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Abstract
Vertex Integrity is a graph measure which sits squarely between two more well-studied notions,
namely vertex cover and tree-depth, and that has recently gained attention as a structural graph
parameter. In this paper we investigate the algorithmic trade-offs involved with this parameter from
the point of view of algorithmic meta-theorems for First-Order (FO) and Monadic Second Order
(MSO) logic. Our positive results are the following: (i) given a graph G of vertex integrity k and an
FO formula ϕ with q quantifiers, deciding if G satisfies ϕ can be done in time 2O(k2q+q log q) + nO(1);
(ii) for MSO formulas with q quantifiers, the same can be done in time 22O(k2+kq)

+ nO(1). Both
results are obtained using kernelization arguments, which pre-process the input to sizes 2O(k2)q and
2O(k2+kq) respectively.

The complexities of our meta-theorems are significantly better than the corresponding meta-
theorems for tree-depth, which involve towers of exponentials. However, they are worse than the
roughly 2O(kq) and 22O(k+q)

complexities known for corresponding meta-theorems for vertex cover. To
explain this deterioration we present two formula constructions which lead to fine-grained complexity
lower bounds and establish that the dependence of our meta-theorems on k is best possible. More
precisely, we show that it is not possible to decide FO formulas with q quantifiers in time 2o(k2q),
and that there exists a constant-size MSO formula which cannot be decided in time 22o(k2)

, both
under the ETH. Hence, the quadratic blow-up in the dependence on k is unavoidable and vertex
integrity has a complexity for FO and MSO logic which is truly intermediate between vertex cover
and tree-depth.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Model-Checking, Fine-grained complexity, Vertex Integrity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.34

Related Version Full Version: https://arxiv.org/abs/2109.10333

Funding Michael Lampis: Partially supported by ANR JCJC project “ASSK” (ANR-18-CE40-0025-
01).

1 Introduction

An algorithmic meta-theorem is a general statement proving that a large class of problems is
tractable. Such results are of great importance because they allow one to quickly classify the
complexity of a new problem, before endeavoring to design a fine-tuned algorithm. In the
domain of parameterized complexity theory for graph problems, possibly the most well-studied
type of meta-theorems are those where the class of problems in question is defined using a
language of formal logic, typically a variant of First-Order (FO) or Monadic Second-Order
(MSO) logic, which are the logics that allow quantification over vertices or sets of vertices
respectively1. In this area, the most celebrated result is Courcelle’s theorem [6], which states

1 Note that the version of MSO logic we use in this paper is sometimes also referred to as MSO1 to
distinguish from the version that also allows quantification over sets of edges.
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that all properties expressible in MSO logic are solvable in linear time, parameterized by
treewidth and the size of the MSO formula. In the thirty years since the appearance of this
fundamental result, numerous other meta-theorems in this spirit have followed (we give an
overview of some such results below).

Despite its great success, Courcelle’s theorem suffers from one significant weakness: the
algorithm it guarantees for deciding an MSO formula ϕ on a graph G with n vertices and
treewidth k has running time f(k, ϕ) ·n, where f is, in the worst case, a tower of exponentials
whose height can only be bounded as a function of ϕ. Unfortunately, it has been known
since the work of Frick and Grohe [20] that this terrible parameter dependence cannot be
avoided, even if one only considers FO logic on trees (or MSO logic on paths [40]). This has
motivated the study of the complexity of FO and MSO logic with parameters which are more
restrictive than treewidth. In the context of such parameters, fixed-parameter tractability
for all MSO-expressible problems is already given by Courcelle’s theorem, so the goal is to
obtain more “fine-grained” meta-theorems which achieve a better dependence on ϕ and k.

The two results from this line of research which are most relevant to our paper are the
meta-theorems for vertex cover given in [39], and the meta-theorem for tree-depth given by
Gajarský and Hliněný [21]. Regarding vertex cover, it was shown in [39] that FO and MSO
formulas with q quantifiers can be decided on graphs with vertex cover k in time roughly
2O(kq+q log q) and 22O(k+q) respectively. Both of these results were shown to be tight, in the
sense that improving their dependence on k would violate the Exponential Time Hypothesis
(ETH). For tree-depth, it was shown in [21] that FO and MSO formulas with q quantifiers can
be decided on graphs with tree-depth k with a complexity that is roughly k-fold exponential.
Hence, for fixed k, the complexity we obtain is elementary, but the height of the tower of
exponentials increases with k, and this cannot be avoided under the ETH [40].

Vertex cover and tree-depth are among the most well-studied measures in parameterized
complexity. In all graphs G we have vc(G)+1 ≥ td(G) ≥ pw(G) ≥ tw(G), so these parameters
form a natural hierarchy with pathwidth and treewidth, with vertex cover being the most
restrictive. As explained above, the distance between the performance of meta-theorems for
vertex cover (which are double-exponential for MSO) and for tree-depth (which give a tower
of exponentials of height td) is huge, but conceptually this is perhaps not surprising. Indeed,
one could argue that the structural distance between graphs of vertex cover k from the class
of graphs of tree-depth k is also huge. As a reminder, a graph has vertex cover k if we can
delete k vertices to obtain an independent set; while a graph has tree-depth k if there exists
k′ ≤ k such that we can delete k′ vertices to obtain a disjoint union of graphs of tree-depth
k − k′. Clearly, the latter (inductive) definition is more powerful and covers vastly more
graphs, so it is natural that model-checking should be significantly harder for tree-depth.

The landscape of parameters described above indicates that there should be space to
investigate interesting structural parameters between vertex cover and tree-depth, exactly
because the distance between these two is large in terms of generality and complexity. One
notion that has recently attracted attention in this area is Vertex Integrity [11], denoted as
ι(G). A graph has vertex integrity k if there exists k′ ≤ k such that we can delete k′ vertices
and obtain a disjoint union of graphs of size at most k − k′. Hence, the definition of vertex
integrity is the same as for tree-depth, except that we replace the inductive step by simply
bounding the size of the components that result after deleting a separator of the graph. This
produces a notion that is more restrictive than tree-depth, but still significantly more general
than vertex cover (where the resulting components must be singletons). In all graphs G,
we have vc(G) + 1 ≥ ι(G) ≥ td(G), so it becomes an interesting question to investigate the
complexity trade-off associated with these parameters, that is, how the complexity of various



M. Lampis and V. Mitsou 34:3

problems deteriorates as we move from vertex cover, to vertex integrity, to tree-depth. This
type of study was recently undertaken systematically for many problems by Gima et al. [29].
In this paper we make an investigation in the same direction from the lens of algorithmic
meta-theorems.

Our results. We consider the problem of verifying whether a graph G satisfies a property
given by an FO or MSO formula with q quantifiers, assuming ι(G) ≤ k. Our goal is to give a
fine-grained determination of the complexity of this problem as a function of k. We obtain
the following two positive results:

1. FO formulas with q quantifiers can be decided in time 2O(k2q+q log q) + nO(1).
2. MSO formulas with q vertex and set quantifiers can be decided in time 22O(k2+kq) + nO(1).

Hence, we obtain meta-theorems stating that any problem that can be expressed in
FO or MSO logic can be solved in the aforementioned times. Both of these results are
obtained through a kernelization argument, similar in spirit to the arguments used in the
meta-theorems of [21, 39]. To describe the main idea, recall that if ι(G) ≤ k, then there
exists a separator S of size at most k, such that removing it will disconnect the graph into
components of size at most k. The key now is that these components can be partitioned into
2k2 equivalence types, where components of the same type are isomorphic. We then argue
that if we have a large number of isomorphic components, it is always safe to delete any one
of them from the graph, as this does not change whether the given formula holds (Lemmas
12 and 14). We then complete the argument by applying the standard brute-force algorithms
for FO and MSO logic on the kernels.

We complement the results above by showing that the approach of kernelizing and then
executing the brute-force algorithm is best possible. More precisely, we show that, under
the ETH, it is not possible to obtain a model-checking algorithm for FO logic running in
time 2o(k2q)nO(1); while for MSO we construct a constant-sized formula which cannot be
model-checked in time 22o(k2) . Hence, the quadratic dependence on k, which distinguishes our
meta-theorems from the corresponding meta-theorems for vertex cover, cannot be avoided.

Related work. The study of structural parameters which trade off the generality of treewidth
for improved algorithmic properties is by now a standard topic in parameterized complexity.
The most common type of work here is to consider a problem that is intractable parameterized
by treewidth and see whether it becomes tractable parameterized by vertex cover or tree-
depth [2, 10, 13, 16, 17, 31, 32, 35, 34, 36, 42, 41]. See [1] for a survey of results of this type.
In this context, vertex integrity has only recently started being studied as an intermediate
parameter between vertex cover and tree-depth, and it has been discovered that fixed-
parameter tractability for several problems which are W-hard by tree-depth can be extended
from vertex cover to vertex integrity [4, 12, 25, 27, 29]. Note that some works use a measure
called core fracture number, which is an equivalent notion to vertex integrity.

Algorithmic meta-theorems are a well-studied topic in parameterized complexity (see
[30] for a survey). Courcelle’s theorem has been extended to the more general notion of
clique-width [7], and more efficient versions of these meta-theorems have been given for the
more restricted parameters twin-cover [22], shrub-depth [24, 23], neighborhood diversity and
max-leaf number [39]. Meta-theorems have also been given for even more general graph
parameters, such as [5, 14, 19, 18], and for logics other than FO and MSO, with the goal
of either targeting a wider class of problems [26, 37, 38, 44], or achieving better complexity
[43]. Meta-theorems have also been given in the context of kernelization [3, 15, 28] and
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approximation [9]. To the best of our knowledge, the complexity of FO and MSO model
checking parameterized by vertex integrity has not been explicitly studied before, but since
vertex integrity is a restriction of tree-depth and a generalization of vertex cover, the
algorithms of [21] and the lower bounds of [39] apply in this case.

2 Definitions and Preliminaries

First, let us formally define the notion of vertex integrity of a graph.

▶ Definition 1. A graph G is said to have vertex integrity ι(G) when there exists a set
S ⊂ V (G) such that, if S′ ⊂ V (G) is the set of vertices of the largest connected component
of G \ S then |S| + |S′| ≤ ι(G).

We recall that Drange et al. [11] have shown that deciding if a graph has ι(G) ≤ k admits
a kernel of order O(k3). Hence, given a graph G that is promised to have vertex integrity k,
we can execute this kernelization algorithm and then look for the optimal separator S in the
kernel. As a result, finding a separator S proving that ι(G) ≤ k can be done in kO(k) +nO(1).
Since this running time is dominated by the running times of our meta-theorems, we will
always silently assume that the separator S is given in the input when the input graph has
vertex integrity k.

A main question that will interest us is whether a graph satisfies a property expressible in
First-Order (FO) or Monadic Second-Order (MSO) logic. Let us briefly recall the definitions
of these logics. We use xi, i ∈ IN to denote vertex (FO) variables and Xi, i ∈ IN to denote set
(MSO) variables. Vertex variables take values from a set of vertex constants U = {ui, i ∈ IN},
whereas vertex set variables take values from a set of vertex set constants D = {Di, i ∈ IN}.

Now, given a graph G, in order to say that the assignment of a vertex variable xi or a
vertex set variable Xi to a constant corresponds to a particular vertex or vertex set of G, we
make use of a labeling function ℓ that maps vertex constants to vertices of V (G) and of a
coloring function C that maps vertex set constants to vertex sets of V (G). More formally,
ℓ, C are partial functions ℓ : U → V (G) and C : D → 2V (G). The functions may be undefined
for some constants, for example, if ℓ is not defined for the constant ui we write ℓ(ui) ↑.

▶ Definition 2. Given a triplet G, ℓ, C, a vertex v ∈ V (G) is said to be unlabeled if ̸ ∃ui ∈ U

such that ℓ(ui) = v. A set of vertices C1 ⊆ V (G) is unlabeled if all the vertices of C1 are
unlabeled.

▶ Definition 3. We say that two labeling functions ℓ, ℓ′ agree on a constant ui if either they
are both undefined on ui or ℓ(ui) = ℓ′(ui). Similarly, two coloring functions C, C′ agree on
Di if they are both undefined or C(Di) = C′(Di).

▶ Definition 4. Given two triplets G1, ℓ1, C1 and G2, ℓ2, C2 and a bijective function f :
V (G1) → V (G2). For C1 ⊆ V (G1), we define f(C1) =

⋃
v∈C1

{f(v)}. We say that V (G1)
and V (G2) have the same labelings for f if ∀ui ∈ U , either both ℓ1(ui), ℓ2(ui) are undefined or
f(ℓ1(ui)) = ℓ2(ui); we say that V (G1) and V (G2) have the same colorings for f if ∀Di ∈ D,
either both C1(Di), C2(Di) are undefined or f(C1(Di)) = C2(Di).

▶ Definition 5. An isomorphism between two triplets G1, ℓ1, C1 and G2, ℓ2, C2 is a bijective
function f : V (G1) → V (G2) such that (i) for all v, w ∈ V (G1) we have (v, w) ∈ E(G1) if and
only if (f(v), f(w)) ∈ E(G2), (ii) V (G1) and V (G2) have the same labelings and colorings
for f . Two triplets G1, ℓ1, C1 and G2, ℓ2, C2 are isomorphic if there exists an isomorphism
between them.
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▶ Definition 6. Given a triplet G, ℓ, C. We say that two sets C1 ⊆ V (G) and C2 ⊆ V (G)
have the same type if there exist ℓ′, C′ and an isomorphism f : V (G) → V (G) between the
triplets G, ℓ, C and itself such that f maps elements of C1 to C2 and vice versa and elements
from V (G) \ (C1 ∪ C2) to themselves.

Notice that only for vertices that don’t belong in the sets C1 and C2 (which f maps to
themselves) we can have that f(ℓ(ui)) = ℓ(ui). This leads to the following observation:

▶ Observation 7. In order for two disjoint sets C1 and C2 to have the same type, they
should necessarily be unlabeled (that is, ∀ui, ℓ(ui) ̸∈ C1 ∪ C2).

▶ Definition 8. Given a triplet G, ℓ, C and a set C1 ⊂ V (G). The restriction of C to G \ C1
is a function C′ : D → V (G) \ C1 such that C′(Di) = C(Di) \ C1 for all Di ∈ D for which
C(Di) ∩ C1 ̸= ∅ and C, C′ agree on the rest of Di.

An MSO formula is a formula produced by the following grammar, where X represents a
set variable, x a vertex variable, y a vertex variable or vertex constant, and Y a set variable
or constant:

ϕ → ∃X.ϕ | ∃x.ϕ | ϕ ∨ ϕ | ¬ϕ | y ∼ y | y = y | y ∈ Y

The operations above are vertex set quantification, vertex quantification, disjunction,
negation, edge relation, vertex equality, and set inclusion respectively. Their semantics are
defined inductively in the usual way: given a triplet G, ℓ, C and an MSO formula ϕ, we say
that the graph satisfies the property described by ϕ, or simply that G, ℓ, C models ϕ, and
write G, ℓ, C |= ϕ according to the following rules:

G, ℓ, C |= ui ∈ Dj if ℓ(ui) is defined and ℓ(ui) ∈ C(Dj).
G, ℓ, C |= ui = uj if ℓ(ui), ℓ(uj) are defined and ℓ(ui) = ℓ(uj).
G, ℓ, C |= ui ∼ uj if ℓ(ui), ℓ(uj) are defined and (ℓ(ui), ℓ(uj)) ∈ E(G).
G, ℓ, C |= ϕ ∨ ψ if G, ℓ, C |= ϕ or G, ℓ, C |= ψ.
G, ℓ, C |= ¬ϕ if it is not the case that G, ℓ, C |= ϕ.
G, ℓ, C |= ∃xi.ϕ if there exists v ∈ V (G) such that G, ℓ′, C |= ϕ[xi \ ui], where ℓ(ui) ↑,
ϕ[xi \ ui] is the formula obtained from ϕ if we replace every occurence of xi with the
(new) constant ui and ℓ′ : U → V (G) is a partial function for which ℓ′(ui) = v, and ℓ′, ℓ

agree on all other values uj ̸= ui.
G, ℓ, C |= ∃Xi.ϕ if there exists S ⊆ V (G) such that G, ℓ, C′ |= ϕ[Xi \Di], where C(Di) ↑,
ϕ[Xi \Di] is the formula obtained from ϕ if we replace every occurence of Xi with the
(new) constant Di and C′ : D → 2V (G) is a partial function for which C′(Di) = S and
C′, C agree on all other values Dj ̸= Di.

If none of the above applies then G, ℓ, C does not model ϕ and we write G, ℓ, C ̸|= ϕ.
Observe that, from the syntactic rules presented above, a formula can have free (non-
quantified) variables. However, we will only define model-checking for formulas without
free variables (also called sentences). Slightly abusing notation, we will write G |= ϕ to
mean G, ℓ, C |= ϕ for the nowhere defined functions ℓ, C. Note that our definition does not
contain conjunctions or universal quantifiers, but these can be obtained from disjunctions
and existential quantifiers using negations in the usual way, so we will use them freely when
constructing formulas.

An FO formula is defined as an MSO formula that uses no set variables Xi. In the
remainder, we will assume that all formulas are given to us in prenex form, that is, all
quantifiers appear in the beginning of the formula. We call the problem of deciding whether
G, ℓ, C |= ϕ the model-checking problem.

ISAAC 2021
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We recall the following basic fact:

▶ Lemma 9. Let G1, ℓ1, C1 and G2, ℓ2, C2 be two isomorphic triplets. Then, for all MSO
formulas ϕ we have G1, ℓ1, C1 |= ϕ if and only if G2, ℓ2, C2 |= ϕ.

Proof. G1, ℓ1, C1 and G2, ℓ2, C2 are isomorphic. Thus there exists a bijective function f :
V (G1) → V (G2) such i) f preserves in G2 the (non-)edges between the pairs of images of
vertices in G1 and ii) V (G1) and V (G2) have the same labelings and colorings for f .

We proceed by induction on the structure of ϕ.
For ϕ := ui ∈ Dj . G1, ℓ1, C1 |= ϕ iff ℓ1(ui) ∈ C1(Dj) iff f(ℓ1(ui)) ∈ f(C1(Dj)) iff
ℓ2(ui) ∈ C2(Dj) iff G2, ℓ2, C2 |= ϕ

For ϕ := ui = uj . G1, ℓ1, C1 |= ϕ iff ℓ1(ui) = ℓ1(uj) iff f(ℓ1(ui)) = f(ℓ1(uj)) iff
ℓ2(ui) = ℓ2(uj) iff G2, ℓ2, C2 |= ϕ

For ϕ := ui ∼ uj . G1, ℓ1, C1 |= ϕ iff (ℓ1(ui), ℓ1(uj)) ∈ E(G1) iff (f(ℓ1(ui)), f(ℓ1(uj))) ∈
E(G2) iff (ℓ2(ui), ℓ2(uj)) ∈ E(G2) iff G2, ℓ2, C2 |= ϕ

For ϕ := ϕ′∨ϕ′′, or ϕ := ¬ϕ′ By the inductive hypothesis, G1, ℓ1, C1 |= ϕ′ iff G2, ℓ2, C2 |= ϕ′

and G1, ℓ1, C1 |= ϕ′′ iff G2, ℓ2, C2 |= ϕ′′. Thus the statement also holds for ϕ.
For ϕ := ∃xi.ϕ

′. We prove the one direction, the other is identical if we use f−1 instead
of f in our arguments.
G1, ℓ1, C1 |= ∃xi.ϕ

′ if there exists v ∈ V (G1) such that G1, ℓ
′
1, C1 |= ϕ[xi \ ui], where

ℓ1(ui) ↑, ℓ′
1(ui) = v, and ℓ′

1, ℓ1 agree on all other values uj ≠ ui. We define a partial
labeling function ℓ′

2 : U → V (G2), such that ℓ′
2(ui) = f(ℓ′

1(ui)) = f(v) and ℓ′
2, ℓ2 agree

on all other values. It is easy to see that G1, ℓ
′
1, C1 and G2, ℓ

′
2, C2 are isomorphic, thus

by the inductive hypothesis G2, ℓ
′
2, C2 |= ϕ[xi \ ui]. Since ∃f(v) ∈ V (G2) such that

G2, ℓ
′
2, C2 |= ϕ[xi \ ui] and ℓ2(ui) ↑ (since ℓ1(ui) ↑ and V (G1) and V (G2) have the same

labelings for f), therefore G2, ℓ2, C2 |= ∃xi.ϕ
′.

For ϕ := ∃Xi.ϕ
′. The proof is similar with the above case. Once again we will only show

the one direction.
G1, ℓ1, C1 |= ∃Xi.ϕ

′ if there exists S ⊆ V (G1) such that G1, ℓ1, C′
1 |= ϕ[Xi \ Di], where

C1(Di) ↑, C′
1(Di) = S and C′

1, C1 agree on all other values Dj ̸= Di.
We define a partial coloring function C′

2 : D → 2V (G2) such that C′
2(Di) = f(C′

1(Di)) =
f(S) and C′

2, C2 agree on all other values. Once again, G1, ℓ1, C′
1 and G2, ℓ2, C′

2 are
isomorphic, thus by the inductive hypothesis G2, ℓ2, C′

2 |= ϕ[Xi\Di]. Since ∃f(S) ⊆ V (G2)
such that G2, ℓ2, C′

2 |= ϕ[Xi \ Di] and we have that C2(Di) ↑, therefore G2, ℓ2, C2 |=
∃Xi.ϕ

′. ◀

3 FPT algorithms for FO and MSO Model-Checking parameterized by
vertex integrity

In this section we prove Theorems 10 and 11. The statements appear right below.

▶ Theorem 10. Given a graph G with ι(G) ≤ k and an FO formula ϕ in prenex form having
at most q quantifiers. Then deciding if G |= ϕ can be solved in time (2O(k2) · q)q + poly(|G|).

▶ Theorem 11. Given a graph G with ι(G) ≤ k and an MSO formula ϕ in prenex form
having at most q1 vertex variable quantifiers and at most q2 vertex set variable quantifiers.
Then deciding if G |= ϕ can be solved in time

(
22O(k2+kq2) · q1

)q1
+ poly(|G|).

The proofs are heavily based on Lemmata 12 and 14. The first, which is about FO
Model-Checking, says that if we have at least q+ 1 components of the same type then we can
erase one such component from the graph. The reason essentially is that, if G, ℓ, C models ϕ
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by labeling a vertex v that belongs to the component to be removed, we can replace that
vertex by a corresponding vertex in another component having the same type. Notice that
the formula has q quantifiers and thus the graph will have q labels after the assignment.
Since we have q + 1 components of the same type, for one of these components the vertex
that corresponds to v will be unlabeled.

The second, which is about MSO Model-Checking, says that since we can quantify over
sets of vertices, unlike the case for FO, each set quantification can potentially affect a large
number of components that originally had the same type (by coloring its intersection with
each of them). However, since each component has size at most k, we have 2k ways that
the quantified set can overlap with the components. Thus, if we originally had a sufficiently
large number of same type components, even after the coloring, we will still have a sufficient
number of components that are of the same type, such that even if we remove one such
component the answer of the problem won’t change.

Lemmata 12 and 14, together with the fact that there exist a bounded number of types
of components, give the kernels (Lemma 13 for FO and Lemma 15 for MSO).

▶ Lemma 12. Given a triplet G, ℓ, C having q + 1 vertex sets C1, C2, . . . , Cq+1 of the same
type and ϕ an FO formula in prenex form having q quantifiers. Then G, ℓ, C |= ϕ if and only
if G \ C1, ℓ, C′ |= ϕ, where C′ is the restriction of C to V (G) \ C1.

Proof. We proceed by induction on the structure of the formula ϕ.
1. For ϕ := ui ∈ Dj , ϕ := u1 = u2, or ϕ := u1 ∼ u2. From Observation 7 the sets are

unlabeled. Thus ̸ ∃v ∈ C1 for which ℓ(u1) = v or ℓ(u2) = v. Thus the statement of the
lemma holds for the base case.

2. For ϕ := ϕ1 ∨ ϕ2 or ϕ := ¬ϕ1. From the inductive hypothesis, we have that G, ℓ, C |= ϕ1
if and only if G \ C1, ℓ, C′ |= ϕ1 and that G, ℓ, C |= ϕ2 if and only if G \ C1, ℓ, C′ |= ϕ2.
It is easy to see that the statement of the lemma holds also for ϕ.

3. The most interesting case is for ϕ := ∃xi.ϕ
′. If G, ℓ, C |= ϕ then from the definition of

the semantics of ϕ there exists v ∈ V (G) such that G, ℓ′, C |= ϕ[xi \ ui] with ℓ(ui) ↑ and
ℓ′ : U → V (G) being a partial function for which ℓ′(ui) = v, and ℓ′ agrees with ℓ on all
other values uj ̸= ui.
First we prove that without loss of generality v ̸∈ C1. Suppose that v ∈ C1. Since C1 and
C2 have the same type on G, ℓ, C, by Definition 6 there exists an isomorphism f : C1 → C2.
Consider now a labeling function ℓ′′ : U → V (G) where ℓ′′(ui) = f(ℓ′(ui)) = f(v),
otherwise ℓ′, ℓ′′ agree on uj ̸= ui. Observe that G, ℓ′, C and G, ℓ′′, C are isomorphic, thus
from Lemma 9 we have that G, ℓ′, C |= ϕ iff G, ℓ′′, C |= ϕ. In that case, instead of v ∈ C1
we shall consider f(v) ∈ C2. Thus, from now on we can assume that v ̸∈ C1
For the triplet G, ℓ′, C q of the sets C1, C2, . . . , Cq+1 are still unlabeled and have the
same type (C1 is among them). Also ϕ′ has q − 1 quantifiers. Thus, by the inductive
step, G, ℓ′, C |= ϕ′ if and only if G \ C1, ℓ

′, C′ |= ϕ′. Since v ∈ V (G) \ C1, we have that
G \ C1, ℓ, C′ |= ϕ.
For the other direction, observe that v ∈ V (G) \ C1 implies that v ∈ V (G). Thus the
statement holds with similar reasoning as above. ◀

▶ Lemma 13. For a triplet G, ℓ, C with vertex integrity ι(G) ≤ k and with ℓ, C everywhere
undefined and for a formula ϕ with q quantifiers, FO Model Checking has a kernel of size
O(2k2 · q · k), assuming we are given in the input S ⊆ V (G) such that the largest component
of G \ S has size at most k − |S|.
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Proof. We give a polynomial-time algorithm to calculate an upper bound on the number of
components of G \ S having the same type. Observe that types are only specified by the
neighborhoods of the vertices of the components (ℓ and C are everywhere undefined thus
there are no labels or colors on G).

First, we arbitrarily number the vertices of S and of each component. In order to classify
the components into types, we map each component Ci to a vector [N1, N2, . . . , N|Ci|], where
Nj is an ordered set containing the (numbered) neighbors of the jth vertex of Ci (starting
from the neighbors in S). Clearly, two components having the same vectors also have the
same type, using the isomorphism that maps the i-th vertex of one to the i-th vertex of the
other.

Since each component has at most k vertices and each vertex has at most 2k different
types of neighborhoods Nj , we can have at most 2k2 vectors, thus at most 2k2 types of
components. Furthermore, since we are given S, we can test in polynomial time if two
components have the same type under the arbitrary numbering we used. From Lemma 12, if
more than q components have the same type we can remove one such component without
changing the answer of the problem, thus we can in polynomial time either reduce the graph
or conclude that each component type appears at most q times. In the end we will have at
most 2k2 · q components, each having at most k vertices, thus the result. ◀

By applying the straightforward algorithm which runs in time |V (G)|q · poly(|G|) for FO
Model Checking, together with Lemma 13 we get the complexity promised by Theorem 10.

In order to prove Theorem 11 we need a stronger version of Lemma 12.

▶ Lemma 14. Given a triplet G, ℓ, C with at least q′ = 2k·q2 ·q1 +1 vertex sets C1, C2, . . . , Cq′

having the same type and sizes at most k and an MSO formula ϕ in prenex form with q1 FO
quantifiers and q2 MSO quantifiers. Then G, ℓ, C |= ϕ if and only if G \ C1, ℓ, C1 |= ϕ, where
C1 is the restriction of C to V (G) \ C1.

Proof. We proceed by induction on the structure of ϕ. We can reuse the arguments of
Lemma 12, except for the case where ϕ := ∃Xi.ϕ

′, so we focus on this case.
For the one direction, if G, ℓ, C |= ϕ, from the definition of the semantics of ϕ, then there

exists S ⊆ V (G) such that G, ℓ, C′ |= ϕ[Xi \ Di] with C(Di) ↑ and C′ : D → 2V (G) being a
partial function for which C′(Di) = S, and C′ agrees with C on all other values Dj ̸= Di.

Since each of the vertex sets C1, C2, . . . , Cq′ has size at most k, there are at most 2k

possible ways for S to intersect with each of them. Therefore, by pigeonhole principle, one
such intersection appears in at least ⌈ q′

2k ⌉ = 2k(q2−1) · q1 + 1 sets, call that group M . In
order to be able to apply the inductive hypothesis, we need to prove that, without loss of
generality, C1 ∈ M .

Suppose that C1 ̸∈ M . We will do a “swapping” of C1 with a vertex set (say C2 without
loss of generality) that does belong in the group M . Since C1 and C2 have the same type,
that means that there exists an isomorphism f : C1 → C2.

We consider a new coloring function C′′ that agrees with C′ everywhere but on the constant
Di. This new coloring function will map Di to the set of vertices S′ (instead of S), where we
have replaced every v ∈ S ∩ C1 with f(v) and every v ∈ S ∩ C2 with f−1(v) (see Figure 1).
More formally, C′′(Di) = S′ where S′ = (S \ (C1 ∪ C2)) ∪ f(C1 ∩ S) ∪ f−1(C2 ∩ S). Then
the triplets G, ℓ, C′ and G, ℓ, C′′ are isomorphic and from Lemma 9 we have that G, ℓ, C′ |= ϕ

iff G, ℓ, C′′ |= ϕ. From now on we assume that C1 belongs in M .
For the triplet G, ℓ, C′, the sets in M have all the same type and |M | ≥ 2k(q2−1) · q1 + 1.

Furthermore, the function ϕ′ has q1 FO and q2 − 1 MSO quantifiers. Therefore, by the
inductive hypothesis we can remove a set from M and the answer of the problem won’t
change, in other words we have that G, ℓ, C′ |= ϕ′ iff G \ C1, ℓ, C′

1 |= ϕ′, where C′
1 is the

restriction of C′ on V (G) \ C1. From the semantics of ϕ we have that G \ C1, ℓ, C1 |= ϕ.
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C1

S S'

2

f

C C1 2C

Figure 1 The way the vertex set S′ intersects the vertex sets C1 and C2.

For the other direction, if G \ C1, ℓ, C1 |= ϕ then there exists S1 ⊆ V (G) \ C1 such that
G \ C1, ℓ, C′

1 |= ϕ[Xi \Di] with C1(Di) ↑ and C1 being a partial coloring function for which
C′

1(Di) = S1, and C′
1 agrees with C1 on all other values Dj ̸= Di.

As previously, S1 partitions C2, . . . , Cq′ into 2k equivalence classes, depending on the
intersection of each set with S1, such that sets placed in the same class (i.e. having isomorphic
intersection with S1) have the same type in G \C1, ℓ, C′

1. Hence, one of these classes has size
at least q′−1

2k = 2k(q2−1) · q1, call this class M ′. We construct a triplet G, ℓ, C∗ as follows: let
Cj ∈ M ′ and f ′ be the isomorphism from Cj to C1; We set that C∗ agrees with C on all sets
except Di; and for Di we have C∗(Di) = C′

1(Di) ∪ f ′(S1 ∩ Cj). In other words, we define C∗

in such a way that the set C1 has the same type as all sets of the class M ′. But then we
have |M ′ ∪ {C1}| ≥ 2k(q2−1) · q1 + 1 sets of the same type and by inductive hypothesis we
have G, ℓ, C∗ |= ϕ[Xi \Di]. Therefore, by the semantics of MSO we have G, ℓ, C |= ϕ. ◀

▶ Lemma 15. For a triplet G, ℓ, C with vertex integrity ι(G) ≤ k and with ℓ, C everywhere
undefined and for a formula ϕ with q1 FO quantifiers and q2 MSO quantifiers, MSO Model
Checking has a kernel of size O(2(k2+kq2) · q1 · k), assuming we are given in the input
S ⊆ V (G) such that the largest component of G \ S has size at most k − |S|.

Proof. The proof is the same as for Lemma 13. The only thing that changes is the number
of same-type components required to have before removing one such component (q′ required
by Lemma 14 versus q + 1 required by Lemma 12). ◀

Applying the straightforward algorithm for MSO Model-Checking that runs in 2q2·V (G) ·
V (G)q1 · poly|G| and Lemma 15 gives the complexity promised by Theorem 11.

4 Lower Bounds

In this section we show that the dependence of our meta-theorems on vertex integrity cannot
be significantly improved, unless the ETH is false. Our strategy will be to present a unified
construction which, starting from an arbitrary graph G with n vertices, produces a new
graph H(G), with small vertex integrity, such that we can deduce if two vertices of G are
connected using appropriate constant-sized FO formulas of H. This will, in principle, allow
us to express an FO or MSO-expressible property of G as a corresponding property of H(G),
and hence, if the original property is hard, to obtain a lower bound on model-checking on H.
Let us describe this construction in more details.

Construction. We are given a graph G on n vertices, say V (G) = {v1, . . . , vn}, and m edges.
Let k = ⌈

√
logn⌉. We construct a graph H as follows:

1. We begin constructing V (H) by forming n+m+ 1 sets of vertices, called S, W1, . . . ,Wn,
and Y1, . . . , Ym. We have |S| = 2k, |Wi| = k for all i ∈ [n], and |Yj | = 2k + 1 for all
j ∈ [m]. The vertices of S are numbered arbitrarily as s1, s2, . . . , s2k.
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S W47

w

s

(47,3)

w(47,2)

w(47,1)

1

s6
s5
s4
s3
s2

  

Figure 2 The connection between S and the set W47. For this example k = 3, we can represent
up to 29 numbers in binary. In order to represent 4710 = 0001011112, we shall connect w(47,1) with
s4, s5 and s6 in order to represent the three least significant bits (which are all 1), and w(47,2) with
s4 and s6 to represent the next triad of bits. The three most significant bits are all 0.

2. Internally, S induces an independent set, each Wi, for i ∈ [n] induces a clique, and each
Yj , for j ∈ [m] induces a graph made up of two disjoint cliques of size k, denoted Y 1

j , Y
2

j ,
and a vertex connected to all 2k vertices of the cliques Y 1

j , Y
2

j .
3. For each i ∈ [n], we attach a leaf to each vertex of Wi. For each j ∈ [m], we attach two

leaves to each vertex of Y 1
j , three leaves to each vertex of Y 2

j , and four leaves to the
remaining vertex of Yj .

4. For each i ∈ [n], number the vertices of Wi arbitrarily as w(i,1), w(i,2), . . . , w(i,k). For each
β ∈ [k] we connect w(i,β) to sβ . Furthermore, let b1b2 . . . bk2 be the binary representation of
i−1 with the least significant digit first, that is, a sequence of bits such that

∑
β bβ2β−1 =

i− 1. Note that k2 ≥ logn, therefore k2 bits are sufficient to represent all numbers from
0 to n− 1. We partition this binary representation into k blocks of k bits. For β ∈ [k]
we consider the bits b(β−1)k+1 . . . bβk and we use these bits to determine the connections
between w(i,β) and the vertices sk+1, . . . , s2k. More precisely, for β, γ ∈ [k], we set that
w(i,β) is connected to sk+γ if and only if b(β−1)k+γ is equal to 1.

5. For each j ∈ [m] we do the following. Suppose the j-th edge of G has endpoints vi1 , vi2 .
We number the vertices of Y 1

j as y1
(j,1), . . . , y

1
(j,k), and the vertices of Y 2

j as y2
(j,1), . . . , y

2
(j,k)

in some arbitrary way. Now for all β ∈ [k] we set that y1
(j,β) has the same neighbors in S

as w(i1,β) and y2
(j,β) has the same neighbors in S as w(i2,β).

The construction of our graph is now complete. The intuition behind this construction is
that each clique Wi represents a vertex vi ∈ V (G). In order to distinguish the vertices, we
use the k2 ≥ logn possible edges between vertices in Wi and the second part of S, that is
{sk+1, . . . , s2k}. These edges should represent the binary representation of i. See Figure 2
for an example.

Vertices of H may be (arbitrarily) labeled for the purpose of the construction but for the
purpose of Model-Checking the graph H is unlabeled. In order to give a numbering to the
vertices of Wi, we use the matching between Wi and the first k vertices of the set S (the
first vertex of Wi connects to the first vertex of S, etc).

The sets Yj represent edges in G. If the jth edge in E(G) is the edge (vi1vi2), then Y 1
j

should have the same connections with S as the set Wi1 (similarly Y 2
j , Wi2). In order to

check in H whether (vi1 , vi2) is an edge, we shall check if there exists a set Yj such that each
vertex of Y 1

j has the same neighborhood in S as a vertex of Wi1 and each vertex of Y 2
j has

the same neighborhood in S as a vertex of Wi2 .
It is crucial here that the construction is such that Wi,Wi′ are distinguishable for i ̸= i′ in

terms of their neighborhoods in S, that is, there always exists w ∈ Wi for which no w′ ∈ Wi′

has N(w) ∩ S = N(w′) ∩ S. We will show that it is not hard to express this property in FO
logic. Furthermore, the leaves we have attached to various vertices will allow us to distinguish
in FO logic whether a vertex belongs in a set Wi, Y 1

j , or Y 2
j .
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We now establish some basic properties about H and what can be expressed about its
vertices in FO logic:

▶ Lemma 16. The graph H satisfies the following properties, for any coloring function C.
1. We have ι(H) = O(

√
logn) and |V (H)| = O(n2√

logn).
2. For each i, i′ ∈ [n] with i ̸= i′, there exists a vertex w ∈ Wi such that for all w′ ∈ Wi′ we

have N(w) ∩ S ̸= N(w′) ∩ S.
3. There exist constant-sized FO formulas ϕW (x1), ϕY 1(x1), ϕY 2(x1), ϕS(x1) using one free

variable x1, such that H, ℓ, C |= ϕW [x1 \ u1] (respectively H, ℓ, C |= ϕY 1[x1 \ u1], H, ℓ, C |=
ϕY 2[x1 \u1], H, ℓ, C |= ϕS [x1 \u1]) if and only if ℓ(u1) ∈ Wi for some i ∈ [n] (respectively
ℓ(u1) ∈ Y 1

j , ℓ(u1) ∈ Y 2
j , for some j ∈ [m], ℓ(u1) ∈ S).

4. There exists a constant-sized FO formula ϕW Y using only two free variables x1, x2 such
that H, ℓ, C |= ϕW Y [x1 \u1][x2 \u2] if and only if ℓ(u1) ∈ Wi for some i ∈ [n], ℓ(u2) ∈ Y α

j

for some j ∈ [m], α ∈ {1, 2}, and for all β ∈ [k] we have N(w(i,β)) ∩ S = N(yα
(j,β)) ∩ S.

5. There exists a constant-sized FO formula ϕadj using only two free variables x1, x2 such
that H, ℓ, C |= ϕadj [x1 \ u1][x2 \ u2] if and only if ℓ(u1) ∈ Wi and ℓ(u2) ∈ Wi′ for some
i, i′ ∈ [n] such that (vi, vi′) ∈ E(G).

Proof. For the first property, we observe that the largest component of H \ S has size at
most 10

√
logn+ 2, while |S| ≤ 2

√
logn+ 2. Furthermore, we have at most m+ n = O(n2)

components after removing S.
For the second property, since i ̸= i′, their binary representations differ in some bit. Let

β, γ ∈ [k] be such that if b1 . . . bk2 is the binary representation of i− 1 and b′
1 . . . b

′
k2 is the

binary representation of i′ − 1, we have b(β−1)k+γ ≠ b′
(β−1)k+γ . But then, exactly one of

w(i,β), w(i′,β) is connected to sk+γ . Furthermore, w(i,β) is connected to sβ , but the only
neighbor of sβ in Wi′ is w(i′,β). Hence, w(i,β) is the claimed vertex.

For the third property, observe that, in H, vertices of S have no leaves attached, vertices
of each Xi have one leaf attached, vertices of Y 1

j have two leaves attached, vertices of Y 2
j have

three leaves attached, and the remaining vertices have four leaves attached. Hence, it suffices
to be able to express in FO, with a constant-sized formula, the property “x1 has exactly c leaves
attached”, where c ∈ {0, 1, 2, 3}. This is not hard to do. For example, the formula ϕ2(x1) :=
∃x2∃x3∀x4 ((x2 ∼ x1) ∧ (x3 ∼ x1) ∧ (x2 ̸= x3) ∧ ((x4 = x1) ∨ (¬(x4 ∼ x2) ∧ ¬(x4 ∼ x3))))
expresses the property that x1 has at least two leaves attached to it. Using the
same ideas we can construct ϕc(x1), for c ∈ {1, 2, 3, 4} and then ϕS(x1) := ¬ϕ1(x1),
ϕW (x1) := ϕ1(x1) ∧ ¬ϕ2(x1), ϕY 1 := ϕ2(x1) ∧ ¬ϕ3(x1), ϕY 2(x1) := ϕ3(x1) ∧ ¬ϕ4(x1).

For the fourth property, we set ϕW Y (x1, x2) := ϕW Y 1(x1, x2) ∨ ϕW Y 2(x1, x2), where we
define two formulas ϕW Y α depending on whether α = 1 or α = 2. We have

ϕW Y α(x1, x2) := ϕW (x1) ∧ ϕY α(x2) ∧ ∀x3
(
(¬ϕW (x3)) ∨ (¬(x3 ∼ x1) ∧ ¬(x3 = x1)) ∨

∃x4 (ϕY 1(x4) ∧ (x4 ∼ x2 ∨ x4 = x2) ∧ ∀x5 (ϕS(x5) → (x5 ∼ x3 ↔ x5 ∼ x4)))
)

What we are saying here is that ϕW Y 1[x1 \u1][x2 \u2] is satisfied if ℓ(u1) ∈ Wi, ℓ(u2) ∈ Y 1
j ,

for some i ∈ [n], j ∈ [m], and for every x3 ∈ Wi there exists x4 ∈ Y 1
j such that N(x3) ∩ S =

N(x4) ∩ S. Therefore, if this property holds, then Wi and Y 1
j represent the same vertex of

V (similarly for ϕW Y 2).
For the last property, we set

ϕadj(x1, x2) := ϕW (x1) ∧ ϕW (x2) ∧ ∃x3∃x4
(
(ϕY 1(x3) ∧ ϕY2 (x4)) ∨ (ϕY 1(x4) ∧ ϕY2 (x3))

)
∧

ϕW Y (x1, x3) ∧ ϕW Y (x2, x4) ∧ ∃x5(¬ϕS(x5) ∧ x3 ∼ x5 ∧ x4 ∼ x5)
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In other words, H, ℓ, C |= ϕadj [x1 \ u1][x2 \ u2] if (i) ℓ(u1) ∈ Wi and ℓ(u2) ∈ Wi′ , for some
i, i′ ∈ [n] (ii) there exist x3, x4 such that x3 ∈ Y 1

j and x4 ∈ Y 2
j for the same j; this is verified

because x3, x4 have a common neighbor x5 that does not belong in S (iii) Wi,Wi′ correspond
to the same pair of vertices as the set Yj = Y 1

j ∪ Y 2
j , which means that (vi, vi′) ∈ E(G). ◀

We are now ready to prove our lower bounds.

▶ Theorem 17. If there exists an algorithm which, given a graph G with n vertices and
ι(G) = k and an FO formula ϕ with q quantifiers, decides whether G |= ϕ in time 2o(k2q)nO(1),
then the ETH is false.

Proof. We perform a reduction from q-Clique. It is well-known that, given a graph G on n
vertices it is not possible to decide if G contains a clique of size q in time no(q), unless the
ETH is false [8]. We claim that we will construct the graph H(G), as previously described,
and an FO formula ϕC such that ϕC will contain O(q) quantifiers and H, ℓ, C |= ϕC for the
nowhere defined functions ℓ, C if and only if G has a q-clique. If we achieve this, then, since
by Lemma 16 we have k = O(

√
logn), and the size of H is polynomially related to the size

of G, the stated running time would become 2o(q(
√

log n)2)nO(1) = no(q) and we refute the
ETH. Our goal is then to define such an FO formula ϕC . We define

ϕC := ∃x1∃x2 . . . ∃xq

∧
i∈[q]

ϕW (xi) ∧
∧

i,i′∈[q],i̸=i′

(xi ̸= xi′)

∀xq+1∀xq+2
∧

i∈[q]

(
¬(xq+1 = xi)

)
∨

∧
i∈[q]

(
¬(xq+2 = xi)

)
∨ (xq+1 = xq+2) ∨

ϕadj(xq+1, xq+2)

We now claim that by the construction of H, we have that H, ℓ, C |= ϕC if and only if G
has a clique. If G has a clique {vi1 , vi2 , . . . , viq }, we map x1, x2, . . . , xq to arbitrary vertices
of Wi1 , . . . ,Wiq

. For the next part of the formula, either xq+1, xq+2 correspond to some
(different) xi, xi′ or the formula is true. Last, we claim thatH, ℓ′, C |= ϕadj [xq+1\ui][xq+2]\ui′ ],
where xi, xi′ are substituted by ui, ui′ and ℓ′(ui) ∈ Wi, ℓ

′(ui′) ∈ Wi′ . Indeed, because we
have a clique in G, by construction there exists a Yj such that each vertex of Y 1

j has the
same neighborhood in S as Wi and each vertex of Y 2

j has the same neighborhood in S as
Wi′ (or the same with the roles of Y 1

j , Y
2

j reversed). Hence, ϕadj is satisfied.
For the converse direction, suppose that H, ℓ, C |= ϕC for the nowhere defined labeling

function ℓ. Then there exists a labeling function ℓ′ that assigns ℓ′(u1), ℓ′(u2), . . . , ℓ′(uq) to
some vertices of

⋃
i∈[n] Wi and is undefined everywhere else such that ℓ′(ui) ̸= ℓ′(ui′) for

i ̸= i′ and H, ℓ′, C |= ϕC′ where

ϕC′ := ∀xq+1∀xq+2
∧

i∈[q]

(
¬(xq+1 = ui)

)
∨

∧
i∈[q]

(
¬(xq+2 = ui)

)
∨ (xq+1 = xq+2) ∨ ϕadj(xq+1, xq+2)

We extract a multi-set S of q vertices of G as follows: for β ∈ [q], if ℓ′(uβ) ∈ Wi, then
we add vi to S. We claim that for any two elements vi, vi′ of S we have (vi, vi′) ∈ E. If we
prove this, then the vertices of S are distinct and form a q-clique in G.

Since we have universal quantifications for xq+1, xq+2, we can define a new labeling
function ℓ′′, with ℓ′′(uq+1) = ℓ′(ui) and ℓ′′(uq+2) = ℓ′(ui′), for any i, i′ ∈ [q], i ̸= i′, with ℓ′′, ℓ′

agreeing everywhere else. Observe that this selection imposes that H, ℓ′′, C |= ϕadj [xq+1 \
ui][xq+2 \ ui′ ] and from property 5 of Lemma 16 we get that ℓ′(ui), ℓ′(ui′) belong to two
different Wj ,Wj′ that correspond to the endpoints of an edge of G. ◀
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▶ Theorem 18. If there exists an algorithm which, given a graph G with n vertices and
ι(G) = k and an MSO formula ϕ with constant size, decides whether G |= ϕ in time
22o(k2)

nO(1), then the ETH is false.

Proof. Our strategy is similar to that of Theorem 17, except that we will now reduce
from 3-Coloring, which is known not to be solvable in 2o(n) on graphs on n vertices,
under the ETH [33]. We will produce a constant-sized formula ϕCol with the property that
H, ℓ, C |= ϕCol for the nowhere defined functions ℓ, C if and only if G is 3-colorable. Since
k = O(

√
logn) an algorithm running in 22o(k2) would imply a 2o(n) algorithm for 3-coloring

G, contradicting the ETH. We define

ϕCol := ∃X1∃X2∃X3∀x1∀x2(x1 ∈ X1 ∨ x1 ∈ X2 ∨ x1 ∈ X3) ∧∧
i=1,2,3

ϕadj(x1, x2) →
(
x1 ∈ Xi → ¬(x2 ∈ Xi)

)
Assume that G has a proper 3-coloring c : V → [3]. Then we define, for α ∈ [2]

Sα =
⋃

i:c(vi)=α Wi and S3 = V (H) \ (S1 ∪ S2). Let C′ be a coloring function such that
C′(Dα) = Sα for α = 1, 2, 3 and C′(Dα′) ↑ for α′ ̸∈ [3]. We claim that H, ℓ, C′ |= ϕCol[X1 \
D1][X2 \ D2][X3 \ D3]. Indeed, for any labeling function ℓ′ that defines only ℓ′(u1) and
ℓ′(u2) we have (i) H, ℓ′, C′ |= u1 ∈ D1 ∨ u1 ∈ D2 ∨ u1 ∈ D3 (since C′(D1), C′(D2), C′(D3) is
a partition of V (H)); (ii) If H, ℓ′, C′ |= ϕadj [x1 \ u1][x2 \ u2] then ℓ′(u1) ∈ Wi, ℓ

′(u2) ∈ Wi′

for some i, i′ ∈ [n], i ≠ i′ with (vi, vi′) ∈ E(G) (from property 5 of Lemma 16). Therefore
c(vi) ̸= c(vi′) so for α ∈ [3] H, ℓ′, C′ |= u1 ∈ Dα → ¬u2 ∈ Dα.

For the converse direction, suppose that H, ℓ, C |= ϕCol for the nowhere defined ℓ, C.
Then there exists a coloring function C′ such that C′(Dα) = Sα, for α ∈ [3] and H, ℓ, C′ |=
ϕCol[X1 \D1][X2 \D2][X3 \D3]. We extract a coloring of V (G) as follows: for i ∈ [n] we set
c(vi) to be the minimum α such that Wi ∩Sα ̸= ∅. We show that the coloring c : V (G) → [3]
defined in this way is proper. Consider i, i′ ∈ [n] such that (vi, vi′) ∈ E(G). Let ℓ′ be a
labeling function such that ℓ′(u1) ∈ Wi ∩ Sc(vi) and ℓ′(u2) ∈ Wi′ ∩ Sc(vi′ ). Observe that
Wi ∩Sc(vi) ̸= ∅ by the definition of c(vi). Then H, ℓ′, C′ |= ϕadj [x1 \u1][x2 \u2]. Therefore we
have that for α ∈ [3], H, ℓ′, C′ |= u1 ∈ Dα → ¬(u2 ∈ Dα). Therefore Sc(vi) ≠ Sc(vi′ ), which
means that c(vi) ̸= c(vi′). ◀
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