
Algorithms and Complexity on Indexing Elastic
Founder Graphs
Massimo Equi #

Department of Computer Science, University of Helsinki, Finland

Tuukka Norri #

Department of Computer Science, University of Helsinki, Finland

Jarno Alanko #

Department of Computer Science, University of Helsinki, Finland
Faculty of Computer Science, Dalhousie University, Halifax, Canada

Bastien Cazaux #

LIRMM, Univ. Montpellier, CNRS, France

Alexandru I. Tomescu #

Department of Computer Science, University of Helsinki, Finland

Veli Mäkinen #

Department of Computer Science, University of Helsinki, Finland

Abstract
We study the problem of matching a string in a labeled graph. Previous research has shown that
unless the Orthogonal Vectors Hypothesis (OVH) is false, one cannot solve this problem in strongly
sub-quadratic time, nor index the graph in polynomial time to answer queries efficiently (Equi et al.
ICALP 2019, SOFSEM 2021). These conditional lower-bounds cover even deterministic graphs with
binary alphabet, but there naturally exist also graph classes that are easy to index: E.g. Wheeler
graphs (Gagie et al. Theor. Comp. Sci. 2017) cover graphs admitting a Burrows-Wheeler transform
-based indexing scheme. However, it is NP-complete to recognize if a graph is a Wheeler graph
(Gibney, Thankachan, ESA 2019).

We propose an approach to alleviate the construction bottleneck of Wheeler graphs. Rather
than starting from an arbitrary graph, we study graphs induced from multiple sequence alignments.
Elastic degenerate strings (Bernadini et al. SPIRE 2017, ICALP 2019) can be seen as such graphs,
and we introduce here their generalization: elastic founder graphs. We first prove that even such
induced graphs are hard to index under OVH. Then we introduce two subclasses that are easy
to index. Moreover, we give a near-linear time algorithm to construct indexable elastic founder
graphs. This algorithm is based on an earlier segmentation algorithm for gapless multiple sequence
alignments inducing non-elastic founder graphs (Mäkinen et al., WABI 2020), but uses more involved
techniques to cope with repetitive string collections synchronized with gaps. Finally, we show that
one of the subclasses admits a reduction to Wheeler graphs in polynomial time.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Graph algorithms analysis; Theory of computation → Pattern matching;
Theory of computation → Sorting and searching; Theory of computation → Dynamic programming;
Applied computing → Genomics

Keywords and phrases orthogonal vectors hypothesis, multiple sequence alignment, segmentation

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.20

Related Version Full Version: https://arxiv.org/abs/2102.12822

Funding This work was partly funded by the Academy of Finland (grants 309048 and 322595), by
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 851093, SAFEBIO), and by the Helsinki Institute for
Information Technology.

© Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and
Veli Mäkinen;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:massimo.equi@helsinki.fi
https://orcid.org/0000-0001-8609-0040
mailto:tuukka.norri@helsinki.fi
https://orcid.org/0000-0002-8276-0585
mailto:jarno.alanko@helsinki.fi
https://orcid.org/0000-0002-8003-9225
mailto:bastien.cazaux@lirmm.fr
https://orcid.org/0000-0002-1761-4354
mailto:alexandru.tomescu@helsinki.fi
https://orcid.org/0000-0002-5747-8350
mailto:veli.makinen@helsinki.fi
https://orcid.org/0000-0003-4454-1493
https://doi.org/10.4230/LIPIcs.ISAAC.2021.20
https://arxiv.org/abs/2102.12822
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Indexing Elastic Founder Graphs

1 Introduction

In string research, many different problems relate to the common question of how to handle
a collection of strings. When such a collection contains very similar strings, it can be
represented as some “high scoring” Multiple Sequence Alignment (MSA), i.e., as a matrix
MSA[1..m, 1..n] whose m rows are the individual strings each of length n, which may include
special “gap” symbols such that the columns represent the aligned positions. While it is
NP-hard to find an optimal MSA even under the simplest score of maximizing the number of
identity columns (i.e., longest common subsequence length) [21], the central role of MSA as
a model of biological evolution has resulted into numerous heuristics to solve this problem in
practice [9]. In this paper, we assume an MSA as an input.

A simple way to define the problem of finding a match for a given string in the MSA
is to ask whether the string matches a substring of some row (ignoring gap symbols).
This leads to the widely studied problem of indexing repetitive text collections, see, e.g.,
references [24, 29, 30, 28, 27, 14, 15]. These approaches reducing an MSA to plain text reach
algorithms with linear time complexities.

One feature worth considering is the possibility to allow a match to jump from any row to
any other row of the MSA between consecutive columns. This property is usually referred to
as recombination due to its connection to evolution, and leads to the graph representation of
the MSA [26]. Figure 1a shows a simple solution, which consists in turning distinct characters
of each column into nodes, and then adding the edges supported by row-wise connections. In
this graph, a path whose concatenation of node labels matches a given string represents a
match in the original MSA (ignoring gaps).

Aligning a sequence against a graph is not a trivial task. Only quadratic solutions are
known [3, 25, 32], and this was recently proved to be a conditional lower bound for the
problem [10]. Moreover, even attempting to index the graph to query the string faster presents
significant difficulties. On one hand, indexes constructed in polynomial time still require
quadratic-time queries in the worst case [35]. On the other hand, worst-case linear-time
queries are possible, but this has the potential to make the index grow exponentially [34].
These might be the best results possible for general graphs and DAGs without any specific
structural property, as the need for exponential indexing time to achieve sub-quadratic time
queries constitutes another conditional lower bound for the problem [11].

Thus, if we want to achieve better performances, we have to make more assumptions
on the structure of the input, so that the problem might become tractable. Following this
line, a possible solution consists in identifying special classes of graphs that, while still
able to represent any MSA, have a more limited amount of recombination, thus allowing
for fast matching or fast indexing. This is the case for Elastic Degenerate Strings (EDS)
[4, 5, 7, 6, 18], which can represent an MSA as a sequence of sets of strings, in which a match
can span consecutive sets, using any one string in each of these (see Figure 1b, graph in
the center). The advantage of this structure is that it is possible to perform expected-case
subquadratic time queries [5]. However, EDS are still hard to index [16], and there is a lack
of results on how to derive a “suitable” EDS from an MSA.

In this context, we propose a generalization of an EDS to what we call an Elastic Founder
Graph (EFG). An EFG is a DAG that, as an EDS, represents an MSA as a sequence of sets of
strings; each set is called a block, and each string inside a block is represented as a labeled
node. The difference with EDSes is that the nodes of two consecutive blocks are not forced
to be fully connected. This means that, while in an EDS a match can always pair any string
of a set with any string of the next set, in an EFG it might be the case that only some of

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:3

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

A G C

G

A

T

C

T A G

A

T

T A

G

C

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGAC

AGCAC

AGCGAT

TAGATAC

TAGTAC

TAGTTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCG

AGC

ACTA

ATTA

GATAC

GTAG

GTTAC

(a) A column-by-column segmentation of an MSA on the left, leading to the variation graph on the right.

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

A G C

G

A

T

C

T A G

A

T

T A

G

C

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGAC

AGCAC

AGCGAT

TAGATAC

TAGTAC

TAGTTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCG

AGC

ACTA

ATTA

GATAC

GTAG

GTTAC

(b) A different segmentation of the MSA, leading to the EDS in the center, and the EFG on the right.
Notice that in an EDS every node is connected with all nodes to the right, while in an EFG edges are
added only if their endpoints are consecutive in some row of the MSA (as in the case of variation graphs).

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

A G C

G

A

T

C

T A G

A

T

T A

G

C

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGAC

AGCAC

AGCGAT

TAGATAC

TAGTAC

TAGTTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCG

AGC

ACTA

ATTA

GATAC

GTAG

GTTAC

(c) A segmentation of the MSA that leads to a repeat-free EFG (i.e. no node label has another occurrence
on some path of the EFG).

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

A G C

G

A

T

C

T A G

A

T

T A

G

C

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGA

AGCA

CTAG

TTAG

ATAC

TAG

TTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCGAC

AGCAC

AGCGAT

TAGATAC

TAGTAC

TAGTTAC

AGCGACTAGATAC
AGC-ACTAG-TAG
AGCGATTAGTTAC
AGC-ACTAGTTAC

AGCG

AGC

ACTA

ATTA

GATAC

GTAG

GTTAC

(d) A segmentation of the MSA that leads to a semi-repeat-free EFG (i.e. no node label has another
occurrence on some path of the EFG, except as a prefix of another node in the same segment). An
occurrence of query Q = CGACTAGTA in EFG is depicted in red. As can be seen, such query does not have
an occurrence in a single row of the MSA.

Figure 1 An MSA on the left, and various graph-based representations of it on the right. Notice
that in all graphs (except the EDS) edges are added only between nodes that are observed as
consecutive in some row of the MSA.

these pairings are allowed. Figure 1b illustrates these differences. Allowing for more selective
connectivity between consecutive blocks also means that finding a match for a string in an
EFG is harder than in an EDS. This is because EDSes are a special case of EFGs, hence the
hardness results for the former carry to the latter. Specifically, a previous work [17] showed
that, under the Orthogonal Vectors Hypothesis (OVH), no index for EDSes constructed in
polynomial time can provide queries in time O(|Q|+ |T̃ |δ|Q|β), where |T̃ | is the number of
sets of strings, |Q| is the length of the pattern and β < 1 or δ < 1. Nevertheless, in this
work we present an even tighter quadratic lower bound for EFGs, proving that, under OVH,
an index built in time O(|E|α) cannot provide queries in time O(|Q|+ |E|δ|Q|β), where |E|
is the number of edges and β < 1 or δ < 1. Notice that |T̃ | could even be o(|E|) (e.g. an
EFG of two fully connected blocks), hence our lower bound more closely relates to the total
size of an EFG. Additionally, the earlier lower bound [17] naturally applies only to indexing
EDSes, and is obtained by performing many hypothetical fast queries; ours is derived by first
proving a quadratic OVH-based lower bound for the online string matching problem in EFGs,
and then using a general result [11] to simply translate this into an indexing lower bound.

ISAAC 2021

20:4 Indexing Elastic Founder Graphs

Then, in order to break through these lower bounds, we identify two natural classes of
EFGs, which respect what we call repeat-free and semi-repeat-free properties. The repeat-free
property (Figure 1c) forces each string in each block to occur only once in the entire graph,
and the semi-repeat-free property (Figure 1d) is a weaker form of this requirement. Thanks
to these properties, we can more easily locate substrings of a query string in repeat-free EFGs
and semi-repeat-free EFGs. In particular, (semi-)repeat-free EFGs and EDSes can be indexed
in polynomial time for linear time string matching.

One might think that these time speedups come with a significant cost in terms of
flexibility. Instead, the special structure of these EFGs do not hinder their expressive power.
Indeed, we show that an MSA can be “optimally” segmented into blocks inducing a repeat-free
or semi-repeat-free EFG. Clearly, this depends on how one chooses to define optimality. We
consider three optimality notions: maximum number of blocks, minimum maximum block
width, and minimum maximum block length. In Figure 1d, the first score is 3, second is 3,
and the third is 5. The two latter notions stem from the earlier work on segmentations [31, 8],
now combined with the (semi)-repeat-free constraint. The first is the simplest optimality
notion, now making sense combined with the (semi)-repeat-free constraint.

For each of these optimality notions, we give a polynomial-time dynamic programming
algorithm that converts an MSA into an optimal (semi-)repeat-free EFG if such exists. For
the first and the third notion combined with semi-repeat-free constraint, we derive more
involved solutions with almost optimal O(mn log m) and O(mn log m + n log log n) running
time, respectively. In previous work [23], an (optimal) O(mn) time solution was given for
the special case of MSA without gap symbols. Our new solution does not much build on
the previous approach, which was based on a monotonicity property not anymore holding
with gaps. Instead, we delve into the combinatorial properties of repetitive string collections
synchronized with gaps and show how to use string data structures in this setting. The
techniques can be easily adapted for other notions of optimality.

Another class of graphs that admits efficient indexing are Wheeler graphs [13], which
offer an alternative way to model an EFG and thus a MSA. However, it is NP-complete to
recognize if a given graph is a Wheeler graph [17], and thus, to use the efficient algorithmic
machinery around Wheeler graphs [1] one needs to limit the focus on indexable graphs that
admit efficient construction. Indeed, we show that any EFG that respects the repeat-free
property can be reduced to a Wheeler graph in polynomial time. Interestingly, we were not
able to modify this reduction to cover the semi-repeat-free case, leaving it open if these two
notions of graph indexability have indeed different expressive power, and whether there are
more graph classes with distinctive properties in this context.

2 Definitions

Strings. We denote integer intervals by [i..j]. Let Σ = {1, . . . , σ} be an alphabet of size
|Σ| = σ. A string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn, where Σn denotes
the set of strings of length n under the alphabet Σ. A suffix of string T [1..n] is T [i..n] for
1 ≤ i ≤ n. A prefix of string T [1..n] is T [1..i] for 1 ≤ i ≤ n. A substring of string T [1..n]
is T [i..j] for 1 ≤ i ≤ j ≤ n. The length of a string T is denoted |T |. The empty string is
the string of length 0. In particular, substring T [i..j] where j < i is the empty string. The
lexicographic order of two strings A and B is naturally defined by the order of the alphabet:
A < B iff A[1..i] = B[1..i] and A[i+1] < B[i+1] for some i ≥ 0. If i+1 > min(|A|, |B|), then
the shorter one is regarded as smaller. However, we usually avoid this implicit comparison
by adding end marker 0 to the strings. Concatenation of strings A and B is denoted AB.

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:5

Elastic founder graphs. As mentioned in the introduction, our goal is to compactly represent
an MSA using an elastic founder graph. In this section we formalize these concepts.

A multiple sequence alignment MSA[1..m, 1..n] is a matrix with m strings drawn from
Σ∪{-}, each of length n, as its rows. Here - /∈ Σ is the gap symbol. For a string X ∈ (Σ ∪ {-})∗,
we denote spell(X) the string resulting from removing the gap symbols from X.

Let P be a partitioning of [1..n], that is, a sequence of subintervals P = [x1..y1],
[x2..y2], . . . , [xb..yb], where x1 = 1, yb = n, and for all j > 2, xj = yj−1 + 1. A seg-
mentation S of MSA[1..m, 1..n] based on partitioning P is a sequence of b sets Sk =
{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} for 1 ≤ k ≤ b; in addition, we require for a (proper)
segmentation that spell(MSA[i, xk..yk]) is not an empty string for any i and k. We call set Sk

a block, while MSA[1..m, xk..yk] or just [xk..yk] is called a segment. The length of block Sk

is L(Sk) = yk − xk + 1 and the width of block Sk is W (Sk) = |Sk|. Segmentation naturally
leads to the definition of a founder graph through the block graph concept:

▶ Definition 1 (Block Graph). A block graph is a graph G = (V, E, ℓ) where ℓ : V → Σ+ is a
function that assigns a string label to every node and for which the following properties hold.
1. Set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b, that is, V = V 1 ∪

V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i ̸= j;
2. If (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1; and
3. if v, w ∈ V i then |ℓ(v)| = |ℓ(w)| for each 1 ≤ i ≤ b and if v ̸= w, ℓ(v) ̸= ℓ(w).

With gapless MSAs, block Sk equals segment MSA[1..m, xk..yk], and in that case the
founder graph is a block graph induced by segmentation S [23]. The idea is to have a graph
in which the nodes represent the strings in S while the edges retain the information of how
such strings can be recombined to spell any sequence in the original MSA. With general
MSAs with gaps, we consider the following extension, with an analogy to EDSes [5]:

▶ Definition 2 (Elastic block and founder graphs). We call a block graph elastic if its third
condition is relaxed in the sense that each V i can contain non-empty variable-length strings.
An elastic founder graph (EFG) is an elastic block graph G(S) = (V, E, ℓ) induced by a
segmentation S as follows: For each 1 ≤ k ≤ b we have Sk = {spell(MSA[i, xk..yk]) | 1 ≤
i ≤ m} = {ℓ(v) : v ∈ V k}. It holds (v, w) ∈ E if and only if there exists k ∈ [1..b− 1] and
t ∈ [1..m] such that v ∈ V k, w ∈ V k+1 and spell(MSA[t, xk..yk+1]) = ℓ(v)ℓ(w).

By definition, (elastic) founder and block graphs are acyclic. For convention, we interpret
the direction of the edges as going from left to right. Consider a path P in G(S) between
any two nodes. The label ℓ(P) of P is the concatenation of labels of the nodes in the path.
Let Q be a query string. We say that Q occurs in G(S) if Q is a substring of ℓ(P) for any
path P of G(S). Figure 1 illustrates such a query.

We use the same repeat-free definition as in the non-elastic case [23]:

▶ Definition 3. EFG G(S) is repeat-free if each ℓ(v) for v ∈ V occurs in G(S) only as prefix
of paths starting with v.

We also consider a variant that is relevant due to variable-length strings in the blocks:

▶ Definition 4. EFG G(S) is semi-repeat-free if each ℓ(v) for v ∈ V occurs in G(S) only as
prefix of paths starting with w ∈ V , where w is from the same block as v.

These definitions also apply to general elastic block graphs and to elastic degenerate
strings as their special case.

ISAAC 2021

20:6 Indexing Elastic Founder Graphs

Gbe

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

G0

1

0

11

00

111

000

111

000

11

00

1

0

G1

1

0

00

111

000

111

000

00

1

0

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Figure 2 Gadgets Gbe, G0 and G1. Each gadget is organized into three rows, each row encoding
a different partitioning of the strings bbbb, eeee, 0000, 1111. This ensures that, when combining
these gadgets in Figure 3, edges can be controlled to go within the same row, or to the row below.

We note that not all MSAs admit a segmentation leading to a (semi-)repeat-free EFG,
e.g. an alignment with rows -A and AA. However, our algorithms detect such cases, thus one
can build an EFG consisting of just one block with the rows of the MSA (with gaps removed).
Such EFGs can be indexed using standard string data structures to support efficient queries.

3 Conditional Hardness of Indexing EFGs

We show a reduction from Orthogonal Vectors (OV) to the problem of matching a query
string in an EFG, continuing the line of research conducted on many related (degenerate)
string problems [19, 10, 2, 16]. The OV problem is to find out if there exist x ∈ X and y ∈ Y

such that x · y = 0, given two sets X and Y of n binary vectors each. We construct string Q

using X and graph G using Y . Then, we show that Q has a match in G if and only if X and
Y form a “yes”-instance of OV. We condition our results on the following OV hypothesis,
which is implied by the Strong Exponential Time Hypothesis [20].

▶ Definition 5 (Orthogonal Vectors Hypothesis (OVH) [36]). Let X, Y be the two sets of an
OV instance, each containing n binary vectors of length d.1 For any constant ϵ > 0, no
algorithm can solve OV in time O(poly(d)n2−ϵ).

Query String. We build string Q by combining string gadgets Q1, . . . , Qn, one for each
vector in X, plus some additional characters. To build string Qi, first we place four b
characters, then we scan vector xi ∈ X from left to right. For each entry of xi, we place
substring Qi,h consisting of four 0 characters if xi[h] = 0, or four 1 characters if xi[h] = 1.
Finally, we place four e characters. For example, vector xi = 101 results into string

Qi = bbbb Qi,1 Qi,2 Qi,3 eeee, where Qi,1 = 1111, Qi,2 = 0000, Qi,3 = 1111.

Full string Q is then the concatenation Q = bbbbQ1Q2 . . . Qneeee. The reason behind these
specific quantities will be clear when discussing the structure of the graph.

Elastic Founder Graph. We build graph G combining together three different sub-graphs:
GL, GM , GR (for left, middle and right). Our final goal is to build a graph structured in
three logical “rows”. We denote the three rows of GM as GM1, GM2, GM3, respectively. The

1 In this section, keeping in line with the usual notation in the OV problem, we use n to denote the size
of X and Y , instead of the number of columns of the MSA.

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:7

first and the third rows of G, along with subgraphs GL and GR (introduced to allow slack),
can match any vector. The second row matches only sub-patterns encoding vectors that are
orthogonal to the vectors of set Y . The key is to structure the graph such that the pattern
is forced to utilize the second row to obtain a full match. We present the full structure of
the graph in Figure 3, which shows the graph built on top of vector set {100, 011, 010}. In
particular, GM consists of n gadgets Gj

M , one for each vector yj ∈ Y . The key elements of
these sub-graphs are gadgets Gbe, G0 and G1 (see Figure 2), which allow to stack together
multiple instances of strings b4, e4, 14, 04. The overall structure mimics the one by Equi et
al. [10], except for the new idea from Figure 2.

Detailed structure of the graph. Sub-graph GL (Figure 3a) consists of a starting segment
with a single node labeled b4, followed by n−1 sub-graphs G1

L, . . . , Gn−1
L , in this order. Each

Gi
L has d + 2 segments, and is obtained as follows. First, we place a segment containing only

one node with label b4, then we place d other segments, each one containing two nodes with
labels 14 and 04. Finally, we place a segment containing two nodes with labels b4 and e4.

The nodes in each segment are connected to all nodes in the next segment, with the
exception of the last segment of each Gi

L: in this case, the node with label 14 and the one
with label 04 are connected only to the e4-node of the next (and last) segment of such Gi

L.
Sub-graph GR (Figure 3c) is similar to sub-graph GL, and it consists in n− 1 parts

G1
R, . . . , Gn−1

R , followed by a segment with a single node labeled e4. Part Gi
R has d + 2

segments, and is constructed almost identically to Gi
L. The differences are that, in the first

segment of Gi
R, we place two nodes labeled b4 and e4, while in the last segment we place

only one node, which we label e4.
As in GL, the nodes in each segment are connected to all nodes in the next segment,

with the exception of the first segment of each Gi
R: in this case, the node labeled e4 has no

outgoing edge.
Sub-graph GM (Figure 3b) implements the main logic of the reduction, and it uses three

building blocks, Gbe, G0 and G1, which are organized in three rows, as shown in Figure 2.
Sub-graph GM has n parts, G1

M , . . . , Gn
M , one for each of the vectors y1, . . . , yn in set

Y . Each Gj
M is constructed, from left to right, as follows. First, we place a Gbe gadget.

Then, we scan vector yj from left to right and, for each position h ∈ {1, . . . , d}, we place a
G0 gadget if the h-th entry is yj [h] = 0, or a G1 if yj [h] = 1. Finally, we place another Gbe

gadget.
For the edges, we first consider each gadget Gj

M separately. Let Gh and Gh+1, be the
gadgets encoding yj [h] and yj [h + 1], respectively. We fully connect the nodes of Gh to the
nodes of Gh+1 row by row, respecting the structure of the segments. Then we connect, row
by row, the b-nodes of the left Gbe to the leftmost Gh, which encodes yj [1], and the nodes of
the rightmost Gh, which encodes yj [d], to the e-nodes of the right Gbe, again row by row.
We repeat the same placement of the edges for every vector Gh, Gh+1, 1 ≤ h ≤ d− 1; this
construction is shown in Figure 3b.

To conclude the construction of GM , we need to connect all the Gj
M gadgets together.

Consider the right Gbe of gadget Gj
M , and the left Gbe of gadget Gj+1

M . The edges connecting
these two gadgets are depicted in Figure 3b, which shows that following a path we can either
remain in the same row or move to the row below, but we cannot move to the row above.
Moreover, sub-pattern b8 can be matched only in the first and second row, while sub-pattern
e8 only in the second and third rows.

In proving the correctness of the reduction, we will refer to graphs GM1, GM2 and
GM3 as the sub-graphs of GM consisting of only the nodes and edges of the first, second
and third row, respectively. Formally, for t ∈ {1, 2, 3}, VMt ⊂ V VMt ⊂ V is the set of

ISAAC 2021

20:8 Indexing Elastic Founder Graphs

bbbb bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

b

e

bb

ee

bbb

eee

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

00

111

000

111

000

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

· · ·

· · ·

1 0 0 0 1 1 0 1 0

G1
M G2

M G3
M

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

bbb

eee

bb

ee

b

e

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee eeee

(a) Sub-graph GL. The last segment belongs to sub-graph GM and shows the connection.

bbbb bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

b

e

bb

ee

bbb

eee

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

00

111

000

111

000

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

· · ·

· · ·

1 0 0 0 1 1 0 1 0

G1
M G2

M G3
M

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

bbb

eee

bb

ee

b

e

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee eeee

(b) Sub-graph GM for vectors y1 = 100, y2 = 011 and y3 = 010. The dashed rectangles highlight the
single Gj

M gadgets.

bbbb bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

bbbb

1111

0000

1111

0000

1111

0000

bbbb

eeee

b

e

bb

ee

bbb

eee

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

00

111

000

111

000

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

1

0

11

00

111

000

111

000

11

00

1

0

1

0

00

111

000

111

000

00

1

0

1

0

11

00

111

000

111

000

11

00

1

0

b

e

bb

ee

bbb

eee

bbb

eee

bb

ee

b

e

· · ·

· · ·

1 0 0 0 1 1 0 1 0

G1
M G2

M G3
M

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

bbb

eee

bb

ee

b

e

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee

bbbb

eeee

1111

0000

1111

0000

1111

0000

eeee eeee

(c) Sub-graph GR. The first segment belongs to sub-graph GM and shows the connection.

Figure 3 An example of graph G. To visualize the entire graph, watch the three sub-figures from
top to bottom and from left to right. We also show two example occurrences of a query string Q

constructed from x1 = 101, x2 = 110, x3 = 100 (left-most), and from x1 = 101, x2 = 100, x3 = 110
(right-most), respectively. We highlight each Qi with a different color. Any such occurrence must
pass through the middle row of GM .

nodes placed in the t-th row of each Gbe, G0 or G1 gadget belonging to sub-graph GM , and
EMt = {(v, w) ∈ E | v, w ∈ VMt}. Thus, GMt = (VMt, EMt). We will use the notation Gj

M2
to refer to the nodes belonging to both Gj

M and GM2, excluding the ones in GM1 and GM3,
and the edges connecting them.

Final graph G is obtained by combining sub-graphs GL, GM and GR. To this end, we
connect the nodes in the last segment of GL with the b-nodes in the first and second row
of the left Gbe gadget of G1

M . Finally, we connect the e-nodes in the second and third row
of the right Gbe gadget of Gn

M with both the b4-node and e4-node in the first segment of
GR. Figures 3a, 3b and 3c can be visualized together, in this order, as one big picture of
final graph G. In Figures 3a and 3c we placed the adjacent segment of GM to show the
connection.

OVH Conditional Hardness. The proof of correctness is similar to the one by Equi et
al. [10], but with adaptations to the elastic founder graph. The following technical lemma
(whose proof is deferred to the full version of this paper) summarizes the structure of the
possible matches of Q inside G. In it, we use the notation Gj

M2 to indicate the nodes and
edges that belong to the second row of Gj

M .

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:9

▶ Lemma 6.
If string Qi has a match in GM2, then the path matching Qi is fully contained in Gj

M2,
for some 1 ≤ j ≤ n. Moreover, each Qi,h substring matches a path of two nodes which
belong to the G0 or G1 gadget encoding yj [h].
String Qi has a match in GM2 if and only if there exist yj ∈ Y such that xi · yj = 0.
String Q has a match in G if and only if a substring Qi of Q has a match in the underlying
sub-graph GM2 of GM .

Our first lower bound is on matching a query string in an EFG without indexing.

▶ Theorem 7. For any constant ϵ > 0, it is not possible to find a match for a query string Q

into an EFG G = (V, E, ℓ) in either O(|E|1−ϵ |Q|) or O(|E| |Q|1−ϵ) time, unless OVH fails.
This holds even if restricted to an alphabet of size 4.

Proof sketch. First, Lemma 6 guarantees that string Q has a match in G if and only if there
exist orthogonal vectors xi ∈ X and yj ∈ Y . Second, it is easy to check that the reduction
requires linear time and space in the size O(nd) of the OV problem. Third, if we find a match
for Q in G in O(|E|1−ϵ|Q|) or O(|E| |Q|1−ϵ) time, then we can decide if there is a pair of
orthogonal vectors in O(nd · (nd)1−ϵ) = O(n2−ϵpoly(d)) time, contradicting OVH. ◀

We obtain the indexing lower bound by proving that the above reduction is a linear
independent-components (lic) reduction, as defined by [11, Definition 3].

▶ Theorem 8. For any α, β, δ > 0 such that β + δ < 2, there is no algorithm preprocessing
an EFG G = (V, E, ℓ) in time O(|E|α) such that for any query string Q we can find a match
for Q in G in time O(|Q|+ |E|δ|Q|β), unless OVH is false. This holds even if restricted to
an alphabet of size 4.

Proof. It is enough to notice that the reduction from OV that we presented is a lic reduction.
Namely, (1) the reduction is correct and can be performed in linear time and space O(nd)
(recall the proof of Theorem 7), and (2) query string |Q| is defined using only vector set X

and it is independent from vector set Y , while elastic founder graph G is built using only
vector set Y and it is independent from vector set X. Hence, Corollary 1 in [11] can be
applied, proving our thesis. ◀

4 Indexing (Semi-)Repeat-Free EFGs

Since indexing a general EFG is hard, we turn our attention to repeat-free and semi-repeat-free
EFGs. We show in this section that such EFGs are easy to index.

Let G = (V, E) be a (semi-)repeat-free founder/block graph. We show that it is sufficient
to build an index on a string formed by concatenating labels of neighboring nodes. Namely,
consider string D =

∏
i∈{1,2,...,b}

∏
v∈V i,(v,w)∈E ℓ(w)−1ℓ(v)−10, where X−1 is the reverse

xmxm−1 · · ·x1 of string X = x1x2 · · ·xm. The key feature requiring this reversed direction is
that the lexicographic ranges of suffixes of D starting with ℓ(v)−1 for each v ∈ V are distinct;
this would not (on all inputs) hold on suffixes starting with ℓ(v) in a forward concatenation
if ℓ(v) is a prefix of some ℓ(u), as it can be in the semi-repeat-free case.

As the reader can easily verify, the expanded backward search [23] developed for the case
of gapless MSAs applied on D (in place of the forward concatenation therein) works also for
repeat-free founder/block graphs; the feature of having variable-length of strings in a block
is not used in the correctness analysis. In the following, we give an alternative solution for
the semi-repeat-free case using suffix trees.

ISAAC 2021

20:10 Indexing Elastic Founder Graphs

Let us consider a solution based on the descending suffix walk. This search can be
supported e.g. by any (compressed) suffix tree [12, 33]. In the following, we assume the
reader is familiar with the basic notions on suffix tree [22, Chapter 8]. Consider searching
query Q[1..q] from right to left from the suffix tree of D. Consider finding a match for
Q[j..q], but there is no branch with Q[j − 1]. If there is a branch with 0, there may be j′

such that Q[j..j′] is a label of some node v of the semi-repeat-free EFG, for some j′ ≤ q.
To find such j′ (or to find out it does not exist), we can then take suffix links to reach the
locus corresponding to Q[j..j′], and continue the search with Q[1..j′ − 1]. This process is
repeated until Q is found, or, if one cannot proceed, Q does not occur in G. For this to work,
we need to have marked all loci of the suffix tree reached by ℓ(v)−1 for all nodes v of the
semi-repeat-free EFG. We stop taking suffix links when reaching a marked loci.

▶ Theorem 9. A (semi-)repeat-free founder/block graph G = (V, E) or a (semi-)repeat-free
elastic degenerate string can be indexed in polynomial time into a data structure occupying
O(|D| log |D|) bits of space, where |D| = O(L|E|) and L is the maximum length of a node
label. Later, one can find out in O(|Q|) time if a given query string Q occurs in G.

Proof. Consider the approach above. If and only if Q is reported to be found, there is a
path in G that spells Q: If Q is found without taking any suffix links, it is a substring of D

and thus a substring of a concatenation of labels of two neighboring nodes of G. Otherwise,
suffix Q[j..q] is a prefix of a path starting with ℓ(w) = Q[j..j′] for some w ∈ V . Since ℓ(w)−1

occurs in D only when followed by 0 or ℓ(v)−1 for (v, w) ∈ E, the search continues only on
the in-neighbors of w. If Q is found before taking suffix links again, Q[1..j − 1] is a suffix of
ℓ(v) for some v such that (v, w) ∈ E, and thus there is a path in G spelling Q. Otherwise,
suffix Q[k..q] is a prefix of a path starting with ℓ(v)ℓ(w), for some k ≤ j − 1. Continuing
this shows that the claim is correct.

Clearly, the length of D is bounded by O(L|E|). Construction of suffix tree on D can be
done in linear time [12]. In polynomial time, the nodes of the suffix tree can be preprocessed
with perfect hash functions, such that following a downward path takes constant time per
step. Following a suffix link takes amortized constant time. ◀

Observe that |D| ≤ 2mn, where m and n are the number of rows and number of columns,
respectively, in the MSA from where the elastic founder graph is induced. That is, the index
size is linear in the (original) input size. We also note that the index can be modified to
report only matches that are (gap-oblivious) substrings of the MSA rows: Short patterns
spanning only one edge are already such. Longer patterns can have only one occurrence
in G, and it suffices to verify them with a regular string index on the MSA. Such modified
scheme makes the approach functionality equivalent with wide range of indexes designed for
repetitive collections [24, 29, 30, 28, 27, 14, 15] and shares the benefit of alignment-based
indexes of Na et al. [29, 30, 28, 27] in reporting the aligned matches only once, where e.g.
r-index [15] needs to report all occurrences.

Using compressed suffix trees, different space-time tradeoffs can be achieved. We develop
an alternative compressed indexing scheme in Section 6 using Wheeler graphs.

5 Construction of (Semi-)Repeat-Free EFGs

Now that we have seen that (semi-)repeat-free EFGs are easy to index, it remains to consider
their construction.

Consider a segmentation S = S1, S2, . . . , Sb that induces an EFG G(S) = (V, E). We call
such a segmentation (semi-)repeat-free or simply valid, if the resulting EFG is (semi-)repeat-
free. A segment MSA[1..m, xk..yk] corresponding to block Sk = spell(MSA[1..m, xk..yk]) of

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:11

such (semi-)repeat-free S is then analogously called a (semi-)repeat-free segment. In an
earlier work on gapless MSAs [23], it was observed that a sufficient and necessary condition to
check if a segment MSA[1..m, xk..yk] is repeat-free is to check that no string MSA[i, xk..yk],
1 ≤ i ≤ m, occurs elsewhere in the MSA except at MSA[i′, xk..yk], for some 1 ≤ i′ ≤ m. Let
us refine this condition with gaps. We say that segment MSA[1..m, xk..yk] is repeat-free
(semi-repeat-free) if no string spell(MSA[i, xk..yk]), 1 ≤ i ≤ m, occurs elsewhere in the
MSA except at (as a prefix of, respectively) spell(MSA[i′, 1..n])[g(i′, xk)..g(i′, yk)], for some
1 ≤ i′ ≤ m, where g(i′, j) is j subtracted with the number of gaps at row i′ of MSA up to
column j. The earlier arguments [23, Sect. 5.1] carry over to showing that these are sufficient
and necessary conditions for inducing a repeat-free and semi-repeat-free EFGs, respectively.

We consider three score functions for the valid segmentations, one maximizing the number
of blocks, one minimizing the maximum width of a block, and one minimizing the maximum
length of a block. The latter two have been studied earlier without the (semi-)repeat-free
constraint, and non-trivial linear time solutions have been found [31, 8], while the first score
function makes sense only with this new constraint.

Let s(j′) be the optimal score of a semi-repeat-free segmentation S1, S2, . . . , Sb of prefix
MSA[1..m, 1..j′] for a selected scoring scheme. Then

s(j) =
⊕

j′ : 0 ≤ j′ < j,

MSA[1..m, j′ + 1..j] is semi-repeat-free segment

w(s(j′), j′, j), (1)

gives the optimal score of a semi-repeat-free segmentation S1, S2, . . . , Sb, Sb+1 of MSA[1..m,

1..j], where
⊕

is an operator depending on the scoring scheme and w(x, j′, j) is a function
on the score x of the segmentation of S1, S2, . . . , Sb and on the last block Sb+1 corresponding
to MSA[1..m, j′ + 1..j]. To fix this recurrence so that s(n) equals the maximum number of
blocks over valid segmentations of MSA[1..m, 1..n], set

⊕
= max and w(x, j′, j) = x + 1.

For initialization, set s(j) = 0. Moreover, when there is no valid segmentation for some
j, set s(j) = −∞. To fix this recurrence so that s(n) equals the minimum of maximum
widths of blocks over valid segmentations of MSA[1..m, 1..n], set

⊕
= min and w(x, j′, j) =

max(x, |{spell(MSA[i, j′ + 1..j]) | 1 ≤ i ≤ m}|). For initialization, set s(j) = 0. Moreover,
when there is no valid segmentation for some j, s(j) = ∞. Finally, to fix this recurrence
so that s(n) equals the minimum of maximum length of blocks over valid segmentations of
MSA[1..m, 1..n], set

⊕
= min and w(x, j′, j) = max(x, j− j′). For initialization, set s(j) = 0.

Moreover, when there is no valid segmentation for some j, set s(j) =∞.
The recurrence fixed for the latter case can be solved in O(mn) time when the input is a

gapless MSA [23]. However, gaps affect most of the more involved techniques [23, 31, 8], so
that we only know of a rather straightforward solution working in O(mn2 log m) time for
this general case with gaps, for all three score functions and also for the repeat-free case
(explicit proof omitted here, but the techniques developed later in this paper are sufficient
for deriving such result). In what follows, we develop a different approach that works in
O(mn log m) time for the first and the last score function in the semi-repeat-free case. We
leave it as an open question to obtain a faster algorithm for the second score function, and
for the repeat-free case. We start with a simple observation:

▶ Observation 10. If segment MSA[1..m, j + 1..f(j)] is semi-repeat-free, then segment
MSA[1..m, j + 1..j′] is semi-repeat-free for all j′ such that f(j) < j′ ≤ n.

Our goal is to compute for each j the smallest integer f(j) such that MSA[1..m, j +1..f(j)]
is a semi-repeat-free segment. These values can then be used for efficient evaluation of Eq. (1).

ISAAC 2021

20:12 Indexing Elastic Founder Graphs

....GC-AGTA

....AC-AGTA

.GC.AC-AGTA

....G-CAGTA

....AC-AGTA

....ACAAGTA

....AG-AGTA

....AC-AGTA

j f(j)

ACA

A
GCAAGA

GC

Figure 4 Illustrating the O(m log m) time algorithm to compute value f(j) for a given j. Node
labels correspond to the string spelled from the root to the node. We assume ACA, AGA, and GCA
only appear in the region of the MSA visualized, while GC and A appear also elsewhere.

▶ Lemma 11. Let f(j) be the smallest integer such that MSA[1..m, j + 1..f(j)] is a semi-
repeat-free segment. We can compute all values f(j) in O(mn log m) time.

Proof sketch. Full proof is deferred to the full version of this paper. Here we explain the
algorithm through the example of Fig. 4. We build a compact trie on the suffixes of the
concatenation of MSA rows with gaps removed and special markers added between rows,
that is, a generalized suffix tree [22, Chapter 8] on set {spell(MSA[i, 1..n]) | 1 ≤ i ≤ m}.
For each column j, locate the subset W of (implicit) suffix tree nodes corresponding to
{spell(MSA[i, j + 1..n]) | 1 ≤ i ≤ m}; these are the colored nodes in Fig. 4. If the number
of leaves covered by the subtrees rooted at W is greater than m, f(j) remains undefined.
Otherwise, we know that f(j) ≤ n, and our aim is to decrease the right boundary, starting
with n, until we have reached column f(j). The algorithm picks an arbitrary node in W and
tries to replace it with its parent. This replacement is safe, if the new subtree covers only
leaves already covered by W . Safe replacements are continued as long as possible; these are
the black nodes in Fig. 4, while the gray nodes are unsafe replacements. These replacements
place the rows into equivalence classes, each sharing the identified common prefix. For row
i in an equivalence class with common prefix length k, one can then locate the smallest
column f i(j) with |spell(MSA[i, j + 1..f i(j)]| = k. E.g. for row i = 2 in Fig. 4, we have
f2(j) = j + 3, as |spell(AC− A)| = 3 = |ACA|. Finally, f(j) = maxi:1≤i≤m f i(j). At each
column, at most m replacements are required and each replacement can be done in O(log m)
time, by maintaining the non-overlapping lexicographic intervals corresponding to the suffix
tree nodes in a balanced search tree. ◀

Using these precomputed f(j) values, Algorithms 1 and 2 compute the scores of an
optimal semi-repeat-free segmentation under the maximum number of blocks score and
minimum of maximum block length score, respectively.

▶ Theorem 12. After an O(mn log m) time preprocessing, Algorithms 1 and 2 compute the
scores maxblocks(n) = b and minmaxlength(n) = max

i:1≤i≤b
L(Si) of optimal semi-repeat-free

segmentations S1, S2, . . . , Sb of MSA[1..m, 1..n] in O(n) and O(n log log n) time, respectively.

Proof sketch. Regarding running time, Algorithm 1 and Algorithm 2 clearly take O(n) and
O(n log n) time, respectively, when implemented as described in their pseudo-codes. The
correctness for Algorithm 1 follows from the fact that when computing the score at column
j, all earlier segmentations that are safe to be extended with a new segment ending at j are
considered. This argument can be formalized analogously for Algorithm 2, whose detailed
proof of correctness, as well as running time improvement to O(n log log n) (by using a more
efficient data structure for semi-infinite range queries) are given in the full version of this
paper. ◀

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:13

Algorithm 1 An O(n) time algorithm for finding an optimal semi-repeat-free segmentation
maximizing the number of blocks.

Input: Right-extensions (j, f(j)) sorted from smallest to largest order by second
component: (j1, f(j1)), (j2, f(j2)), . . . , (jn−J , f(jn−J)), where J is such that
f(jn−J+1), f(jn−J+2), . . . , f(jn) are not defined.

Output: Score of an optimal semi-repeat-free segmentation maximizing the number
of blocks.

1 x← 1; maxblocks(0)← 0; maxblocks(j) = maxscore = −∞ for all 0 < j ≤ n;
2 for j ← 1 to n do
3 while j = f(jx) do
4 maxscore← max(maxscore, maxblocks(jx));
5 x← x + 1;
6 maxblocks(j)← maxscore + 1;
7 return maxblocks(n);

Algorithm 2 An O(n log n) time algorithm for finding an optimal semi-repeat-free
segmentation minimizing the maximum segment length. Minimization over an empty set is
assumed to return ∞. Operation Upgrade(k, v) sets key k to value v if the previous value is
larger. Operation RangeMin(a, b) returns the smallest value associated with keys in range
[a..b]. Both operations can be supported in O(log n) time with standard balanced search
trees.

Input: Right-extensions (j, f(j)) sorted from smallest to largest order by second
component: (j1, f(j1)), (j2, f(j2)), . . . , (jn−J , f(jn−J)), where J is such that
f(jn−J+1), f(jn−J+2), . . . , f(jn) are not defined.

Output: Score of an optimal semi-repeat-free segmentation minimizing the
maximum segment length.

1 Initialize one-dimensional search trees T and I with keys 0, 1, 2, . . . , 2n, with all keys
associated with values ∞;

2 x← 1;
3 minmaxlength(0)← 0;
4 for j ← 1 to n do
5 while j = f(jx) do
6 T .Upgrade(jx + minmaxlength(jx), minmaxlength(jx));
7 I.Upgrade(jx + minmaxlength(jx),−jx);
8 x← x + 1;
9 minmaxlength(j)← min(T .RangeMin(j + 1,∞), I.RangeMin(−∞, j) + j);

10 return minmaxlength(n);

ISAAC 2021

20:14 Indexing Elastic Founder Graphs

6 Connection to Wheeler Graphs

Wheeler graphs, also known as Wheeler automata, are a class of labeled graphs that admit
an efficient index for path queries [13]. We now give an alternative way to index repeat-free
elastic block graphs by transforming the graph into an equivalent Wheeler automaton.

We view a block graph as a nondeterministic finite automaton (NFA) by adding a new
initial state and edges from the source node to the starts of the first block, and expanding
each string of each block to a path of states. To conform with automata notions, we define
that the label of an edge is the label of the destination node.

We denote the repeat-free NFA with F . First we determinize it with the standard subset
construction for the reachable subsets of states. The states of the DFA are subsets of states
of the NFA such that there is an edge from subset S1 to subset S2 with label c iff S2 is
the set of states at the destinations of edges labeled with c from S1. We only represent the
subsets of states reachable from the subset containing only the initial state. We call the
deterministic graph G. See Figures 5 and 6 for an example.

A DFA is indexable as a Wheeler graph if there exists an order < on the nodes such
that if u < v, then every incoming path label to u is colexicographically smaller than every
incoming path label to v (recall that the colexicographic order of strings is the lexicographic
order of the reverses of the strings). The repeat-free property guarantees that the nodes at
the ends of the blocks can be ordered among themselves by picking an arbitrary incoming
path as the sorting key.

To make sure that the rest of the nodes are sortable, we modify the graph so that if a
node is not at the end of a block, we make it so that the incoming paths to the node do not
branch backward before the backward path reaches the end of a previous block. This is done
by turning each block into a set of disjoint trees, where the roots of the trees are the ending
nodes of the previous block, in a way that preserves the language of the automaton. The
roots may have multiple incoming edges from the leaves of the previous tree. See Figure 7
for an example. The formal definition of the transformation and the proof of sortability are
deferred to the full version of this paper. We denote the transformed graph with G′ and
obtain the following result:

▶ Lemma 13. The number of nodes in G′ is at most O(NW), where W is the maximum
number of strings in a block of F and N is the total number of nodes in F .

The Wheeler order < of the transformed graph can be found by running the XBWT
sorting algorithm on a spanning tree of the graph, as shown by Alanko et al. [1]. Finally,
we can find the minimum equivalent Wheeler graph by running the general Wheeler graph
minimization algorithm of Alanko et al. [1].

With the input graph now converted into a Wheeler graph, one can deploy succinct data
structures supporting fast pattern matching [13, Lemma 4], leading to the following result:

▶ Corollary 14. A repeat-free founder/block graph G or a repeat-free elastic degenerate
string can be indexed in O(NW) time into a Wheeler-graph-based data structure occupying
O(NW log |Σ|) bits of space, where N is the total number of characters in the node labels of
G, W is the width of G (maximum number of strings in a block of G), and Σ is the alphabet.
Later, using the data structure, one can find out in O(|Q| log |Σ|) time if a given query string
Q occurs in G.

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:15

$
27

C
0
T
1
T
2

A
9
T
10
G
11

G
3
G
4
G
5

C
12
A
15
A
18

T
13
T
16
C
19

G
14
A
17
T
20

T
7
T
8
G
6

A
23
A
25
C
21

G
24
A
26
G
22

Figure 5 Repeat-free block NFA. The last columns of each block are highlighted.

$
27

C
0
T

1,2

A
9
G
11
T
10

G
3,4,5

G
4,5

A
15,18

C
12

C
19
T
16
T
13

T
20
A
17
G
14

G
6
T

7,8

C
21
A

23,25

G
22
A
26
G
24

Figure 6 The DFA resulting from the subset construction for the NFA in Figure 5. The numbers
above the nodes specify the subset of NFA states corresponding to the DFA state.

$
27

C
0
T

1,2

A
9
G
11
T
10

G
3,4,5

G
4,5
G
4,5

A
15,18

C
12
A

15,18
A

15,18

C
19
T
16
T
13
C
19
T
16
C
19
T
16

T
20
A
17
G
14

G
6
T

7,8
T

7,8
T

7,8

C
21
A

23,25
A

23,25
A

23,25

G
22
A
26
G
24

Figure 7 The Wheeler DFA resulting from running our Wheeler expansion algorithm on the DFA
in Figure 6.

7 Discussion

There are many options how to optimize among the valid segmentations [31, 8]. We studied
some of these here under the (semi-)repeat-free indexability constraint, but left open how
to e.g. minimize the maximum number of distinct strings in a segment (i.e. width of the
graph) [31], or how to control the over-expressiveness of the graph, in this context.

Other open problems include strengthening the conditional indexing lower bound to cover
non-elastic founder graphs, and improving the running time for constructing (semi-)repeat-free
elastic founder graphs.

We focused on the theoretical aspects of indexable founder graphs. Our preliminary ex-
periments [23] show that the approach works well in practice on multiple sequence alignments
without gaps. In our future work, we will focus on making the approach practical also in the
general case.

References

1 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular languages
meet prefix sorting. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
911–930. SIAM, 2020.

ISAAC 2021

20:16 Indexing Elastic Founder Graphs

2 Mai Alzamel, Lorraine A. K. Ayad, Giulia Bernardini, Roberto Grossi, Costas S. Iliopoulos,
Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Comparing degenerate strings. Fundam.
Informaticae, 175(1-4):41–58, 2020.

3 Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in hypertext. J.
Algorithms, 35(1):82–99, 2000.

4 Kotaro Aoyama, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda. Faster Online Elastic Degenerate String Matching. In Gonzalo Navarro, David
Sankoff, and Binhai Zhu, editors, Annual Symposium on Combinatorial Pattern Matching
(CPM 2018), volume 105 of Leibniz International Proceedings in Informatics (LIPIcs), pages
9:1–9:10, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.CPM.2018.9.

5 Giulia Bernardini, Pawel Gawrychowski, Nadia Pisanti, Solon P. Pissis, and Giovanna
Rosone. Even Faster Elastic-Degenerate String Matching via Fast Matrix Multiplication.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, edit-
ors, 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages
21:1–21:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICALP.2019.21.

6 Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Pattern matching on
elastic-degenerate text with errors. In Gabriele Fici, Marinella Sciortino, and Rossano Venturini,
editors, String Processing and Information Retrieval - 24th International Symposium, SPIRE
2017, Palermo, Italy, September 26-29, 2017, Proceedings, volume 10508 of Lecture Notes in
Computer Science, pages 74–90. Springer, 2017. doi:10.1007/978-3-319-67428-5_7.

7 Giulia Bernardini, Nadia Pisanti, Solon P. Pissis, and Giovanna Rosone. Approximate
pattern matching on elastic-degenerate text. Theor. Comput. Sci., 812:109–122, 2020. doi:
10.1016/j.tcs.2019.08.012.

8 Bastien Cazaux, Dmitry Kosolobov, Veli Mäkinen, and Tuukka Norri. Linear time maximum
segmentation problems in column stream model. In Nieves R. Brisaboa and Simon J. Puglisi,
editors, String Processing and Information Retrieval - 26th International Symposium, SPIRE
2019, Segovia, Spain, October 7-9, 2019, Proceedings, volume 11811 of Lecture Notes in
Computer Science, pages 322–336. Springer, 2019.

9 Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena, Giovanni Bussotti, Ionas
Erb, and Cedric Notredame. Multiple sequence alignment modeling: methods and applications.
Briefings in Bioinformatics, 17(6):1009–1023, November 2015.

10 Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu. On the complexity
of string matching for graphs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

11 Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be indexed in
polynomial time for sub-quadratic time string matching, unless SETH fails. In Tomás
Bures, Riccardo Dondi, Johann Gamper, Giovanna Guerrini, Tomasz Jurdzinski, Claus Pahl,
Florian Sikora, and Prudence W. H. Wong, editors, SOFSEM 2021: Theory and Practice
of Computer Science - 47th International Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021,
Proceedings, volume 12607 of Lecture Notes in Computer Science, pages 608–622. Springer,
2021. doi:10.1007/978-3-030-67731-2_44.

12 Martin Farach. Optimal suffix tree construction with large alphabets. In Proceedings 38th
Annual Symposium on Foundations of Computer Science, pages 137–143. IEEE, 1997.

13 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for bwt-based
data structures. Theor. Comput. Sci., 698:67–78, 2017.

https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.1007/978-3-319-67428-5_7
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1007/978-3-030-67731-2_44

M. Equi, T. Norri, J. Alanko, B. Cazaux, A. I. Tomescu, and V. Mäkinen 20:17

14 Travis Gagie and Gonzalo Navarro. Compressed indexes for repetitive textual datasets. In
Sherif Sakr and Albert Y. Zomaya, editors, Encyclopedia of Big Data Technologies. Springer,
2019.

15 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in bwt-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020.

16 Daniel Gibney. An efficient elastic-degenerate text index? not likely. In International
Symposium on String Processing and Information Retrieval, pages 76–88. Springer, 2020.

17 Daniel Gibney and Sharma V. Thankachan. On the hardness and inapproximability of
recognizing wheeler graphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 51:1–51:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

18 Costas S. Iliopoulos, Ritu Kundu, and Solon P. Pissis. Efficient pattern matching in elastic-
degenerate texts. In Frank Drewes, Carlos Martín-Vide, and Bianca Truthe, editors, Language
and Automata Theory and Applications - 11th International Conference, LATA 2017, Umeå,
Sweden, March 6-9, 2017, Proceedings, volume 10168 of Lecture Notes in Computer Science,
pages 131–142, 2017. doi:10.1007/978-3-319-53733-7_9.

19 Costas S. Iliopoulos and Jakub Radoszewski. Truly subquadratic-time extension queries and
periodicity detection in strings with uncertainties. In Roberto Grossi and Moshe Lewenstein,
editors, 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016, June 27-29,
2016, Tel Aviv, Israel, volume 54 of LIPIcs, pages 8:1–8:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

20 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

21 David Maier. The complexity of some problems on subsequences and supersequences. J. ACM,
25(2):322–336, April 1978. doi:10.1145/322063.322075.

22 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale
Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, 2015. doi:10.1017/CBO9781139940023.

23 Veli Mäkinen, Bastien Cazaux, Massimo Equi, Tuukka Norri, and Alexandru I. Tomescu.
Linear time construction of indexable founder block graphs. In Carl Kingsford and Nadia
Pisanti, editors, 20th International Workshop on Algorithms in Bioinformatics, WABI 2020,
September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 172 of LIPIcs, pages 7:1–7:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.WABI.2020.7.

24 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308, 2010.

25 U. Manber and S. Wu. Approximate string matching with arbitrary costs for text and hypertext.
In IAPR Workshop on Structural and Syntactic Pattern Recognition, Bern, Switzerland, pages
22–33, 1992.

26 Tobias Marschall, Manja Marz, Thomas Abeel, Louis Dijkstra, Bas E Dutilh, Ali Ghaffaari,
Paul Kersey, Wigard Kloosterman, Veli Mäkinen, Adam Novak, et al. Computational pan-
genomics: status, promises and challenges. BioRxiv, page 043430, 2016.

27 Joong Na, Hyunjoon Kim, Seunghwan Min, Heejin Park, Thierry Lecroq, Martine Leonard,
Laurent Mouchard, and Kunsoo Park. FM-index of alignment with gaps. Theoretical Computer
Science, 710, June 2016. doi:10.1016/j.tcs.2017.02.020.

28 Joong Chae Na, Hyunjoon Kim, Heejin Park, Thierry Lecroq, Martine Léonard, Laurent
Mouchard, and Kunsoo Park. FM-index of alignment: A compressed index for similar strings.
Theoretical Computer Science, 638:159–170, 2016. Pattern Matching, Text Data Structures
and Compression. doi:10.1016/j.tcs.2015.08.008.

29 Joong Chae Na, Heejin Park, Maxime Crochemore, Jan Holub, Costas S. Iliopoulos, Laurent
Mouchard, and Kunsoo Park. Suffix tree of alignment: An efficient index for similar data. In
Thierry Lecroq and Laurent Mouchard, editors, Combinatorial Algorithms - 24th International
Workshop, IWOCA 2013, Rouen, France, July 10-12, 2013, Revised Selected Papers, volume
8288 of Lecture Notes in Computer Science, pages 337–348. Springer, 2013.

ISAAC 2021

https://doi.org/10.1007/978-3-319-53733-7_9
https://doi.org/10.1145/322063.322075
https://doi.org/10.1017/CBO9781139940023
https://doi.org/10.4230/LIPIcs.WABI.2020.7
https://doi.org/10.1016/j.tcs.2017.02.020
https://doi.org/10.1016/j.tcs.2015.08.008

20:18 Indexing Elastic Founder Graphs

30 Joong Chae Na, Heejin Park, Sunho Lee, Minsung Hong, Thierry Lecroq, Laurent Mouchard,
and Kunsoo Park. Suffix array of alignment: A practical index for similar data. In Oren
Kurland, Moshe Lewenstein, and Ely Porat, editors, String Processing and Information
Retrieval - 20th International Symposium, SPIRE 2013, Jerusalem, Israel, October 7-9, 2013,
Proceedings, volume 8214 of Lecture Notes in Computer Science, pages 243–254. Springer,
2013.

31 Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen. Linear time minimum
segmentation enables scalable founder reconstruction. Algorithms Mol. Biol., 14(1):12:1–12:15,
2019.

32 Mikko Rautiainen and Tobias Marschall. Aligning sequences to general graphs in O(V + mE)
time. bioRxiv, pages 216–127, 2017.

33 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/s00224-006-1198-x.

34 Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 11(2):375–388, 2014.

35 Chris Thachuk. Indexing hypertext. Journal of Discrete Algorithms, 18:113–122, 2013. Selected
papers from the 18th International Symposium on String Processing and Information Retrieval
(SPIRE 2011).

36 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1016/j.tcs.2005.09.023

	1 Introduction
	2 Definitions
	3 Conditional Hardness of Indexing EFGs
	4 Indexing (Semi-)Repeat-Free EFGs
	5 Construction of (Semi-)Repeat-Free EFGs
	6 Connection to Wheeler Graphs
	7 Discussion

