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—— Abstract

We present a %-approximation algorithm for the matching augmentation problem (MAP): given a
multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching,
find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost.

A %—approximation algorithm for the same problem was presented recently, see Cheriyan, et al.,
“The matching augmentation problem: a %—approximation algorithm,” Math. Program., 182(1):315—
354, 2020.

Our improvement is based on new algorithmic techniques, and some of these may lead to advances
on related problems.
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1 Introduction

The design and analysis of algorithms for problems in network design is a core topic in
Theoretical Computer Science and Combinatorial Optimization. Algorithmic research on
problems such as the minimum spanning tree problem and the Traveling Salesman Problem
(TSP) started decades ago and is a thriving area even today. One of the key problems in this
area is the minimum-cost 2-ECSS (2-edge connected spanning subgraph) problem: Given an
undirected graph G = (V, E) and a nonnegative cost for each edge e € E, denoted cost(e),
find a minimum-cost spanning subgraph H = (V, F), F C E, that is 2-edge connected.
Throughout, we use n := |V| to denote the number of nodes of G. (Recall that a graph
is 2-edge connected if it is connected and has no “cut edges”, or equivalently, each of its
nontrivial cuts has > 2 edges.) This problem is NP-hard, and the best approximation
guarantee known, due to [22], is 2.

On the other hand, the best “hardness of approximation threshold” known is much
smaller; for example, it is (1 + 22¢2) for the unweighted problem, where 1 4 pycs is the
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“hardness of approximation threshold” for the minimum vertex cover problem on a graph with
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maximum degree 3, [10, Theorem 5.2]. Also, the best lower bound known on the integrality
ratio of the standard LP relaxation (for minimum-cost 2-ECSS) is around 1.5 (thus, well
below 2), see [5].

1.1 FAP, TAP and MAP

Given this significant gap between the lower bounds and the upper bounds, research in this
area over the last two decades has focused on the case of zero-one cost functions (every edge
has a cost of zero or one). Let us call an edge e € E with cost(e) = 0 a zero-edge, and
let us call an edge e € E with cost(e) = 1 a unit-edge. Intuitively, the zero-edges define
some existing network that we wish to augment (with unit-edges) such that the augmented
network is resilient to the failure of any one edge. We may assume that the zero-edges form
a forest; otherwise, there is at least one cycle C' formed by the zero edges, and in that case,
we may contract C, solve the problem on the resulting graph G/C, find a solution (edge set)
F, and return F'U C' as a solution of the original problem. Consequently, the minimum-cost
2-ECSS problem with a zero-one cost function is called the Forest Augmentation Problem
or FAP. The challenge is to design an approximation algorithm with guarantee strictly less
than 2 for FAP.

A well known special case of FAP is TAP, the Tree Augmentation Problem: the set of
zero-edges forms a spanning tree. The first publication to break the “2-approximation barrier”
for TAP is [14] (2003), and since then there have been several important advances, including
recent work, see [11, 17, 1, 19, 4, 9, 13].

Recently, see [2], there has been progress on another important (in our opinion) special case
of FAP called the Matching Augmentation Problem or MAP: Given a multi-graph with edges
of cost either zero or one such that the zero-edges form a matching, find a 2-ECSS of minimum
cost. From the view-point of approximation algorithms, MAP is “complementary” to TAP, in
the sense that the forest formed on V(G) by the zero-edges has many connected components,
each with one node or two nodes, whereas this forest has only one connected component in
TAP.

1.2 Previous literature and possible approaches for attacking MAP

There is a large body of work on network design and the design of algorithms (for finding
optimal solutions, as well as for finding approximately optimal solutions); see the books in
the area [20, 25, 18]. Unfortunately, none of these results and methods has helped to break
the “2-approximation barrier” for FAP (to the best of our knowledge).

Powerful and versatile methods such as the primal-dual method (see [25, 12]) and the
iterative rounding method (see [18, 16]) have been developed for problems in network design,
but the proveable approximation guarantees for these methods are > 2. (These methods
work by rounding LP relaxations; informally speaking, the approximation guarantee is proved
via an upper bound of 2 per iteration on the “integral cost incurred” versus the “chargeable
LP cost”, and it is plausible that the factor of 2 cannot be improved for this type of analysis.)

Combinatorial methods that may also exploit lower-bounds from LP relaxations have
been developed for approximation algorithms for unweighted minimum-cost 2-ECSS, e.g.,
%-approximation algorithms are presented in [24, 21, 15]. For the unweighted problem, there
is a key lower bound of n on opt (since any solution must have > n edges, each of cost one).
This fails to holds for MAP; indeed, the analogous lower bound on opt is %n for MAP. This
rules out any direct extension of these combinatorial methods (for the unweighted problem)
to prove approximation guarantees below 2 for MAP.
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Recently, Traub and Zenklusen [23] presented an approximation algorithm for Weighted
TAP with guarantee 1 + (In2) + € < 1.7, via a so-called relative greedy algorithm, based on
previous work by Cohen and Nutov [6] that, in turn, is based on earlier work by Zelikovsky
on the Steiner Tree problem [26]. While the result of Traub and Zenklusen is a major advance
in the area, the core ideas of the relative greedy algorithm are well known, and, as yet, there
is no advance on FAP via relative greedy algorithms. (Informally speaking, Weighted TAP
is a special case of SCP (the Set Covering Problem), and the method of Cohen and Nutov
exploits special properties of the SCP instances associated with TAP, whereas, to the best of
our knowledge, this paradigm does not extend to FAP.)

1.3 Our results and techniques

Our main contribution is a %—approximation algorithm for MAP, improving on the % approx-
imation guarantee of [2], see Theorems 12, 13.

At a high level (hiding many important points), our algorithm is based on a “discharging
scheme” where we compute a lower bound on opt (the optimal value) and fix a “budget” of «
times this lower bound (where o > 1 is a constant), “scatter” this budget over the graph G,
use the budget to buy some edges to obtain a “base graph”, then traverse the “base graph”
and buy more edges to augment the “base graph”, so that (eventually) we have a 2-ECSS
whose cost is within the budget of « times our lower bound. We mention that several of the
results cited above are based on discharging schemes, e.g., [24, 11, 17, 15, 2]. In some more
detail, but still at a high level, we follow the method of [2]. (Our presentation can be read
independently of [2]; we have repeated a few definitions and statements of results from [2].)
We first pre-process the input instance G, with the goal of removing all “obstructions” (e.g.,
cut nodes), and we decompose G into a list of “well structured” sub-instances G1, Ga, ...
that are pairwise edge-disjoint. Now, consider one of these sub-instances G; (it has none of
the “obstructions”). We compute a subgraph H; whose cost is a lower bound on opt(G;).
Finally, we augment H; to make it 2-edge connected, and use a credit-based analysis to prove
an approximation guarantee.

A 2-edge cover is a subgraph that has at least two edges incident to every node. The
minimum-cost 2-edge cover is the key subgraph used as a lower bound in our algorithm;
we refer to it as D2. (D2 can be computed in polynomial time via extensions of Edmonds’
algorithm for computing a minimum-cost perfect matching.) Since every 2-ECSS is a 2-
edge cover, we have cost(D2) < opt. So, by transforming D2 to a 2-ECSS of cost < %cost(D2),
we achieve our claimed approximation guarantee.

Our pre-processing includes several new ideas, and moreover, it is essential to handle
new “obstructions” that are not handled in [2]; indeed, [2] has tight examples such that
opt/cost(D2) > T — ¢ (for some e > 0). Although our algorithm handles several new
“obstructions”, our analysis and proofs for the pre-processing are simple. One of our key tools
(for our pre-processing analysis) is to prove a stronger guarantee of max(opt, %opt —2) rather
than just %opt. When we analyze our decomposition of an instance into sub-instance(s),
then this additive term of —2 is useful in combining solutions back together at the end of the
algorithm (when we “undo” the decomposition of G into sub-instances G1,Gs,...). (Our
analysis of pre-processing is omitted in this paper, due to space constraints; it is given in the
full paper, [3].)

Our main algorithm (following [2]) has two key subroutines for transforming a D2 of a
“well structured” sub-instance G; to a 2-ECSS of G; while ensuring that the total cost is
< 2cost(D2).

38:3
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(i) Bridge covering step: The goal is to augment edges such that each connected
component of our “current solution graph” H; is 2-edge-connected; we start with
H; := D2(G};). Our analysis is a based on a new and simple credit scheme that bypasses
some difficulties in the credit scheme of [2].

(ii) Gluing step: Finally, this step merges the (already 2-edge connected) connected
components of H; to form a 2-ECSS of the sub-instance G;. A key part of this step
handles so-called “small 2ec-blocks”; these are cycles of cost 2 that occur as connected
components of D2(G;) and stay unchanged through the bridge covering step. Observe
that a “small 2ec-block” has only 3 credits (it has a “budget” of (2)(2), and after paying
for its two unit-edges, there is only % credits available). Our gluing step applies a
careful swapping of unit-edges for the “small 2ec-blocks” while it merges the connected
components of H; into a 2-ECSS, and ensures that the net augmentation cost does not
exceed the available credit.

There are well-known polynomial time algorithms for implementing all of the basic
computations in this paper, see [20]. We state this explicitly in all relevant results (e.g.,
Theorem 12), but we do not elaborate on this elsewhere.

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent
with [7], and readers are referred to that text for further information.

Let G = (V, E) be a (loop-free) multi-graph with edges of cost either zero or one such
that the edges of cost zero form a matching. We take G to be the input graph, and we use n
to denote |V(G)|. Let M denote the set of edges of cost zero. Throughout, the reader should
keep in mind that M is a matching; this fact is used in many of our proofs without explicit
reminders. We call an edge of M a zero-edge and we call an edge of E — M a unit-edge.

We denote the cost of an edge e of G by cost(e). For a set of edges FF C E(G),
cost(F) 1= 3_ . pcost(e), and for a subgraph G’ of G, cost(G") := 3_ . p(qry cost(e).

For ease of exposition, we often denote an instance G, M by G; then, we do not have
explicit notation for the edge costs of the instance, but the edge costs are given implicitly by
cost : B(G) — {0,1}, and M is given implicitly by {e € E(G) : cost(e) = 0}.

For a positive integer k, we use [k] to denote the set {1,...,k}.

We use the standard notion of contraction of an edge, see [20, p.25]. For a graph H and
a set of its nodes S, 'y (S) :={w e V(H)—-S : v e S,vw € E(H)}, thus, I'y(S) denotes
the set of neighbours of S. For a graph H and a set of nodes S C V(H), g (S) denotes the
set of edges that have one end node in S and one end node in V(H) — S. Moreover, H[S]
denotes the subgraph of H induced by S, and H — S denotes the subgraph of H induced
by V(H) — S. For a graph H and a set of edges F' C E(H), H — F denotes the graph
(V(H), E(H)— F). For any subgraph K of a graph H with V/(K) C V(H), an attachment
of K is a node of K that has a neighbour in V(H) — V(K).

We may use relaxed notation for singleton sets, and, we may not distinguish between a

subgraph and its node set; for example, given a graph H and a set S of its nodes, we use
E(S) to denote the edge set of the subgraph of H induced by S.
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2.1 2EC, 2NC, bridges and D2

A multi-graph H is called k-edge connected if |V(H)| > 2 and for every F C E(H) of
size < k, H — F is connected. Thus, H is 2-edge connected if it has > 2 nodes and the
deletion of any one edge results in a connected graph. A multi-graph H is called k-node
connected if |V (H)| > k and for every S C V(H) of size < k, H — S is connected. We use
the abbreviations 2EC for “2-edge connected,” and 2NC for “2-node connected.”

We assume w.l.o.g. that the input G is 2EC. Moreover, for some (but not all) of our
discussions, we assume that there are < 2 copies of each edge (in the multi-graph under
consideration); this is justified since an edge-minimal 2-ECSS cannot have three or more
copies of any edge (see Proposition 1 below).

For any instance H, let opt(H) denote the minimum cost of a 2-ECSS of H. When there
is no danger of ambiguity, we use opt rather than opt(H).

By a bridge we mean an edge of a connected (sub)graph whose removal results in two
connected components, and by a cut node we mean a node of a connected (sub)graph whose
deletion results in two or more connected components. We call a bridge of cost zero a
zero-bridge and we call a bridge of cost one a unit-bridge.

By a Z2ec-block we mean a maximal connected subgraph with two or more nodes that has
no bridges. We call a 2ec-block pendant if it is incident to exactly one bridge. We call a
2ec-block small if it has < 2 unit-edges, and we call it large otherwise.

For a 2EC graph GG and a cut node v of G, a 2ec-v-block means the subgraph of G induced
by {v} UV(C) where C' is one of the connected components of G — v.

The next result characterizes edges that are not essential for 2-edge connectivity.

» Proposition 1. Let H be a 2EC graph and let e = vw be an edge of H. If H — e has two
edge-disjoint v, w paths, then H — e is 2EC.

The next lemma partially characterizes the cuts of size < 2 in a graph obtained by
“uncontracting” a set of nodes of a 2EC graph.

» Lemma 2. Let H be a 2EC graph and let C C V(H) be a set of nodes such that the
induced subgraph H|[C| is connected. Suppose that H* is a 2-ECSS of H/C. Let H' be the
spanning subgraph of H with edge set E(C) U E(H*). Then H' is a connected graph such
that each of its bridges (if any) is in E(C).

By a 2-edge cover (of G) we mean a set of edges F' of G such that each node v is incident
to at least two edges of F' (i.e., FF C E(Q) : |0p(v)| > 2,Yv € V(G)). By D2(G) we mean
any minimum-cost 2-edge cover of G (G may have several minimum-cost 2-edge covers, and
D2(G) may refer to any one of them); when there is no danger of ambiguity, we use D2
rather than D2(G).

By a bridgeless 2-edge cover (of G) we mean a 2-edge cover (of G) that has no bridges.

The next result follows from Theorem 34.15 in [20, Chapter 34].

» Proposition 3. There is a polynomial-time algorithm for computing D2.
The next result states the key lower bound used by our approximation algorithm.
» Lemma 4. Let H be any 2EC graph. Then we have opt(H) > cost(D2(H)).

For any fixed positive integer z (thus, z = O(1)) and any instance of MAP, in time O(1),
we can determine whether the instance has opt > z, and if not, then we can find an optimal
2-ECSS of the instance.

ISAAC 2021
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» Lemma 5. Let H be an instance of MAP, and let z be a fized positive integer. There is
an O(1)-time algorithm to determine whether opt(H) > z. Moreover, if opt(H) < z, then a
minimum-cost 2-ECSS of H can be found in O(1) time.

2.2 Obstructions for the approximation guarantee

There are several obstructions (e.g., cut nodes) that prevent our algorithm (and analysis)
from achieving our target approximation factor of % We eliminate all such obstructions
in a pre-processing step that takes the given instance G of MAP (the input) and replaces
it by a list of sub-instances G1,G3,. .., such that (a) none of the obstructions occurs in a
sub-instance G;, (b) the edge-sets of the sub-instances are pairwise-disjoint, and (c) given a
2-ECSS of each sub-instance G; of approximately optimal cost, we can construct a 2-ECSS
of G of cost < Sopt(G). (Precise statements are given later.) The obstructions for our
algorithm are:

(i) cut nodes, (v) S{3,4},
(ii) parallel edges, .

(iii) zero-cost S2, (vi) R4,
(iv) unit-cost S2, (vii) RS.

Below, we formally define each of these obstructions. Four of these obstructions were
introduced in [2], and readers interested in a deeper understanding may refer to that paper, in
particular, see the remark after [2, Theorem 6] and see [2, Figure 2] for instances G of MAP
that contain cut nodes, parallel edges, zero-cost S2s, or R4s such that opt(G)/cost(D2(G)) =~ 2;
informally speaking, an approximation algorithm based on the lower bound cost(D2(G)) on
opt(@G) fails to beat the approximation threshold of 2 in the presence of any of these four
obstructions.

» Definition 6. By a zero-cost S2 (also called a bad-pair), we mean a zero-edge e and its
end nodes, u,v, such that G — {u,v} has > 2 connected components.

» Definition 7. By a unit-cost S2, we mean a unit-edge e and its end nodes, u,v, such that
G — {u,v} has > 2 connected components; moreover, in the graph G/{u,v}, there exist two
distinct 2ec-0-blocks By, By incident to the contracted node © such that opt(B;) > 3 and B;
has a zero-edge incident to the contracted node, Vi € [2].

» Definition 8. By an S{3,4}, we mean an induced 2NC subgraph C of G with |V (C)| € {3,4}
that has a spanning cycle of cost two such that G — V(C) has > 2 connected components,
and the cut 6(V(C)) has no zero-edges; moreover, in the graph G/C, there exist two distinct
2ec-0-blocks By, B incident to the contracted node ¥ that have opt(B1) > 3 and opt(Bz) > 3.

» Definition 9. By an R4 (also called a redundant 4-cycle), we mean an induced subgraph
C of G with four nodes such that V(C) # V(G), C contains a 4-cycle of cost two, and C
contains a pair of nonadjacent nodes that each have degree two in G.

» Definition 10. By an R8, we mean an induced subgraph C of G with eight nodes such that
V(C) # V(G), C contains two disjoint 4-cycles Cy, Ca with cost(C;) = 2,Vi € [2], C has
exactly two attachments ay,as where a; € C;,Vi € [2], and both end nodes of the (unique)
unit-edge of C; — a; are adjacent to Cs_;, Yi € [2].
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3  Outline of the algorithm

This section has an outline of our algorithm. We start by defining an instance of MAPx.

» Definition 11. An instance of MAPx is an instance of MAP with > 12 nodes that contains

no cut nodes, no S{3,4},
no parallel edges, no R4, and
no zero-cost S2, no R8.

no unit-cost S2,

In this section and Section 4, we sketch how to “decompose” any instance of MAP G
with |[V(G)| > 12 into a collection of instances Gy, ..., G of MAP such that (a) either
[V(G;)| < 12 or G; is an instance of MAP%, Vi € [k], (b) the edge sets E(G1),..., E(Gy)
are pairwise disjoint (thus E(G1),...,E(G)) forms a subpartition of E(G)), and (c) a 2-
ECSS H of G can be obtained by computing 2-ECSSes Hy, ..., Hy of G1,...,Gk. Moreover,
the approximation guarantee is preserved, meaning that cost(H) < %opt(G) — 2 provided
cost(H;) < max(opt(G;), Sopt(G;) — 2),Vi € [k].

Algorithm (outline).

(0) apply the pre-processing steps (see below and see Section 4) to obtain a collection
of instances Gy, ..., G}, such that either |V(G;)| < 12 or G; is an instance of MAPx,
Vi € [k];
for each G; (1 =1,...,k),
if [V(Gy)| <12
(1) exhaustively compute an optimum 2-ECSS H; of G; via Lemma 5;
else
(2.1) compute D2(G;) in polynomial time (w.l.o.g. assume D2(G;) contains all zero-edges
of Gz),
(2.2) then apply “bridge covering” from Section 5 to D2(G;) to obtain a bridgeless
2-edge cover f[z of Gy;
(2.3) then apply the “gluing step” from Section 6 to H; to obtain a 2-ECSS H; of Gi;
endif;
endfor;
(3) finally, output a 2-ECSS H of G from the union of Hy, ..., H; by undoing the
transformations applied in step (0).

The pre-processing of step (0) consists of several reductions; most of these reductions are
straightforward, but we have to prove that the approximation guarantee is preserved when
we “undo” each of these reductions. These proofs are given in the full paper, [3].

Pre-processing — Step (0) of Algorithm.

While the current list of sub-instances GGy, Ga, ... has a sub-instance G; that has > 12
nodes and is not an instance of MAPx (assume that G; is 2EC):

if G; is not 2NC:
(i) (handle a cut-node)
let v be a cut node of G;, and let By, ..., B be the 2ec-v-blocks of G;; replace G; by
Bi,..., By in the current list;
else apply exactly one of the following steps to G;:

ISAAC 2021
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(ii) (handle a pair of parallel edges)
let {e, f} be a pair of parallel edges of G; (one of the edges in {e, f} is a unit-edge);
discard a unit-edge of {e, f} from G;
(iii) (handle an “S obstruction”)
(a) (handle a unit-cost S2)
(b) (handle a zero-cost S2)
(c) (handle an S{3,4})

let C' denote a subgraph of G; that is, respectively, (a) a unit-cost S2, (b) a zero-cost S2,
or (c) an S{3,4};
contract C' to obtain G;/C and let ¥ denote the contracted node; let By, ..., By be the
2ec-0-blocks of G;/C; replace G; by By, ..., By in the current list;
(iv) (handle an “R obstruction”)
(a) (handle an R4)
(b) (handle an R8)
let C' denote a subgraph of G; that is, respectively, (a) an R4, or (b) an R8;
contract C' to obtain G;/C, and replace G; by G;/C in the current list;

Our % approximation algorithm for MAP follows from the following theorem.

» Theorem 12. Given an instance of MAPx G’, there is a polynomial-time algorithm that
obtains a 2-ECSS H' such that cost(H') < max(opt(G'), 2opt(G’) —2).

We use a credit scheme to prove this theorem; the details are presented in Sections 5
5

and 6. The algorithm starts with D2(G’) as the current graph, and assigns 3 tokens to each
unit-edge of D2(G’); each such edge keeps one unit to pay for itself and the other % is taken
to be credit of the edge; thus, the algorithm has Zcost(D2(G’)) credits at the start; the
algorithm uses the credits to pay for the augmenting edges “bought” in steps (2.2) or (2.3)
(see the outline); also, the algorithm may “sell” unit-edges of the current graph (i.e., such an
edge is permanently discarded and is not contained in the 2-ECSS output by the algorithm).

The factor g in our approximation guarantee is tight in the sense that there exists an
instance G of MAP* such that opt(G)/cost(D2(G)) > 2 — ¢, for any small positive number
€. The instance G consists of a root 2ec-block By, say a 6-cycle of cost 6, vy, ..., vs,v1, and
£ > 1 copies of the following gadget that are attached to By. The gadget consists of a
6-cycle C' = uq, ..., ug,u; of cost 3 that has alternating zero-edges and unit-edges; moreover,
there are three unit-edges between C' and By: viug, vsug, vsus. Observe that a (feasible)
2-edge cover of this instance consists of By and the 6-cycle C' of each copy of the gadget,
and it has cost 6 + 3¢. Observe that for any 2-ECSS and for each copy of the gadget, the
six edges of C as well as (at least) two of the edges between C' and By are contained in the

2-ECSS. Thus, opt(G) > 6 + 5¢, whereas cost(D2(G)) < 6 + 3¢.

4 Pre-processing

Due to space constraints, we only the state our main result for pre-processing and skip several
lemmas that are needed to prove this result. These lemmas and their proofs are given in the
full paper, [3].

» Theorem 13. Suppose that there is an approximation algorithm that given an instance
H of MAPx, finds a 2-ECSS of cost < max(opt(H), « opt(H) — 2). Then, given an
instance G of MAP, there is a polynomial-time algorithm to find a 2-ECSS of cost <
max(opt(G), a opt(G) —2).
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5 Bridge covering

The results in this section are based on the prior results and methods of [2, 8], but the goal
in these previous papers is to obtain an approximation guarantee of % for MAP, whereas
our goal is an approximation guarantee of g Our credit invariant is presented in Section 5.1
below, and it is based on the credit invariant in [8].

In this section and in Section 6, we assume that the input is an instance of MAPx. For
notational convenience, we denote the input by G. Recall that G is a simple, 2NC graph

on > 12 nodes, and G has no zero-cost S2, no unit-cost S2, no S{3,4}, no R4, and no RS.
Recall that a 2ec-block is called small if it has < 2 unit-edges, and is called large otherwise.

Since G is 2NC and simple, a small 2ec-block is either a 3-cycle with one zero-edge and two
unit-edges, or a 4-cycle with alternating zero-edges and unit-edges.

Each unit-edge e of D2 starts with % tokens, and from this, one unit is kept aside (to
pay for e), and the other % is defined to be the credit of e. Our overall goal is to find a
2-ECSS H' of G of cost < 2cost(D2), and we keep Zcost(D2) from our budget in the form
of credit while using the rest of our budget for “buying” the unit-edges of D2. We use the
credit for “buying” unit-edges that are added to our current graph during the bridge covering
step or the gluing step. (In the gluing step, we may “sell” unit-edges of our current graph,
that is, we may permanently discard some unit-edges of our current graph; thus, our overall
budgeting scheme does not rely solely on credits.)

We use H to denote the current graph of the bridge covering step; initially, H = D2.

The outcome of the bridge covering step is stated in the following result.

» Proposition 14. At the termination of the bridge covering step, H is a bridgeless 2-
edge cover; moreover, every small 2ec-block of H has > % credits and every large 2ec-block of
H has > 2 credits. The bridge covering step can be implemented in polynomial time.

Figure 1 Illustration of an iteration of our bridge-covering step. Solid lines indicate edges
of the graph H, and (blue) dash-dotted lines indicate edges of E(G) — E(H). The pseudo-ear
R, f1,Ch, f2,Ca, f3 covers the bridge ru of Cy (right subfigure). Thick lines indicate the edges
f1, f2, f3 of the pseudo-ear.

A brief overview of the bridge covering step follows: The goal is to add “new” edges
to H to obtain a bridgeless 2-edge cover, and to pay for these “new” edges from credits
available in H while preserving a credit invariant (stated below). In each iteration, we
pick a connected component Cy of H such that Cy has a bridge, then we pick any pendant
2ec-block R of Cp, then we add a set of edges {f1,..., fr} C E(G)— E(H) that “covers” the
unique bridge of Cy incident to R (possibly, k = 1). Informally speaking, this step merges
k — 1 connected components C1,Cy,...,Ci_1 of H with Cy (see the discussion below). Each
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connected component of H has one unit of so-called c-credit (by the credit invariant stated
below), and we take this credit from each of C,Cs,...,Ck_1 and use that to pay for k — 1
of the newly added edges. The challenge is to find one more unit of credit (since we added &
edges), and this is the focus of our analysis given below.

By [2, Section 5.1,Proposition 5.20], we may assume without loss of generality that D2
has the following properties:

(*) D2 contains all the zero-edges. Every pendant 2ec-block of D2 that is incident to a
zero-bridge is a large 2ec-block.

Recall that H denotes the current graph, and initially, H = D2. We call a node v of H a
white node if v belongs to a 2ec-block of H, otherwise, we call v a black node.

It is convenient to define the following multi-graphs: let H be the multi-graph obtained
from H by contracting each 2ec-block B; of H into a single node that we will denote by B;.
Observe that each connected component of H is a tree (possibly, an isolated node). We call
a node v of the multigraph H black if it is the image of a black node of H, otherwise, we call
v a white node. Each 2ec-block of H maps to a white node of H. Each bridge of H maps to
a bridge of H. Clearly, each black node of H is incident to > 2 bridges of H.

Similarly, let G be the multi-graph obtained from G by contracting each 2ec-block B; of
H into a single node.

5.1 Credit invariant

We re-assign the credits of D2 such that the following credit invariant holds for H at the
start/end of every iteration in the bridge covering step.

For a black node v of H, we use degg) (v) to denote the number of unit-bridges incident
tovin H.

Credit invariant for H

(a) each connected component is assigned at least one credit (called c-credit);

(b) each connected component that is a small 2ec-block is assigned % credits (called
b-credit);

(c) every other 2ec-block is assigned at least one credit (called b-credit);

(d) each black node v is assigned %degg)(v) credits (called n-credit).

Note that the four types of credit are distinct, and the invariant gives lower bounds. For
example, a connected component that is a large 2ec-block has one c-credit and at least one
b-credit.

» Lemma 15. The initial credits of D2 can be re-assigned such that (the initial) H = D2
satisfies the credit invariant.

5.2 Analysis of a pseudo-ear augmentation

In this subsection, our goal is to show that a so-called pseudo-ear augmentation can be
applied to H whenever a connected component of H has a bridge, such that the cost of the
newly added unit-edges is paid from the credits released by the pseudo-ear augmentation,
and moreover, the credit invariant is preserved.

In the graph H, let Cy be a connected component that has a bridge, let R be a pendant
2ec-block of Cp, and let ru be the unique bridge (of Cy) incident to R, where r € V(R).
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» Definition 16. A pseudo-ear of H w.r.t. Cy starting at R is a sequence R, f1,C1, f2,Cs, ...,
fu—1,Cr_1, fx, where Cy,C1,...,Cx_1 are distinct connected components of H, f1,..., fx €
E(G) — E(H), each f;, i € [k — 1], has one end node in C;_1 and the other end node in C;,
f1 has an end node in R, and fi, has one end node in Cy_1 and one end node in Cy — V(R).
The end node of f in Co — V(R) is called the head node of the pseudo-ear.

Any shortest (w.r.t. the number of edges) path of Cy between r and the head node of the
pseudo-ear is called the witness path of the pseudo-ear.

Our plan is to find a pseudo-ear (as above) such that for any witness path @, there is
at least one unit of credit in Q — r. Let R™" denote the 2ec-block that results from the
addition of the pseudo-ear; thus, R™®" contains R U (). The b-credit of R is transferred to
R™%; thus, R™*" satisfies part (c) of the credit invariant; see Proposition 19 below. After
we add the pseudo-ear to H, the credits of Q) — r are released (they are no longer needed for
preserving the credit invariant, because @ U R is merged into R™"). Informally speaking,
we use the credits released from ) — r to pay for the cost of the last unit-edge added by the
pseudo-ear augmentation.

In the graph é, let 50 denote the tree corresponding to Cy and let R denote the leaf of CN'O
corresponding to R. Let P be a shortest (w.r.t. the number of edges) path of G — E(Cp) that
has one end node at R and the other end node at another node of 50. Then P corresponds to
a pseudo-ear R, f1,C1,...,Cr_1, f; the sequence of edges of E(é) — E(E[) of P corresponds
to fi1,..., fr and the sequence of trees 51, ceey ék,l of P corresponds to C1,...,Ck_1.

It is easy to find a pseudo-ear such that any witness path @ has > 2 edges. To see this,
observe that G — u is connected (since G is 2NC); let P be a shortest (w.r.t. the number
of edges) path between R and Cy — V(R) in G — u; then P corresponds to our desired
pseudo-ear, and the head node is the end node of P in Cy — u — V(R). Clearly, any path of
Co between r and the head node has > 2 edges, hence, any witness path of the pseudo-ear
has > 2 edges.

In each iteration (of bridge covering), we compute a pseudo-ear using a polynomial-time
algorithm that is presented in the proof of Proposition 18, see below.

The next lemma is used to lower bound the credit of a witness path.

» Lemma 17. Let ¥ be a pseudo-ear of H w.r.t. Cy starting at R, let Q be a witness path

of U, and let ru be unique bridge of Cy incident to R. Suppose that Q) satisfies one of the

following:

(a) @ contains a white node distinct from r, or

(b) @ contains exactly one white node and > 3 bridges, or

(c) Q contains exactly one white node, exactly two bridges, and a black node v such that
deg(}})(fu) > 2.

Then Q — 7 has at least one credit, and that credit is not needed for the credit invariant of

the graph resulting from the pseudo-ear augmentation that adds ¥V to H.

» Proposition 18. There is a polynomial-time algorithm for finding a pseudo-ear (of H
w.r.t. Cy starting at R ) such that any witness path @ of the pseudo-ear satisfies one of the
three conditions of Lemma 17.

» Proposition 19. Suppose that H satisfies the credit invariant, and a pseudo-ear augment-
ation is applied to H. Then the resulting graph H™" satisfies the credit invariant.

Proof of Proposition 14. The proof follows from Lemmas 15, 17, and Propositions 18, 19,
and the preceding discussion.
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Each iteration, i.e., each pseudo-ear augmentation, can be implemented in polynomial
time, and the number of iterations is < |E(D2)|.

At the termination of bridge covering, each connected component of H is a 2ec-block
that has one c-credit and either one b-credit, or (in the case of a small 2ec-block) % b-credits.
By summing the two types of credit, it follows that each small 2ec-block has 2 credits and

3
each large 2ec-block has > 2 credits. <

6 The gluing step

In this section, we focus on the gluing step, and we assume that the input is an instance of
MAPx*. For notational convenience, we denote the input by G. Recall that G is a simple,
2NC graph on > 12 nodes, and G has no zero-cost S2, no unit-cost S2, no S{3, 4}, no R4, and
no R8. (In this section, we use all the properties of G except the absence of unit-cost S2s.)

There are important differences between our gluing step and the gluing step of [2]. Our
gluing step (and overall algorithm) beats the % approximation threshold because our pre-
processing step eliminates the S{3,4} obstruction and the R8 obstruction (these obstructions
are not relevant to other parts of our algorithm). In the full version of the paper, see [3,
Appendix|, we present instances G of MAP that contain S{3,4}s (respectively, R8s) and
contain none of the other six obstructions such that opt(G)/cost(D2(G)) ~ I.

We use H to denote the current graph of the gluing step. At the start of the gluing step,
H is a simple, bridgeless graph of minimum degree two; thus, each connected component of
H is 2EC; clearly, the 2ec-blocks of H correspond to the connected components of H. Recall
that a 2ec-block of H is called small if it has < 2 unit-edges, and is called large otherwise.
Observe that a small 2ec-block of H is either a 3-cycle with one zero-edge and two unit-edges,
or a 4-cycle with alternating zero-edges and unit-edges.

The following result summarizes this section:

» Proposition 20. At the termination of the bridge-covering step, let H denote the bridgeless
2-edge cover computed by the algorithm and suppose that each small 2ec-block of H has %
credits and each large 2ec-block of H has > 2 credits. Let v denote credit(H). Assume that
H contains all zero-edges. Then the gluing step augments H to a 2-ECSS H' of G (by adding
edges and deleting edges) such that cost(H') < cost(H) 4+ v — 2. The gluing step can be
implemented in polynomial time.

Our gluing step applies a number of iterations. Each iteration picks two or more 2ec-blocks
of H, and merges them into a new large 2ec-block by adding some unit-edges and possibly
deleting some unit-edges such that the following invariant holds for H at the start/end of
every iteration of the gluing step.

Invariants for the gluing step:
H is a simple, bridgeless graph of minimum degree two (hence, the 2ec-blocks of H
correspond to the connected components of H);
(credit invariant) each small 2ec-block of H has % credits and each large 2ec-block of
H has > 2 credits.

It is convenient to define the following multi-graph: let G be the multi-graph obtained
from G by contracting each 2ec-block B; of H into a single node that we will denote by B;
(thus, the notation B; refers to either a 2ec-block of H or a node of G). Observe that G is
2EC. We call a node of G small (respectively, large) if the corresponding 2ec-block of H is
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small (respectively, large). The gluing step “operates” on G and never refers to é; but, for
our discussions and analysis, it is convenient to refer to G. (Note that G changes in each
iteration, since the current graph H changes in each iteration.)

Suppose that G has > 2 nodes and has no small nodes. Then, we pick any (large) node v
of G. Since G is 2EC, it has a cycle C incident to 0. Let |C| denote the number of edges of
C; note that |C| > 2. Our iteration adds to H the unit-edges corresponding to C. The credit
available in H for the 2ec-blocks incident to C is > 2|C| and the cost of the augmentation is
|C|; hence, we have surplus credit of 2|C| — |C| > 2. The surplus credit is given to the new
large 2ec-block. Clearly, the credit invariant is preserved.

In general, small nodes may be present in G. If we apply the above scheme and find
a cycle C incident only to small nodes with |5 | <5, then we fail to maintain the credit
invariant (since only |C|/3 credits are available for the new large 2ec-block). Consider a
special case when G has a small node 4 that has a unique neighbour B and B is large; clearly,
there are > 2 parallel edges between 4 and B. Below, we show that 4 and B can be merged
to form a new large 2ec-block using an augmentation of net cost one, rather than two, by
deleting one or more unit-edges of 4; then we have surplus credit > 2 for the new large
2ec-block. For example, if 4 is a 3-cycle of H, then there exists a unit-edge uw of 4 such
that G has edges uv; and wve where vy, vy € B; so the augmentation adds the unit-edges
uvy and wvy to H and discards uw from H.

B - - B
T
N ./ 4
By By
(b)
Bl BTL(‘Z’LU
c
B;
(d)

Figure 2 Two iterations of our gluing step are illustrated. At each iteration, solid lines indicate
unit-edges of H, dashed lines indicate zero-edges of H, and (blue) dash-dotted lines indicate edges
of E(G) — E(H). Subfigures (a), (b) show Iteration 1. (a) The input graph G and a bridgeless
2-edge cover H of G. (b) The graph G of the graphs G, H in (a). The small node By has a unique
neighbour Bs which is large. The first iteration augments via C = By, Bs, Bs4. Subfigures (c),
(d) show Iteration 2. (c) The graphs G and H after the first iteration. Bs and Bs have been
merged to form B™®* by adding two unit-edges to H and deleting the unit-edge wv from H. (d) The
graph G of the graphs G, H in (c). All nodes of G are large. The second iteration augments via
C = B, B2, B™", B;. Subfigure (e) shows the output 2-ECSS of our gluing step.
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We present key definitions and results on small 2ec-blocks in Section 6.1. Our algorithm
for the gluing step is presented in Section 6.2.
6.1 Analysis of small 2ec-blocks

In this subsection, we focus on the small 2ec-blocks of H and we present the definitions and
results that underlie our algorithm for the gluing step. Recall that G has > 12 nodes.

T T f * ‘ ,
DR ol
....““':- » [N S - . . .-

Ly ‘A

(a) (b)

Figure 3 Illustrations of swappable edges and swappable pairs of small 2ec-blocks. Solid lines
indicate unit-edges of H, dashed lines indicate zero-edges of H, and (blue) dash-dotted lines indicate
edges of E(G) — E(H). (a) The 2ec-block B; has a swappable edge uv, and the 2ec-block B; has a
swappable pair {z,y}. (b) The 2ec-block B; has two swappable edges: uv is good, and vw is bad.
The swappable pair {z,y} of the 2ec-block B; is good.

» Definition 21. Let 4 be a small 2ec-block of H. A unit-edge uw of 4 is called swappable
if both u and w are attachments of 4 in G (that is, G has an edge ux where x € V(G) — 4
and G has an edge wy where y € V(G) — 4).

» Definition 22. Let 4 be a small 2ec-block of H. A pair of nodes {u,w} of A is called a
swappable pair if either (i) uw is a swappable edge of 4, or (ii) both u and w are attachments
of 4 in G, u,w are not adjacent in A (note that 4 is a 4-cycle in this case), and the other
two nodes of 4 are adjacent in G (that is, E(G) — E(H) has a “diagonal edge” between the
other two nodes of 4).

» Definition 23. Let 4 be a small 2ec-block of H. A swappable pair {u,w} of 4 is called
good if there are distinct 2ec-blocks B, and B, (4 # By # B, # A4) such that G has an
edge ux where x € By, and G has an edge wy where y € By,; otherwise, {u,w} is called a
bad swappable pair of 4. A good (respectively, bad) swappable edge of A is defined similarly.

» Remark 24. Observe that each iteration merges two or more 2ec-blocks of H (see the
discussion following Proposition 20). Consider a small 2ec-block 4 of H that stays unchanged
over several iterations. After one of these iterations, a swappable pair {u, w} of 2 may change
from good to bad, but {u,w} cannot change from bad to good.

» Lemma 25. Let 4 be a small 2ec-block of H. If 4 is adjacent (in G) to a unique 2ec-block
B, then B is large. (That is, if there is 2ec-block B such that T'¢(V(4)) C V(B), then B is
large.)

» Lemma 26. Let 4 be a small 2ec-block of H. Then A has at least one swappable pair.
Moreover, if 4 is a 3-cycle, then 4 has at least one swappable edge.

» Lemma 27. Let 4 be a small 2ec-block of H. If 4 is a 3-cycle, and 4 is adjacent (in G)
to at least two other 2ec-blocks, then it has a good swappable edge.
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Suppose that the current graph H has no good swappable pairs, that is, for every small
2ec-block 4 of H, every swappable pair of 4 is bad. To “merge away” the remaining small
2ec-blocks of H, we construct the following auxiliary digraph D%“*: there is a node for
each 2ec-block of H, and we call the nodes corresponding to the small 2ec-blocks the red
nodes, and the other nodes the green nodes; for each small 2ec-block 4 of H and each of its
swappable pairs {u, w}, D** has an arc (4, B) where B corresponds to the unique 2ec-block
B of H such that 'g({u,w}) C V(B)UV(4). Observe that each red node of D*** has at
least one outgoing arc.

» Lemma 28. Suppose that there exist no good swappable pairs. Then, D** does not have
a pair of red nodes Ay, Ay such that (A1, A3) is the unique outgoing arc of Ay and (A, A1) is
the unique outgoing arc of Ay (that is, if D** has a directed 2-cycle C' on the red nodes,
then one of the red nodes incident to C has > 2 outgoing arcs).

By the above lemma, D%® either has an arc (4, B) from a red node 4 to a green node
B, or it has a directed path 41, 45, 43 on three red nodes. In both cases, we can apply a
merge step to obtain a new large 2ec-block (i.e., a green node) while preserving the credit
invariant. More details are presented in the next subsection.

6.2 Algorithm for the gluing step

In this subsection, we explain the working of the algorithm for the gluing step, based on the
results in the previous subsection.

Consider any small 2ec-block 4 that has a good swappable pair {u,w} such that u is
adjacent (in G) to another 2ec-block B, and w is adjacent (in G) to another 2ec-block B,
and 4 # B, # B,, # A. Observe that G — V(4) is connected, otherwise, 4 would be an

S{3,4} of G (the arguments in the proof of Lemma 25 can be used to verify this statement).

Hence, G — 4 has a path between B, and B,,; adding the edges 4B, and 4B, to this path
gives a cycle C of G. We merge the 2ec-blocks incident to C into a new large 2ec-block by
adding the unit-edges corresponding C to H. Moreover, if uw € E(4), then we discard vw
from H, otherwise, 4 is a 4-cycle (with two zero-edges) and E(G) — E(H) has a unit-edge
f between the two nodes of 4 — {u,w}, and in this case, we add the edge f to H and we
discard the two unit-edges of 4 from H. The credit available in H for C is > §|5 | and the
net cost of the augmentation is |C| — 1; hence, we have surplus credit of %|5 |+ 1> 2 (since
|C| > 3). The surplus credit is given to the new large 2ec-block.

The gluing step applies the above iteration until there are no good swappable pairs in
the current graph H. Then the auxiliary digraph D*“* is constructed. By Lemma 28, D***
has either (i) an arc (4, B) from a red node 4 to a green node B, or (ii) a directed path
Ay, 43, A3 on three red nodes.

In the first case, 4 is a small 2ec-block, B is a large 2ec-block, and 4 has a swappable pair
{u,w} such that 42U B contains all neighbours (in G) of {u,w}. We merge 4 and B into a
new large 2ec-block as follows. We add two unit-edges between 2 and B to H (one edge is
incident to u and the other edge is incident to w). Moreover, if uw € E(4), then we discard
uw from H, otherwise, 4 is a 4-cycle (with two zero-edges) and E(G) — E(H) has a unit-edge
f between the two nodes of 2 — {u,w}, and in this case, we add the edge f to H and we
discard the two unit-edges of 4 from H. The credit available in H for 2UB is > %Jr 2 and the
net cost of the augmentation is one; hence, we have surplus credit of % + 2 > 2. The surplus
credit is given to the new large 2ec-block. Consider the second case. Then 4;, 4y, 43 are small
2ec-blocks such that 4; has a swappable pair ujw; such that I'g({u1,w1}) CV(4) UV (42),
and 4, has a swappable pair uswsy such that I'g({ug, w2}) C V(42) UV (43). We add two
unit-edges between 4; and 42 to H (one edge is incident to u; and the other edge is incident
to wy), and then we either discard one unit-edge from H (if uyw; € E(4;)) or we add another
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edge to H and discard two unit-edges of 2; from H (if uyw; € E(4;)). We apply a similar
augmentation to 4 and 43 using the swappable pair {us, ws}. The credit available in H for
A U2 U d5is > (3- %) = 4 and the net cost of the augmentation is two; hence, we have
surplus credit of > 4 — 2. The surplus credit is given to the new large 2ec-block.

By repeatedly applying the above iteration (that merges red nodes of D* into green

nodes), we obtain a current graph H that has no small 2ec-blocks. As discussed above, the
merge step is straightforward when all 2ec-blocks of H are large.

» Lemma 29. After every merge step, the subgraph B™¢" constructed by that step (that is a
so-called large 2ec-block) is 2EC.
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