ′ = g′ · u (2.1)

for all morphisms u : n • G → m • G and g : m • G → K. In particular, if fi : G → K are
the components of f : n • G → K (i = 1, . . . , n), then we get the corresponding morphisms
f ′

i : G → L. We then obtain

f ′ =
[
f ′

1, . . . , f ′
n

]
(2.2)

by applying (2.1) to the coproduct injections on n • G.
The canonical morphism cK :

∐
f : G→K

G → K is a coequalizer of a pair u1, u2 : U →∐
f : G→K

G. Denote by c′
K :

∐
f : G→K

G → L the morphism with components f ′ for every

f : G → K:

U
u2 //

u1
//

∐
f : G→K

G

c′
K

��

cK // K

h

yys s
s
s
s
s
s

L

We are going to prove that c′
K ·u1 = c′

K ·u2. Then we obtain a factorization h with c′
K = h·cK .

This is the desired morphism: for every f : G → K we then have f = h · f ′, and due to (2.2)
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the same holds for every f : n • G → K. Uniqueness of h is clear since G is a generator. For
proving c′

K · u1 = c′
K · u2 we just need to verify

c′
K · u1 · g = c′

K · u2 · g for every g : G → U . (2.3)

The morphisms u1g, u2g : G →
∐

f : G→K

G both factorize through a finite subcopower,

since G is abstractly finite. That is, we have fi : G → K for i = 1, . . . , k such that for the
corresponding coproduct injection m : k • G →

∐
f : G→K

G there exist morphisms vi with
g · ui = m · vi :

G
v2 //

v1
//

g

��

k • G

m

��

[f1,...,fk]

%%KK
KKK

KKK
KKK

KK

U
u2 //

u1
//

∐
f : G→K

G

c′
K

��

cK

// K

L

From cK · u1 = cK · u2 we get cK · m · v1 = cK · m · v2, thus, (cK · m · v1)′ = (cK · m · v2)′. By
applying (2.1) to the morphisms mvi of G we get

c′
Kuig = c′

Kmvi = (cKmvi)′ = (cKuig)′

for i = 1, 2, which proves (2.3). ◀

▶ Remark 13. The above theorem and proof immediately generalize to non-singleton abstractly
finite regular generators G: the closure of G under finite coproducts is dense.

▶ Remark 14. A pair of morphisms f1, f2 : A → B is called reflexive if there exists d : B → A

with f1 · d = f2 · d = idB . A category is said to have reflexive coequalizers if every reflexive
pair has a coequalizer.

▶ Corollary 15. Let K be a category with reflexive coequalizers. Then it is complete and
cocomplete provided that it has an abstractly finite regular generator consisting of regular
projectives.

This follows from Remark 13. Let Ḡ be the dense closure of G. Consequently, the functor
E : K →

[
Ḡop, Set

]
assigning to K the restriction of K(−, K) to Ḡop is full and faithful.

Moreover E has a left adjoint: it assigns to H : Ḡop → Set the colimit of the category of
elements of H. The reason why this colimit exists is that in Remark 11(1) the two coproducts
exist, since they are formed by object of Ḡop (and so they are coproducts of objects of
G), and the coequalizer c exists because the pair p, q : B → A is reflexive. Indeed, the
morphism d : A → B whose i-component is the coproduct injection corresponding to idDi

fulfils p · d = q · d = idA. The details why this yields a left adjoint of E can be found in [1,
Corollary 2.12].

We conclude that K is equivalent to a full reflective subcategory of [Ḡop, Set], hence, it is
complete and cocomplete.
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3 Effective Objects

A category is said to have effective equivalence relations if every equivalence relation (see
below) is the kernel pair of its coequalizer. We define effective objects as those whose
hom-functors preserve coequalizers of equivalence relations. Based on an idea of Pedicchio
and Wood [11] we then prove that given a regularly projective regular generator G, it is
effective iff equivalence relations are effective.

The usual definition of a relation R on an object A is: a subobject of A×A. The restricted
projections then form a parallel pair r1, r2 : R → A of morphisms which is collectively monic.
Our main theorem makes no assumptions about the existence of products. We therefore
introduce relations via parallel pairs:

▶ Definition 16 ([7] 2.5.2). Let A be an object of a category K.
(1) A relation on A is represented by a collectively monic ordered pair of morphisms r1,

r2 : R → A. Another such pair r′
1, r′

2 : R′ → A represents the same relation iff there is
an isomorphism i : R′ → R with r′

1 = r1i and r′
2 = r2i.

We speak about “the relation R” if r1, r2 are clear.
(2) A relation R is an equivalence if for every object X of K the following relation on the

hom-set K(X, A) is an equivalence relation in the usual sense:{
(r1f, r2f); f : X → R

}
.

▶ Remark 17. Let K have finite limits and regular factorizations (every morphism factorizes
as a regular epimorphism followed by a monomorphism). Then equivalence relations are
more intuitive:
(1) A relation R on A is precisely a subobject of A × A.

Example: ∆A given by idA, idA.
(2) Every parallel pair of morphisms f1, f2 : B → A represents a relation on A : factorize

⟨f1, f2⟩ : B → A × A as a regular epimorphism e : B → R followed by a monomorphism
⟨r1, r2⟩ : R → A × A. This gives you a relation R ↣ A × A.

(3) A composite of relations r1, r2 : R → A and s1, s2 : S → A is the relation P = R ◦ S

represented by the pair (r1p1, s2p2) for the following pullback P of r2 and s1 :

P
p1

~~~~
~~ p2

��@
@@

@

R
r1

��~~
~~

r2   @
@@

@ S

s1��~~
~~ s2

��?
??

?

A A A

(4) The relation R0 is represented by r2, r1 : R → A.
(5) A relation R on A is an equivalence relation iff it is reflexive (∆A ⊆ R), symmetric

(R0 ⊆ R) and transitive (R ◦ R ⊆ R). This is equivalent to the definition above by [7]
Proposition 2.5.1.

(6) For every morphism f : A → B the kernel pair, which means the pullback of two copies
of f , is an equivalence relation. By an effective equivalence is meant the kernel pair of
some morphism.

(7) A functor E : K → L is said to reflect isomorphisms if whenever Eh is invertible in L,
then h is invertible in K. Analogously for reflecting regular epimorphisms, limits, etc.

Suppose that E preserves and reflects (a) finite limits and (b) regular factorizations. Then
it preserves and reflects relations and relation composition. Since the operation R 7→ R0 is
also preserved and reflected, we conclude that E preserves and reflects equivalence relations.
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▶ Definition 18. A category is said to have effective equivalence relations if every equivalence
on an object A is effective (the kernel equivalence of some morphism f : A → B).

▶ Example 19. Let K be a variety. A relation on an algebra A is a subalgebra of A × A.
And an equivalence is precisely a congruence R on A, represented by its projections r1,
r2 : R → A. Every variety has effective equivalence relations.

▶ Definition 20. An object A is called effective if its hom-functor K(A, −) preserves coequal-
izers of equivalence relations.

▶ Example 21. In a variety K all free algebras are effective. In fact, let us first consider a
single-sorted variety. Its forgetful functor U : K → Set preserves coequalizers of congruences.
(Indeed, if R is a congruence on A, then the quotient algebra A/R is formed on the
corresponding quotient set. And the canonical map c : A → A/R is precisely the coequalizer
of the projections r1, r2 : R → A.) Now U ≃ K(G, −) where G is the free algebra on one
generator. Thus, G is effective. And since a free algebra on a set M is precisely M • G, its
hom-functor is the M -copower of U , and it also preserves coequalizers of congruences.

The argument for S-sorted varieties is analogous, using that the forgetful functor U : K →
SetS preserves coequalizers of congruences.

▶ Definition 22. An object G is called regularly projective if its hom-functor preserves regular
epimorphisms. More detailed: given a regular epimorphism e : A → B, every morphism from
G to B factorizes through e.

▶ Remark 23. Let K be a category with kernel pairs. Recall that kernel pairs are called
effective equivalences.
(1) Every effective object G is regularly projective.

In fact, given a regular epimorphism e : A → B form its kernel pair r1, r2 : R → A. Then
K(G, e) is a coequalizer of K(G, ri), thus it is surjective.

(2) An object G is regularly projective iff its hom-functor preserves coequalizers of effective
equivalences – thus, this is very “near” to being effective.

Indeed, let r1, r2 : R → A be an effective equivalence. Then the coequalizer e : A → B

has the kernel equivalence R. Since K(G, −) preserves pullbacks, K(G, e) has the kernel pair
K(G, ri), i = 1, 2 in Set. We know that K(G, e) is surjective. This implies that this is the
coequalizer of its kernel pair.
▶ Remark 24. Let K be a category with kernel pairs and their coequalizers and let G be a
regular generator formed by regular projectives.
(1) K has regular factorizations: every morphism f factorizes as a regular epimorphism

followed by a monomorphism. Indeed, let p1, p2 : P → A be the kernel pair of f : A → B

and e : A → C be a coequalizer of p1, p2. Then we have m : B → C with f = m · e.
To prove that m is monic, consider u1, u2 : G → B for G ∈ G: if mu1 = mu2, we
prove u1 = u2. Since G is regularly projective, there exist morphisms u′

i : G → A with
ui = e·u′

i. From fu′
1 = fu′

2 we conclude that there is u : U → P with u′
i = piu. Therefore

u1 = ep1u = ep2u = u2.
(2) The functor U : K → SetG with components K(G, −) preserves and reflects both regular

epimorphisms and isomorphisms. Preservation is clear. Let f : A → B be such that
Uf is epic, i.e., sort-wise surjective. Factorize f = m · e where e : A → C is a regular
epimorphism and m : C → B is a monomorphism. Then m is invertible because for every
G ∈ G we see that all morphisms G → B factorize through m. Analogously, U reflects
isomorphisms.

(3) Consequently, U preserves and reflects equivalences, see Remark 17(7).
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▶ Proposition 25. Let K be a category with kernel pairs and reflexive coequalizers, having a
regular generator G formed by regular projectives. Equivalent are:
(1) all objects of G are effective, and
(2) K has effective equivalence relations.

Proof. 2 → 1. Given an equivalence relations e1, e2 : E → A and its coequalizer c : A → B,
we prove that K(G, −) preserves it for every G ∈ G. Let f : K(G, A) → X be a function
with f · K(G, e1) = f · K(G, e2). We prove that it factorizes through K(G, c). In other
words: for every pair x1, x2 ∈ K(G, A) merged by K(G, c) we prove that f also merges it.
By assumption, c · x1 = c · x2. Thus x1, x2 factorize through the kernel pair of c, which by
(2) is e1, e2. Given h : G → B with xi = ei · h, we get

f(xi) = f(ei · h) =
(
f · K(G, ei)

)
(h) (i = 1, 2) .

This proves f(x1) = f(x2).
1 → 2. Let G consist of effective objects. For every equivalence relation e1, e2 : E → A

form its coequalizer c : A → B and a kernel pair e′
1, e′

2 : E′ → A of c. We have a factorization
h : E → E′ with ek = e′

k · h for k = 1, 2. Our task is to prove that h is an isomorphism.
The functor U = K(G, −) for G ∈ G preserves limits and regular epimorphisms since

G is a regular projective. Consequently, by Remarks 24 and 17(7) it preserves equivalence
relations. Thus UE and UE′ are equivalence relations on the set UA and, since G is effective,
they have a common coequalizer Uc. It follows for the factorization morphism h that Uh is
an isomorphism. Consequently, so is h. ◀

▶ Remark 26. The above proposition was inspired by the paper [11] in which an object is
called an effective projective if its hom-functor preserves reflexive coequalizers. Preservation
of coequalizers of equivalence relations seems a more suitable condition first because of the
above proposition. Second, for varieties of infinitary algebras free algebras are effective but
no longer effective projectives.

▶ Definition 27. By a split coequalizer of morphisms r1, r2 : R → A is meant a morphism
c : A → C with cr1 = cr2 such that there exist morphisms i : C → A and j : A → R with
ci = idC , jr1 = idA and jr2 = ic.

▶ Lemma 28. In a category with finite limits and regular factorizations for every split
coequalizer c of a relation r1, r2 : R → A the kernel pair of c is the composite relation R ◦ R0.

Proof. The relation R0 is represented by r2, r1 : R → A. Thus R ◦ R0 is represented by r1p1,
r1p2 : P → A where p1, p2 : P → R is the kernel pair of r2, see Remark 17(3):

P
p1

~~~~
~~ p2

  @
@@

@

R
r1

��~~
~~

r2   @
@@

@ R

r2~~~~
~~ r1

��@
@@

@

A A A

The corresponding collectively monic pair r′
1, r′

2 : R′ → A is obtained by factorizing
⟨r1p1, r1p2⟩ : P → A × A as a regular epimorphism e : P → R′ followed by a monomorphism
⟨r′

1, r′
2⟩. We prove that r′

1, r′
2 is a kernel pair of c.

(1) cr′
1 = cr′

2. Since e is epic, this follows from

c · (r′
1e) = c · (r1p1) = cr2p1 = cr2p2 = c · (r1p2) = c · (r′

2e) .
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6:10 Which Categories Are Varieties?

(2) Given u1, u2 : U → A with cu1 = cu2, then this pair uniquely factorizes through r′
1, r′

2.
Unicity is clear since ⟨r′

1, r′
2⟩ is monic.

For i and j as in Definition 27 we see that

r2 · (ju1) = icu1 = icu2 = r2 · (ju2) .

Since p1, p2 is the kernel pair of r2, this implies that there exists h : U → P with ju1 = p1h

and ju2 = p2h. The desired factorization is eh : U → R′: we have

u1 = (r1j)u1 = r1p1h = r′
1(eh)

analogously u2 = r′
2(eh). ◀

▶ Remark 29. Given a reflexive relation r1, r2 : R → A in a category with finite limits and
regular factorizations, then the relations R and R ◦ R0 have the same coequalizers. In fact,
a morphism f merges the projections of R iff if merges those of R ◦ R0. Indeed, let p1,
p2 : P → A be the kernel pair of f .

(1) If f merges R, then R ⊆ P and since P is an equivalence relation, we conclude R ◦ R0 ⊆
P ◦ P 0 = P .

(2) If f merges R◦R0, then since R is reflexive we have ∆A ⊆ R0, hence, R = R◦∆A ⊆ R◦R0.
Thus f merges r1, r2.

▶ Proposition 30. Let K be a category with kernel pairs and their coequalizers. Then every
strong generator consisting of effective objects is a regular generator.
Proof.
(1) K has regular factorizations. Indeed, given a morphism f : X → Y form its kernel pair

p1, p2 : P → X and a coequalizer e : X → C of p1, p2. We have a unique morphism
m : C → Y with f = m · e, and our task is to prove that m is monic. Since G is a strong
generator, this is equivalent to proving for every pair u1, u2 : G → C with G ∈ G that
m · u1 = m · u2 implies u1 = u2.

P
p2 //

p1
// X

e

��

f // Y

G

h

OO�
�
�

u1 //

u2
// C

m

;;vvvvvvvvvv

Since G is regularly projective, K(G, −) preserves regular epimorphisms. Thus there
exist morphisms vi : G → X with ui = e · vi (i = 1, 2). From m · u1 = m · v1, we derive
f ·v1 = f ·v2. Therefore, the pair v1, v2 factorizes through the kernel pair via a morphism
h : G → P with vi = pi · h. Thus ui = e · pi · h and e · p1 = e · p2 implies u1 = u2.

(2) Consequently, every extremal epimorphism e is regular: given its regular factorization
e = m · k, we conclude that m is an isomorphism. Given a strong generator G consisting
of effective objects, we prove that the canonical morphism cX (Remark 9) is a regular
epimorphism for every object X. We have an extremal epimorphism e = [ei] :

∐
i∈I

Gi → X

for some collection of objects Gi ∈ G. Define h :
∐
i∈I

Gi →
∐

G∈G

∐
f : G→X

to have the i-th

component equal to the coproduct injection of ei : Gi → X. Then clearly e = cX · h.
Since e is an extremal epimorphism, so is cX . Thus cX is a regular epimorphism. ◀

▶ Corollary 31. Let K have an abstractly finite strong generator consisting of regular
projectives. If K has reflexive coequalizers and kernel pairs, then it is complete and cocomplete.

This follows from the above Proposition and Corollary 15.
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4 A characterization of varieties

▶ Definition 32 ([3]). An endofunctor F of SetS is called finitely bounded if for every object
X and every element x ∈ FX there exists a finite subobject m : M ↪→ X (that is,

∐
s∈S

Ms is

finite) with x in the image of Fm.

▶ Proposition 33 ([3]). If S is a finite set, then an endofunctor of SetS is finitely bounded
iff it is finitary (i.e., preserves directed colimits).

▶ Example 34. A finitely bounded endofunctor of SetN need not be finitary. Consider F

assigning to X itself if all but finitely many sorts of X are empty, else FX is the terminal
object. F is finitely bounded: given x ∈ X of sort n, let M ⊆ X have all sorts but n empty
and Mn = {x}. Then x ∈ FMn. But F does not preserves the colimit of the ω-chain of
N-sorted sets X(k) = (X(k))n∈N for k < ω where X

(k)
n = ∅ if k > n, else X

(k)
n = {0, 1}.

The following proof is based on the idea of the proof of Theorem 4.4.5 in [7].

▶ Theorem 35. A category is equivalent to a variety of finitary many-sorted algebras of
finitely many sorts iff it has
(a) kernel pairs and reflexive coequalizers, and
(b) an abstractly finite, strong generator consisting of finitely many effective objects.

▶ Remark. If in (b) we require the generator to be regular (rather than just strong), then the
assumption that kernel pairs exist can be dropped. See Corollary 15.

Proof. Necessity follows from Remark 4(5) and Examples 21 and 10(2). To prove sufficiency,
let {Gs}s∈S be a set as in (b) above in K. From Corollary 15 and Remark 23(1) we know
that K is complete and cocomplete. It has regular factorizations by Remark 24.

(i) The functor U : K → SetS with components K(Gs, −) for s ∈ S has a left adjoint
F : SetS → K with

FX =
∐
s∈S

Xs • Gs for X = (Xs)s∈S .

Denote by T the corresponding monad on SetS . It is finitely bounded. Indeed, to give,
for an S-sorted set X, an element of sort t in TX = UFX means to give a morphism
f : Gt →

∐
s∈S

Xs • Gs. Since {Gs}s∈S is abstractly finite, there is a finite sorted subset

m : M ↪→ X such that f factorizes through the subcoproduct FM ↪→ FX. That is,
f ∈ Tm[TM ].
Since by the above proposition T is finitary, SetT is equivalent to a variety, see Theorem
A40 in [5]. Thus it is sufficient to prove that U is monadic, then K is also equivalent to
that variety.

(ii) To prove that U is monadic we use Beck’s Theorem as formulated in [6] Theorem 3.3.10:
U is monadic iff (1) U has a left adjoint, (2) U reflects isomorphisms, and (3) for every
reflexive pair r1, r2 : R → A in K if Ur1, Ur2 have a split coequalizer, then r1, r2 have
a coequalizer and U preserves it.

(1) The left adjoint is given by (Xs)s∈S 7→
∐

s∈S

Xs • Gs.

(2) See Remark 24.
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6:12 Which Categories Are Varieties?

(3) Assuming first that r1, r2 are collectively monic, we work with the relation R on
A. Since U preserves finite limits and reflects isomorphisms, it reflects finite limits.
By Remark 24 K has regular factorizations and U preserves and reflects regular
epimorphisms, relation composition and equivalence relations. Indeed, each Gs is
regularly projective (Remark 23).

By assumption the relation R̄ on UA represented by Ur1, Ur2 has a split coequalizer.
Thus R̄◦ R̄0 is an equivalence relation: see Lemma 28. Consequently, R◦R0 is an equivalence
relation on A. Let k : A → K be its coequalizer. Then k is, since R is a reflexive relation,
the coequalizer of R (Remark 29).

Since each Gs is effective, U preserves coequalizers of equivalence relations. Thus Uk is
a coequalizer of R̄ ◦ R̄0. Arguing as above, we conclude that Uk is also coequalizer of UR̄.
This proves that U preserves the coequalizer of r1, r2.

Let us next consider r1, r2 arbitrary. For Ur1, Ur2 we have a split coequalizer c : UA → C

(Remark 27): there are morphisms i : C → UA and j : UA → UR satisfying c · i = idC ,
(Ur1) · j = idUA and (Ur2) · j = i · c. Since K has finite products and regular factorizations,
we can factorize r1, r2 as a regular epimorphism e : R → R′ followed by a collectively monic
pair r′

1, r′
2 : R′ → A. The relation R′ is reflexive: given a morphism d with rid = idA, the

morphism ed fulfils r′
ied = idA. Moreover, the morphisms Ur′

1, Ur′
2 also have the split

coequalizer c : the splitting is given by i and Ue · j. Thus r′
1, r′

2 have a coequalizer preserved
by U . Since e is epic, the coequalizers of r1, r2 and r′

1, r′
2 coincide; analogously for Ue: this

is an epimorphism since each Gs is regularly projective. This concludes the proof. ◀

▶ Corollary 36. A category is equivalent to a single-sorted variety iff it has
(a) kernel pairs and reflexive coequalizers, and
(b) an effective, abstractly finite singleton strong generator.

▶ Example 37. None of the assumptions on the generator G in the above corollary can be
omitted:
(1) Abstract finiteness. The one-element space G in the category of compact Hausdorff

spaces forms a regular generator and is effective. But not abstractly finite: the copower∐
N

G is the space βN and almost no morphism from G to βN factorizes through a finite

subcopower. Analogously, no nonempty space is abstractly finite. Thus, the above
category is not equivalent to a (finitary) variety.

(2) Effectivity. In the category DCPO (Example 3) consider the three-element chain 3. This
is an abstractly finite strong generator (see [8]). But it is not effective: DCPO does not
have effective equivalence relations.

(3) Strength. The one-element poset forms an abstractly finite, effective generator of Pos.
But not a strong one. Pos also fails to have effective equivalence relations.

(4) Existence of copowers. Let Set0 be the full subcategory of Set on all nonempty sets.
Here the terminal object 1 has almost all the required properties: every object is a
copower of 1, every morphism from 1 to a coproduct factorizes through a coproduct
injection, and 1 is effective. And 1 has “almost all” copowers – but not the empty one!
Moreover, Set0 is clearly not equivalent to a variety: it is not complete.

▶ Theorem 38. A category is equivalent to a variety of finitary, many-sorted algebras iff it
has
(a) kernel pairs and reflexive coequalizers, and
(b) a strong generator consisting of finitely presentable effective objects.
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The proof is the same as that of the preceding theorem, except that the verification
that T is finitary can be left out: since each Gs is finitely presentable, U preserves directed
colimits, hence, so does T = UF .

▶ Example 39. Theorem 35 does not generalize to varieties with infinitely many sorts. We
present a category K whose only finitely presentable object is the initial one (thus, K is not
equivalent to a variety). Yet, K has coequalizers and an abstractly finite regular generator
formed by effective objects.

K is the full subcategory of SetN consisting of the terminal object 1 = (1, 1, 1 . . . ) and
all objects (Xn)n∈N such that for some k ∈ N we have

Xn ̸= ∅ iff n < k .

K is closed under coequalizers in SetN. But not under colimits of ω-chains: consider the
chain of inclusions of A(k) = (A(k)

n ) (k < ω) where A
(k)
n = {0, 1} for n ≤ k, else ∅. Then

colimk<ω A(k) = 1 in K. And the only object of K whose hom-functor preserves this colimit
is (∅, ∅, ∅ . . . ).

However, K has the abstractly finite regular generator {B(k)}k∈N where B
(k)
n = 1 for

n ≤ k, else ∅. Every morphism f : B(k) →
∐
i∈I

B(ki) has the property that k ≤ ki for some i,

thus f factorizes through the coproduct injection of B(ki). The verification that each B(k) is
effective and that they form a regular generator is easy.

▶ Remark 40. Many-sorted varieties have also been characterized in [5] as precisely the
strongly locally finitely presentable categories. We recall this shortly and show how this
follows from the above reults.
(1) Using [4] Theorem 1.11, a locally finitely presentable category can be defined as a

cocomplete category with a strong generator formed by finitely presentable objects.
(2) Let us recall that a small category is filtered iff colimits in Set with that domain commute

with finite limits. Analogously one defines a small category to be sifted iff colimits in Set
with that domain commute with finite products. An object A of a category K is called
perfectly presentable if its hom-functor preserves sifted colimits (which are colimits of
diagrams with sifted domains). If K has finite coproducts, these are precisely the finitely
presentable objects A with K(A, −) preserving reflexive coequalizers ([5], Thm. 7.7).
For example, in every variety all free algebras on finitely many generators are perfectly
presentable ([5], Corollary 5.14).

(3) Using [5] Theorem 7.7, a strongly locally finitely presentable category can be defined as a
cocomplete category with a strong generator G formed by perfectly presentable objects.

▶ Corollary 41 ([5] Thm. 6.9). A category is strongly locally finitely presentable iff it is
equivalent to a finitary many-sorted variety.

Proof.
(1) Let K be strongly locally finitely presentable. For the strong generator G in the above

remark every member G ∈ G is finitely presentable and effective, thus G is abstractly
finite. By Theorem 38 K is equivalent to a variety.

(2) Conversely, every variety is strongly finitely presentable since the regular generator of
Example 10(2) consists of perfectly presentable objects. ◀
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Conclusions and Open Problems

Lawvere’s characterization of (single-sorted) finitary varieties can be sharpened as follows:
these are precisely the categories with reflexive coequalizers, kernel pairs and a strong
generator formed by an abstractly finite effective object. We have presented a proof based
on the theory of monads. And we have proved that for varieties of many-sorted algebras a
completely analogous result holds in case of finitely many sorts: many-sorted varieties are,
up to equivalence, precisely the categories with reflexive coequalizers, kernel pairs and an
abstractly finite strong generator formed by finitely many effective objects. For infinitely
many sorts a somewhat weaker characterization holds: instead of abstract finiteness one
requires that the given generator consists of finitely presentable objects.

It is interesting to consider other base categories than Set or SetS . For example Pos:
can one characterize (finitary) varieties of ordered algebras in a similar way?

Another direction of research are non-finitary varieties: what is an abstract characteriza-
tion of categories monadic over SetS , or over Pos?
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