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Abstract
Sequence alignment supports numerous tasks in bioinformatics, natural language processing, pattern
recognition, social sciences, and other fields. While the alignment of two sequences may be performed
swiftly in many applications, the simultaneous alignment of multiple sequences proved to be naturally
more intricate. Although most multiple sequence alignment (MSA) formulations are NP-hard, several
approaches have been developed, as they can outperform pairwise alignment methods or are necessary
for some applications. Taking into account not only similarities but also the lengths of the compared
sequences (i.e. normalization) can provide better alignment results than both unnormalized or
post-normalized approaches. While some normalized methods have been developed for pairwise
sequence alignment, none have been proposed for MSA. This work is a first effort towards the
development of normalized methods for MSA. We discuss multiple aspects of normalized multiple
sequence alignment (NMSA). We define three new criteria for computing normalized scores when
aligning multiple sequences, showing the NP-hardness and exact algorithms for solving the NMSA
using those criteria. In addition, we provide approximation algorithms for MSA and NMSA for
some classes of scoring matrices.
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1 Introduction

Sequence alignment lies at the foundation of bioinformatics. Several procedures rely on
alignment methods for a range of distinct purposes, such as detection of sequence homology,
secondary structure prediction, phylogenetic analysis, identification of conserved motifs or
genome assembly. On the other hand, alignment techniques have also been reshaped and
found applications in other fields, such as natural language processing, pattern recognition,
or social sciences [1, 3, 8, 18].
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Given its range of applications in bioinformatics, extensive efforts have been made to
improve existing or developing novel methods for sequence alignment. The simpler ones
compare a pair of sequences in polynomial time on their lengths, usually trying to find
editing operations (insertions, deletions, and substitutions of symbols) that transform one
sequence into another while maximizing or minimizing some objective function called edit
distance [16]. This concept can naturally be generalized to align multiple sequences [28],
adding another new layer of algorithmic complexity, though. In this case, most multiple
sequence alignment (MSA) formulations lead to NP-hard problems [13]. Nevertheless, a
variety of methods suitable for aligning multiple sequences have been developed, as they
can outperform pairwise alignment methods on tasks such as phylogenetic inference [21],
secondary structure prediction [12] or identification of conserved regions [24].

In order to overcome the cost of exact solutions, a number of MSA heuristics have
been developed in recent years, most of them using the so-called progressive or iterative
methods [17, 23, 25, 27]. Experimental data suggest that the robustness and accuracy of
heuristics can still be improved, however [28].

Most approaches for pairwise sequence alignment define edit distances as absolute values,
lacking some normalization that would result in edit distances relative to the lengths of the
sequences. However, some applications may require sequence lengths to be taken into account.
For instance, a difference of one symbol between sequences of length 5 is more significant
than between sequences of length 1000. In addition, experiments suggest that normalized
edit distances can provide better results than both unnormalized or post-normalized edit
distances [18]. While normalized edit distances have been developed for pairwise sequence
alignment [6, 18], none have been proposed for MSA to the best of our knowledge.

In this work, we propose exact and approximation algorithms for normalized MSA
(NMSA). This is a first step towards the development of methods that take into account the
lengths of sequences for computing edit distances when multiple sequences are compared.

The remainder of this paper is organized as follows. Section 2 introduces concepts related
to sequence alignment and presents normalized scores for NMSA, followed by the complexity
analysis of NMSA using those scores in Section 3. Next, Sections 4 and 5 describe exact and
approximation algorithms, respectively. Section 6 closes the paper with the conclusion and
prospects for future work.

2 Preliminaries

An alphabet Σ is a finite non-empty set of symbols. A finite sequence s with n symbols in Σ
is seen as s(1) · · · s(n). We say that the length of s, denoted by |s|, is n. The (sub)sequence
s(p) · · · s(q) of s, with 1 ≤ p ≤ q ≤ n, is denoted by s(p : q). If p > q, s(p : q) is the empty
sequence, whose length is zero, and it is denoted by ε. We denote the sequence resulting from
the concatenation of sequences s and t by st. A sequence of n symbols a is denoted by an.
A k-tuple S over Σ∗ is called a k-sequence and we write s1, . . . , sk to refer to S, where si is
the i-th sequence in S. Let Σ- := Σ ∪ {-}, where - ̸∈ Σ and the symbol - is called a space.
Let S = s1, . . . , sk be a k-sequence. An alignment of S is a k-tuple A = [s′

1, . . . , s′
k] over Σ∗

- ,
where (a) each sequence s′

h is obtained by inserting spaces in sh; (b) |s′
h| = |s′

i| for each pair
h, i, with 1 ≤ h, i ≤ k; and (c) there is no j in {1, . . . , k} such that s′

1(j) = . . . = s′
k(j) = -.

Notice that k-tuples over Σ∗
- are written enclosed by square brackets “[ ]”. The sequence

[s′
1(j), . . . , s′

k(j)] is the column j of the aligment [s′
1, . . . , s′

k]. We denote the column j of the
alignment A by A(j) and by A[j1 : j2] the columns j1, j1 + 1, . . . , j2 of A. We say that the
pair [s′

h(j), s′
i(j)] aligns in A or, simply, that s′

h(j) and s′
i(j) are aligned in A, and |A| = |s′

i|
is the length of the alignment A. It is easy to check that maxi{|si|} ≤ |A| ≤

∑
i |si|.
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An alignment can be used to represent editing operations of insertions, deletions and
substitutions of symbols in sequences, where the symbol - represents insertions or deletions. An
alignment can also be represented in the matrix format. Thus, alignments [aaa-, ab--, -cac]
and [-aaa-, ab---, -ca-c] of aaa, ab, cac can be represented respectively as a a a -

a b - -
- c a c

 and

 - a a a -
a b - - -
- c a - c

 .

Let I = {i1, . . . , im} ⊆ {1, . . . , k} be a set of indices such that i1 < · · · < im and let
A = [s′

1, . . . , s′
k] be an alignment of S = s1, . . . , sk. We write SI to denote the m-tuple

si1 , . . . , sim . The alignment of SI induced by A is the alignment AI obtained from the
alignment A, considering only the corresponding sequences in SI and, from the resulting
structure, removing columns where all symbols are -. In the following example, A =
[aaa-, ab--, -cac] is an alignment of aaa, ab, cac and[

a a a
a b -

]
is an alignment of aaa, ab induced by A. We denote by AS the set of all alignments of S.

For a problem P, we call IP the set of instances of P. If P is a decision problem, then
P(I) ∈ {Yes, No} is the image of an instance I. If P is an optimization (minimization)
problem, there is a set Sol(I) for each instance I, a function v defining a non-negative
rational number for each X ∈ Sol(I), and a function optv(I) = minX∈Sol(I){v(X)}. We use
opt instead of optv if v is obvious. Let A(I) be a solution computed by an algorithm A with
input I, and A(I) ≥ opt(I). We say that A is an α-approximation for P if A(I) ≤ α opt(I),
for each I ∈ IP, with α ≥ 1. We say that α is an approximation factor for P.

The alignment problem is a collection of decision and optimization problems whose
instances are finite subsets of Σ∗ and Sol(S) = AS , for each instance S. Function v, used for
scoring alignments, is called criterion for P and we call v[A] the cost of the aligment A. The
v-optimal alignment A of S is such that v[A] = opt(S). Thus, we state the following general
optimization problems using the criterion v:
▶ Problem 1 (Alignment with criterion v). Given a k-sequence S, with k ∈ N, find a v-optimal
alignment of S.

We also need the decision version of the alignment problem with criterion v, where we
are given a k-sequence S and a number d ∈ Q≥, and we want to decide whether there exists
an alignment A of S such that v[A] ≤ d.

Usually the cost of an alignment v is defined from a scoring matrix. A scoring matrix γ

is a rational matrix such that the elements in Σ- are indices of its rows and columns. For
a, b ∈ Σ- and a scoring matrix γ, we denote by γa→b the entry of γ in line a and column b.
The value γa→b defines the score for a substitution if a, b ∈ Σ, for an insertion if a = -, and
for a deletion if b = -. The entry γ-→- is not defined.

Given a scoring function vγ for alignments that depends on a scoring matrix γ, we say
that two scoring matrices γ and ρ are equivalent considering v when vγ [A] ≤ vγ [B] if and
only if vρ[A] ≤ vρ[B] for any pair of alignments A, B of sequences s, t. If ρ is a matrix
obtained from γ by multiplying each entry of γ by a constant c > 0, then vAρ[A] = c vAγ [A]
and vNρ[A] = c vNγ [A], which implies that γ and ρ are equivalent. As a consequence, when
the scoring function is vAγ or vNγ and it is convenient, we can suppose that all entries of γ

are integers instead of rationals, according to the definition.
A k-vector ȷ⃗ = [j1, . . . , jk] is a k-tuple, where ji ∈ N = {0, 1, 2, . . .}. We say that ji is

the i-th element of ȷ⃗. The k-vector 0⃗ is such that all its elements are zero. If ȷ⃗ and h⃗ are
k-vectors, we write ȷ⃗ ≤ h⃗ if ji ≤ hi for each i; and ȷ⃗ < h⃗ if ȷ⃗ ≤ h⃗ and ȷ⃗ ̸= h⃗. A sequence of
k-vectors ȷ⃗1, ȷ⃗2, . . . is in lexicographical order if ȷ⃗i ≤ ȷ⃗i+1 for each i.

ISAAC 2021
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Consider S = s1, . . . , sk a k-sequence with ni = |si| for each i and n⃗ = [n1, . . . , nk]. Let
Vn⃗ = {ȷ⃗ : ȷ⃗ ≤ n⃗} be the set of all k-vectors ȷ⃗ such that ȷ⃗ ≤ n⃗. For example, if k = 3 and
n⃗ = [1, 2, 1], then Vn⃗ = {[x, y, z] : x, y, z ∈ N, x ≤ 1, y ≤ 2, z ≤ 1}. Notice that if ni = n for
all i, then |VS | = (n + 1)k. Define S(ȷ⃗) = s1(j1), . . . , sk(jk) a column ȷ⃗ in S and we say that
S(1 : ȷ⃗) = s1(1 : j1), . . . , sk(1 : jk) is the prefix of S ending in ȷ⃗. Thus, S = S(1 : n⃗). Besides
that, if A is an alignment and v⃗ = [j, j, . . . , j], then A[v⃗] = A(j).

Denote by Bk the set of k-bit vectors [b1, . . . , bk], where bi ∈ {0, 1} for each i. Now,
for b⃗ ≤ ȷ⃗, define b⃗ · S(ȷ⃗) = [x1, . . . , xk] ∈ Σk

- such that xi = si(ji) if bi = 1 and xi = -
otherwise. Therefore, given an alignment A of S(1 : ȷ⃗), there exists b⃗ ∈ Bk, with b⃗ ≤ ȷ⃗, such
that A(|A|) = b⃗ ·S(n⃗). In other words, if n⃗ = [n1, . . . , nk] and b⃗ = [b1, . . . , bk], we have bi = 1
if and only if si(ni) is in the i-th row of the last column of A. We also define the operation
ȷ⃗− b⃗ = [j1 − b1, . . . , jk − bk]. Notice that |Bk| = 2k.

Consider a scoring matrix γ. Let s, t ∈ Σ∗, with n = |s| , m = |t|. A simple criterion for
scoring alignments using the function vAγ follows. For an alignment [s′, t′] of s, t we define

vAγ [s′, t′] =
∑|[s′,t′]|

j=1 γs′(j)→t′(j) .

We say that vAγ [s′, t′] is a vAγ-score of s, t. The optimal function for this criterion is
denoted by optAγ and an alignment A of s, t is called an A-optimal alignment of s, t if
vAγ [A] = optAγ(s, t).

Now, suppose that n ≥ m. Needleman and Wunch [20] proposed an O(n2)-time algorithm
for computing optAγ(s, t). If optAγ is a Levenstein distance, Masek and Paterson [19]
presented an O(n2/ log n)-time algorithm using the “Four Russian’s Method”. Crochemore,
Landau and Ziv-Ukelson [11] extended this result for real arrays, describing an O(n2/ log n)-
time algorithm. Indeed, there is no algorithm to determine optAγ(s, t) in O(n2−δ)-time
for any δ > 0, unless SETH is false [7]. Andoni, Krauthgamer and Onak [2] described a
nearly linear time algorithm approximating the edit distance within an approximation factor
poly(log n). Later, Chakraborty et al. [10] presented an O(n2−2/7)-time α-approximation for
this problem, where α is constant.

Marzal and Vidal [18] defined another criterion for scoring alignments of two sequences
called vNγ-score, which is a normalization of vAγ-score, as follows:

vNγ [A] =
{

0 , if |A| = 0 ,

vAγ [A]/ |A| , otherwise .

The optimal function for this criterion is optNγ(s, t) = minA∈As,t

{
vNγ [A]

}
, and an N-optimal

alignment A of s, t is such that vNγ [A] = optNγ(s, t).
A naive dynamic programming algorithm was proposed by Marzal and Vidal [18] to obtain

an N-optimal alignment of two sequences in O(n3)-time. Using fractional programming,
Vidal, Marzal and Aibar [26] presented an algorithm with running time O(n3), requiring
O(n2)-time in practice, similarly to the classical (unnormalized) edit distance algorithm.
Further, Arslan and Egecioglu [6] described an O(n2 log n)-time algorithm to solve this
problem.

Let A be an A-optimal alignment of maximum length of 2-sequence S = s, t, with |s| = n

and |t| = m. Considering n⃗ = [n, m] and b⃗ a bit vector such that A(|A|) = b⃗ · S(n⃗), the
length of a maximum length A-optimal alignment of S(1 : n⃗− b⃗) must be |A| − 1. Thus, the
maximum length L(n, m) can be found by a dynamic programming formula as following:

L(0, 0) = 0 , L(0, j) = j , L(i, 0) = i ,
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L(i, j) = max


L(i− 1, j) , if d(i, j) = d(i− 1, j) + γs(i)→-

L(i, j − 1) , if d(i, j) = d(i, j − 1) + γ-→t(j)
L(i− 1, j − 1) , if d(i, j) = d(i− 1, j − 1) + γs(i)→s(j)

+1 , i, j > 0 ,

where d(i, j) = optAγ(s(1 : i), t(1 :j)). Therefore, the maximum length A-optimal alignment
of s, t can be obtained in O(nm)-time. The following theorem shows that we can propose a
simple approximation algorithm to find an A-optimal alignment of maximum length.

▶ Theorem 2.1. Let s, t be sequences of lengths n, m, respectively, and let L(n, m) be the
maximum length of an A-optimal alignment of s, t. Then,

optAγ(s, t)/L(n, m) ≤ 2 optNγ(s, t) ,

and it can be computed in O(n2)-time if n = m. Moreover, this ratio is tight, i.e., for any
positive rational ε, there exists a scoring matrix γ, sequences s, t and an A-optimal alignment
of s, t with maximum length A such that optAγ(s, t)/ |A| = vAγ [A]/ |A| = (2− ε) optNγ(s, t).

Proof. Let A be an A-optimal alignment with maximum length computed by the heuristic
above in O(nm)-time and space. Let B be an N-optimal alignment. Thus, vAγ [A] ≤ vAγ [B].
Moreover, |B| ≤ n + m ≤ 2 max{n, m} ≤ 2 |A|, that is, |A| ≥ |B| /2. Therefore, vNγ [A] =
vAγ [A]

|A| ≤ vAγ [B]
|A| ≤ vAγ [B]

|B|/2 = 2 optNγ(s, t) .

We present now two sequences and a scoring matrix γ such that the solution given by the
heuristic is at least 2− ε times the vNγ-score of an N-optimal alignment, for any ε in Q>.
Let Σ = {a, b}, γ be a scoring matrix such that γa→- = γb→- = 1/ε and γa→b = 2/ε− 1 and
an, bn ∈ Σ∗, with n in N∗. Observe that the vAγ-score of any alignment of (an, bn), where
[a, b] is aligned in k columns, is 2n/ε − k. Thus, optAγ(an, bn) = min0≤k≤n{2n/ε − k} =
2n/ε − n = (2/ε − 1) n which implies [an, bn] is the A-optimal alignment with maximum
length. Since optNγ(an, bn) ≤ vNγ([an-n, -nbn]) = 1/ε, it follows

optAγ(s, t)
|[an, bn]| = vAγ(s, t)

|[an, bn]| = (2/ε− 1) n

n
= (2− ε)/ε ≥ (2− ε) optNγ(an, bn) . ◀

We define now classes of scoring matrices. The usual class of scoring matrices MC has the
following properties: for all symbols a, b, c,∈ Σ-, we have (a) γa→b > 0 if a ̸= b, and γa→b = 0
if a = b; (b) γa→b = γb→a; and (c) γa→c ≤ γa→b + γb→c. The class MA of scoring matrices is
such that, for all symbols a, b, c ∈ Σ, we have (a) γa→- = γ-→a > 0; (b) γa→b > 0 if a ̸= b,
and γa→b = 0 if a = b; (c) if γa→b < γa→- +γ-→b, then γa→b = γb→a; (d) γa→- ≤ γa→b +γb→-;
and (e) min{γa→c, γa→- + γ-→c} ≤ γa→b + γb→c. Moreover, the class MN is such that (a)
MN ⊆MA and (b) γa→- ≤ 2 γb→- for each a, b ∈ Σ.

For a set S, we say that the (distance) function f : S × S → R is a metric on S if, for all
s, t, u ∈ S, the distance f satisfies: (1) f(s, s) = 0 (reflexive); (2) f(s, t) > 0 if s ̸= t (positive);
(3) f(s, t) = f(t, s) (symmetry); and (4) f(s, u) ≤ f(s, t) + f(t, u) (triangle inequality).

If a given criterion v depends on a scoring matrix γ and it is a metric on Σ∗, we say that
the scoring matrix γ induces a v-distance on Σ∗. Sellers [22] showed that matrices in MC

induce an optAγ-distance on Σ∗ and Araujo and Soares [5] showed that γ ∈MA if and only
if γ induces an optAγ-distance on Σ∗. Furthermore, γ ∈ MN if and only if γ induces an
optNγ-distance on Σ∗. Figure 1 shows the relationship between these classes.

2.1 vSPγ-score for k sequences
Consider a scoring matrix γ. Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an

alignment of S. The criterion vSPγ , also called SP-score, for scoring the alignment A is

vSPγ [A] =
∑k−1

h=1
∑k

i=h+1 vAγ [A{h,i}] . (1)

ISAAC 2021
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MA

MC MN

Figure 1 Relationship between scoring matrices. Araujo and Soares [5] showed that MC ⊆ MA,
MN ⊆ MA, MC ̸⊆ MN and MN ̸⊆ MC. Moreover, the scoring matrix γ such that γa→a = 0 for each
a and γa→b = 1 for each a ̸= b is in MC ∩ MN, which implies that MC ∩ MN ̸= ∅.

We define optSPγ as the optimal function for the criterion vSPγ . An alignment A of S

such that vSPγ [A] = optSPγ(S) is called vSPγ-optimal alignment. Regardless its decision or
optimization version, we call this the multiple sequence alignment problem (MSA). Formally,
▶ Problem 2 (Multiple sequence alignment). Let γ be a fixed scoring matrix. Given a
k-sequence S, find a vSPγ-optimal alignment of S.

In order to compute optSPγ , we extend the definition of vSPγ considering a column of an
alignment A = [s′

1, . . . , s′
k] as its parameter. Thus, vSPγ(A(j)) =

∑
i<h γs′

i
(j)→s′

h
(j) assuming

that γ-→- = 0 and

optSPγ(S) = optSPγ(S(1 : n⃗)) = minb⃗∈Bk ,⃗b≤ȷ⃗

{
optSPγ(S(1 : n⃗− b⃗)) + vSPγ [⃗b · S(n⃗)]

}
. (2)

Recurrence (2) can be computed using a dynamic programming algorithm, obtaining
D(ȷ⃗) = optSPγ(S(1 : ȷ⃗)) for all ȷ⃗ ≤ n⃗. This task can be performed by generating all indexes
of D in lexicographical order, starting with D(⃗0) = 0, as presented in Algorithm 1.

Algorithm 1 vSPγ-optimal alignment of S.

Input: S = s1, . . . , sk ∈ (Σ∗)k

Output: optSPγ(S)
1: D(⃗0)← 0
2: for each ȷ⃗ ≤ n⃗ in lexicographical order do
3: D(ȷ⃗)← minb⃗∈Bk, b⃗≤ȷ⃗

{
D(ȷ⃗− b⃗) + vSPγ [⃗b · S(ȷ⃗)]

}
4: return D(n⃗)

Suppose that |si| = n for each i. Notice that the space to store the matrix D is Θ((n+1)k)
and thus Algorithm 1 uses Θ((n + 1)k)-space. Besides that, Algorithm 1 checks, in the worst
case, Θ(2k) entries for computing all entries in the matrix D and each computation spends
Θ(k2)-time. Therefore, its running time is O(2kk2(n + 1)k). Observe that when the distances
between sequences are small, not all entries in D need to be computed, such as in the Carrillo
and Lipman’s algorithm [9].

2.2 Vi
γ-score for k sequences

In this section we define a new criteria to normalize the vSPγ-score of a multiple alignment.
The symbol - aligned to the same symbol - does not contribute to the definition of scoring,
and thus this entry is not defined. However, as all the criteria are additive, it is convenient
to consider γ-→- = 0. The new criteria for aligning sequences takes into account the length
of the alignments according to the following:

V1
γ [A] =

{
0 , if |A| = 0 ,
vSPγ [A]/ |A| , otherwise ,

(3)
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V2
γ [A] =

∑k−1
h=1

∑k
i=h+1 vNγ [A{h,i}] , (4)

V3
γ [A] =

{
0 , if |A| = 0 ,
vSPγ [A]

/( ∑k−1
h=1

∑k
i=h+1 |A{h,i}|

)
, otherwise .

(5)

We define optNSPz
γ as the optimal function for the criterion Vz

γ . An alignment A of S

such that Vz
γ [A] = optNSPz

γ (S) is called Vz
γ -optimal alignment. Moreover, regardless its

decision or optimization version, we establish the criterion Vz
γ for the normalized multiple

sequence alignment problem (NMSA-z), for z = 1, 2, 3. Formally,
▶ Problem 3 (Normalized multiple sequence alignment with score Vz

γ ). Let γ be a fixed scoring
matrix and z ∈ {1, 2, 3}. Given a k-sequence S, find a Vz

γ -optimal alignment of S.

3 Complexity

We study now the complexity of the multiple sequence alignment problem for each new
criterion defined in Section 2. We consider the decision version of the computational problems
and we prove NMSA-z is NP-complete for each z when the following additional restrictions
for the scoring matrix γ hold: γa→b = γb→a and γa→b = 0 if and only if a = b for each pair
a, b ∈ Σ-. Elias [13] shows that, even considering such restrictions, MSA is NP-complete.
We show a polynomial time reduction from MSA to NMSA-z.

Consider a fixed alphabet Σ and a scoring matrix γ with the restrictions above. Let
σ ̸∈ Σ- be a new symbol and Σσ = Σ ∪ {σ}. Let G be a fixed (constant) positive integer
such that each entry in γ is at most G. We define a scoring matrix γσ such that γσ

a→b =
γa→b, γσ

a→σ = γσ
σ→a = G and γσ

σ→σ = 0, for each pair a, b ∈ Σ-.
For an instance (S = s1, . . . , sk, C) of MSA, let SL = s1σL, . . . , skσL, where L =

Nk2MG, M = maxi{|si|} and N =
(

k
2
)
M . Define l as the tail length of an alignment A

if A[i, j] = σ for each i = 1, . . . , k and j = l + 1, l + 2, . . . , |A|, i.e., every symbol in the
last l columns of A is σ. We say that an alignment of SL is canonical if its tail length
is L. If A = [s′′

1 , . . . , s′′
k ] is an alignment of S, we denote by AL the canonical alignment

[s′′
1σL, . . . , s′′

kσL] of SL. The two following results are useful to prove Theorem 3.3, which is
the main result of this section. The proofs of these two lemmas can be found in [4].

▶ Lemma 3.1. There exists a canonical alignment of SL which is Vz
γσ -optimal for each z.

▶ Lemma 3.2. If C ≥ k2MG, then MSA(S, C) = NMSA-z(SL, Cz) = Yes, for each z.

▶ Theorem 3.3. NMSA-z is NP-complete for each z.

Proof. Given a k-sequence S over Σ∗, an alignment A of S and a integer C, it is easy to
check in polynomial time on the length of A that Vz

γ [A] ≤ C, for z ∈ {1, 2, 3}, and then
NMSA-z is in NP.

Consider now C1 := C2 := C/L, C3 := C/
((

k
2
)
L

)
and L := Nk2MG and then we prove

that MSA(S, C) = Yes if and only if NMSA-z(SL, Cz) = Yes for each z ∈ {1, 2, 3}. If
C ≥ k2MG, the Lemma 3.2 holds trivially. Thus, we assume C < k2MG. Suppose that
MSA(S, C) = Yes and, hence, there exists an alignment A such that vSPγ [A] ≤ C:

V1
γσ [AL]= vSPγσ [AL]

|AL|
≤ vSPγσ [AL]

L
= vSPγ [A]

L
≤ C

L
= C1 ,

V2
γσ [AL]=

k−1∑
h=1

k∑
i=k+1

vAγσ [AL
{h,i}]

|AL
{h,i}|

≤
k−1∑
h=1

k∑
i=h+1

vAγσ [AL
{h,i}]

L
= vSPγσ [AL]

L
= vSPγ [A]

L
≤ C

L
=C2,
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V3
γσ [AL]= vSPγσ [AL]

k−1∑
h=1

k∑
i=k+1

|AL
{h,i}|

≤ vSPγσ [AL]
k−1∑
h=1

k∑
i=k+1

L

= vSPγσ [AL](
k
2
)
L

= vSPγ [A](
k
2
)
L
≤ C(

k
2
)
L

= C3 ,

where the first inequality in each equation follows since either AL or each alignment induced
by AL has length at least L and the second inequality follows since vSPγ [A] ≤ C. Thus, if
MSA(S, C) = Yes then NMSA-z(SL, Cz) = Yes.

Suppose that NMSA-z(SL, Cz) = Yes. It follows from Lemma 3.1 that, for each z, there
exists a canonical alignment AL such that Vz

γσ [AL] ≤ Cz. Thus, considering V1
γσ [AL] ≤ C1,

we have

vSPγ [A] = vSPγσ [AL] = (N + L) vSPγσ [AL]
N + L

≤ (N + L) vSPγσ [AL]
|AL|

= (N + L) V1
γσ [AL]

≤ (N + L) C1 = (N + L) C

L
= NC

L
+ C <

Nk2MG

L
+ C = 1 + C ,

where the first equality holds since AL is canonical, the first inequality holds since |AL| ≤ N+L

and the second and the third inequalities hold by hypothesis. Considering V2
γσ [AL] ≤ C2, we

have

vSPγ [A] = vSPγσ [AL] = (N + L) vSPγσ [AL]
N + L

= (N + L)
k−1∑
h=1

k∑
i=h+1

vAγσ [AL
{h,i}]

N + L

≤ (N + L)
k−1∑
h=1

k∑
i=h+1

vAγσ [AL
{h,i}]

|AL
{h,i}|

= (N + L) V2
γσ [AL]

≤ (N + L) C2 = (N + L) C

L
= NC

L
+ C <

Nk2MG

L
+ C = 1 + C ,

where the first equality holds since AL is canonical, the first inequality holds since, for each
h, i, |AL

{h,i}| ≤ N + L, and the second and the third inequalities hold by hypothesis. And
finally, considering V3

γσ [AL] ≤ C3, we have

vSPγ [A] = vSPγσ [AL] =
(
N +

(
k
2
)
L

) vSPγσ [AL]
N +

(
k
2
)
L

≤
(
N +

(
k
2
)
L

) vSPγσ [AL]
k−1∑
h=1

k∑
i=h+1

∣∣AL
{h,i}

∣∣ =
(
N +

(
k
2
)
L

)
V3

γσ [AL] ≤
(
N +

(
k
2
)
L

)
C3

=
(
N +

(
k
2
)
L

) C(
k
2
)
L

= NC(
k
2
)
L

+ C <
Nk2MG(

k
2
)
L

+ C = 1(
k
2
) + C ≤ 1 + C ,

where the first equality holds since AL is canonical, the first inequality holds since the sum
of lengths of two sequences induced by a canonical alignment is at most N +

(
k
2
)
L and the

second and the third inequalities hold by hypothesis.
Therefore, if NMSA-z(SL, Cz) = Yes then vSPγ [A] < 1 + C, for any z ∈ {1, 2, 3}. Since

the entries in the scoring matrix are integers, we have that vSPγ [A] is an integer. And since
C is an integer, it follows that vSPγ [A] ≤ C. ◀
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4 Exact algorithms

4.1 NMSA-1
Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an alignment of S. As defined in

Equation (3), V1
γ [A] takes into account the length of A, and the optimal function is given

by optV1
γ (S) = minA∈AS

{
V1

γ [A]
}

. The V1
γ -optimal alignment of S is an alignment A such

that V1
γ [A] = optV1

γ (S). Thus, in NMSA-1 we are given a k-sequence S and we want to
compute optV1

γ (S) for a fixed matrix γ. We can solve NMSA-1 by calculating the minimum
SP-score considering every possible length of an alignment. That is, we compute the entries
of a table D indexed by VS × {0, 1, . . . , N}, where N =

∑k
i=1 |si|. The entry D(v⃗, L) stores

the score of an alignment of S(v⃗) of length L with lowest SP-score. Notice that D(⃗0, 0) = 0,
D(v⃗ ̸= 0⃗, 0) = D(⃗0, L ̸= 0) =∞. Therefore, the table entries can be calculated as:

D(v⃗, L)=


0 , if v⃗ =0⃗, L=0 ,

∞ , if v⃗ =0⃗, L ̸=0 or v⃗ ̸=0⃗, L=0 ,

minb⃗∈Bk ,⃗b≤v⃗

{
D(v⃗ − b⃗, L− 1) + vSPγ [⃗b · S(v⃗)]

}
, otherwise .

Table D is computed for all possible values of L = 0, . . . , N . Consequently, optV1
γ (S) =

minL {D(n⃗, L)/L} is returned. Algorithm 2 describes this procedure more precisely.

Algorithm 2 V1
γ -optimal alignment of S.

Input: k-sequence S = s1, . . . , sk such that ni = |si|
Output: optV1

γ (S)
1: D(⃗0, 0)← 0
2: for each L ̸= 0 do D(⃗0, L)←∞
3: for each v⃗ ̸= 0⃗ do D(v⃗, 0)←∞
4: for each 0⃗ < v⃗ ≤ n⃗ in lexicographical order do
5: for each L← 1, 2, . . . , N do
6: D(v⃗, L)← minb⃗∈Bk ,⃗b≤v⃗

{
D(v⃗ − b⃗, L− 1) + vSPγ [⃗b · S(v⃗)]

}
7: return minL

{
D(n⃗, L)/L

}
Suppose that ni = |si| = n for each i. Notice that the space to store the matrix D is

Θ(N(n + 1)k). The time consumption of Algorithm 2 corresponds to the time needed to
fill the table D up, plus the running time of line 7. Each entry of D can be computed in
O(2kk2)-time. Therefore, the algorithm spends O(2kk2 ·N(n+1)k)-time to compute the entire
table D, since D has Θ(N(n + 1)k) entries. Line 7 is computed in Θ(N)-time. Therefore,
the running time of Algorithm 2 is O(2kk2 ·N(n + 1)k) + Θ(N) = O(2kk2 ·N(n + 1)k). If
N = kn, it follows that the total running time is O(2kk3(n + 1)k+1).

4.2 NMSA-2
Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an alignment of S. As defined

in Equation (4), V2
γ [A] takes into account the length of the induced alignment A, and the

optimal function is given by optV2
γ (S) = minA∈AS

{
V2

γ [A]
}

. The V2
γ -optimal alignment

of S is an alignment A such that V2
γ [A] = optV2

γ (S). Then, in NMSA-2 we are given a
k-sequence S and we want to compute optV2

γ (S) for a fixed matrix γ.
Let L⃗ = [L12, L13, . . . , L1k, L23, . . . L2k, . . . , L(k−1)k] be a

(
k
2
)
-vector indexed by sets of

two integers {h, i} such that 1 ≤ h < i ≤ k and Lhi denotes the element of L⃗ of index
{h, i}. The lengths of the induced alignments by an alignment can be represented by a vector
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L⃗. Thus, if A is an alignment and |A{h,i}| = Lhi for each pair h, i, we say that L⃗ is the
induced length of A. For a k-sequence S = s1, . . . , sk, where ni = |si| for each i, we define
L =

{
L⃗ = [L12, L13, . . . , L1k, L23, . . . L2k, . . . , L(k−1)k] : 0 ≤ Lhi ≤ nh + ni

}
. Note that if n

is the length of each sequence in S, then |L| = (2n + 1)(
k
2). Let b⃗ = [b1, . . . , bk] be a k-bit

vector. Overloading the minus operator “−”, we define L⃗− b⃗ to be a
(

k
2
)
-vector L⃗′ which is

obtained from L⃗ and from b⃗ such that, for each pair h, i, we have L′
hi = Lhi if bh = bi = 0,

and L′
hi = Lhi − 1, otherwise. Observe that if L⃗ is the induced length of an alignment A of

S(v⃗) and b⃗ is a k-bit vector such that b⃗ · S(v⃗) is the last column of A, then L⃗′ = L⃗− b⃗ is the
induced length of the alignment A(1 : |A| − 1).

Let γ⃗ be a vector of
(

k
2
)

scoring matrices indexed by two integers {h, i}, with 1 ≤
h < i ≤ k. We denote by γ(hi) the element of γ⃗ with index {h, i}. Then, we have
γ⃗ = [γ(12), γ(13), . . . , γ(1k), γ(23), . . . , γ(2k), . . . , γ((k−1)k)], and define the γ⃗-SP-score of A

as vSP⃗γ [A] =
∑k−1

h=1
∑k

i=h+1 vAγ(hi) [A{h,i}]. If we define the γ⃗-SP-score of a vector σ⃗ =
[σ1, . . . , σk] in Σ- as vSP⃗γ [σ⃗] =

∑k−1
h=1

∑k
i=h+1 γ

(hi)
σh→σi , then we can alternatively calculate

the γ⃗-SP-score of the alignment A as vSP⃗γ [A] =
∑

j vSP⃗γ [A(j)].

4.2.1 Computing optV2
γ

In this section we describe an algorithm in two steps for computing optV2
γ for a given

k-sequence S: in Step 1 we consider the particular case where we have three sequences, and
in Step 2 we treat the general case.

Step 1: k = 3

Let S = s1, s2, s3 be a 3-sequence. Suppose that we have induced lengths L⃗ = [L12,L13,L23]
of a V2

γ -optimal alignment A of S. In consequence, we have that Lhi = |A{h,i}| for each
pair h, i. Notice that knowing the lengths L12,L13 and L23 does not imply knowing the
V2

γ -optimal alignment A. In general, we cannot even infer what |A| is. For example, the
alignments s1(1) s1(2) -

s2(1) - s2(2)
- s3(1) s3(2)

 and

 s1(1) s1(2) - -
s2(1) - s2(2) -
s3(1) - - s3(2)


have different lengths but same induced lengths for s1, s2, s3, where |s1| = |s2| = |s3| = 2
and L12 = L13 = L23 = 3. However, if we know L⃗ = [L12,L13,L23], we have

optV2
γ (S) = minA∈AS :Lhi=|A{h,i}|,∀h,i

{ ∑k−1
h=1

∑k
i=h+1 vAγ [A{h,i}]/Lhi

}
= minA∈AS

{ ∑k−1
h=1

∑k
i=h+1 vAγ(hi) [A{h,i}]

}
,

where γ(hi) is a scoring matrix obtained by multiplying the elements of γ by 1/Lhi. Since we
guarantee it is the induced length of an alignment V2

γ -optimal, we fix L⃗ and compute γ⃗ in
order to calculate the entries of a table DL⃗, such that

DL⃗(v⃗ =[v1, v2, v3],L⃗=[L12, L13, L23])=minA∈AS(⃗1:v⃗),Lhi=|A{h,i}|,∀h,i

{∑
h<i vAγ(hi) [A{h,i}]

}
corresponds to the score of an alignment with the lowest γ⃗-SP-score when the induced length
is L⃗. The table DL⃗ can then be computed using the following recurrence

DL⃗(v⃗, L⃗)=


0 , if v⃗ =0⃗, L⃗=0⃗,

∞ , if v⃗ =0⃗, L⃗ ̸=0⃗ or v⃗ ̸=0⃗, L⃗=0⃗,

minb⃗∈Bk ,⃗b≤v⃗,⃗b≤L⃗

{
DL⃗(v⃗−b⃗, L⃗−b⃗)+vSP⃗γ [⃗b·S(v⃗)]

}
, otherwise,

where b⃗ ≤ L⃗ is also an overloading, meaning that L⃗− b⃗ ≥ 0⃗.
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In this case, if L⃗ is the induced length of a V2
γ -optimal alignment of S, then optV2

γ (S) =
DL⃗(n⃗, L⃗). If each sequence has length n, then the total space to store the table DL⃗ is
(2n + 1)(

3
2) · (n + 1)3 = Θ(n6). When L⃗ is unknown, the computation must be repeated for

each L⃗ ∈ L, but the space can be reused and no additional space required. If L⃗ is known,
the algorithm runs to compute all entries of DL⃗. As DL⃗ has Θ(n6) entries and each entry
takes O(1)-time to be computed, the total time spent is O(n6). If L⃗ is unknown, the time
needed to compute L⃗ must be multiplied by the total of elements in L which is (2n + 1)3.
Therefore, in the latter case, the total time is O(n6 · (2n + 1)3) = O(n9).

Step 2: k > 3

Algorithm 3 is a natural extension of the algorithm described in Step 1. Given a scoring
matrix γ and an induced length L⃗, let γ × L⃗ = [γ(12), . . . , γ(k(k−1))] be the vector of

(
k
2
)

scoring matrices, where γ(hi) is obtained dividing each entry of γ by Lhi for each h < i.

Algorithm 3 V2
γ -optimal alignment of S.

Input: A k-sequence S = s1, . . . , sk such that ni = |si|
Output: optV2

γ (S)
1: for each L⃗ ∈ L⃗ do
2: DL⃗(⃗0, 0⃗)← 0
3: for each L⃗ ̸= 0⃗ do DL⃗(⃗0, L⃗)←∞
4: for each v⃗ ̸= 0⃗ do DL⃗(v⃗, 0⃗)←∞
5: γ⃗ ← γ × L
6: for each 0⃗ < v⃗ ≤ n⃗ in lexicographical order do
7: for each L⃗ ̸= 0⃗ in lexicographical order do
8: DL⃗(v⃗, L⃗) = minb⃗∈Bk ,⃗b≤v⃗,⃗b≤L⃗

{
DL⃗(v⃗ − b⃗, L⃗− b⃗) + vSP⃗γ [⃗b · S(v⃗)]

}
9: return minL⃗∈L⃗{DL⃗(n⃗, L⃗)}

For k sequences of length n, Algorithm 3 needs (2n + 1)(
k
2) · (n + 1)k space to store the

table DL⃗. For each of the (2n + 1)(
k
2) values L⃗ ∈ L⃗, table DL⃗ is recalculated. Since the

computation of each entry takes O(2kk2)-time, the total time is

O
(
2kk2 · (2n + 1)(

k
2) · (2n + 1)(

k
2)(n + 1)k

)
= O

((
1 + 1/(2n + 1)

)k(2n + 1)k2
k2)

.

If k ≤ 2n + 1, the total time can be written as O
(
(2n + 1)k2

k2)
)
, since (1 + 1/k)k ≤ e =

2.718281828 . . . Notice that (1 + 1/(2n + 1))k ≤ (1 + 1/k)k ≤ e is also constant.

4.3 NMSA-3
Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an alignment of S. As defined in

Equation (5), V3
γ [A] takes into account the length of A, and the optimal function is given

by optV3
γ (S) = minA∈AS

{
V3

γ [A]
}

. The V3
γ -optimal alignment of S is an alignment A such

that V3
γ [A] = optV3

γ (S). Then NMSA-3 is defined as follows: for a fixed matrix γ, given a
k-tuple S, determine optV3

γ (S).

4.3.1 Computing optV3
γ

Here, each entry D(v⃗, L) of D stores the SP-score of an alignment A of the prefix S(v⃗) with
the lowest SP-score, such that

∑
i<h |A{i,h}| = L. If b⃗ is a k-vector, define ∥⃗b∥ =

∑
h<i bhbi.

Notice that if v⃗ − b⃗ is the last column of an alignment A and L =
∑k−1

h=1
∑k

i=h+1 |A{h,i}|
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is the sum of lengths of the alignments induced by A. Thus, the sum of lengths of the
alignments induced by A(1 : |A| − 1) is L− ∥⃗b∥. Therefore,

D(v⃗,L)=


0 , if v⃗ =0⃗,L=0,

∞ , if v⃗ =0⃗,L ̸=0 or v⃗ ̸=0⃗,L=0,{
D(v⃗−b⃗, L−∥⃗b∥)+vSPγ [⃗b·S(v⃗)]

}
, otherwise .

Algorithm 4 provides more details about the procedure for computing optV3
γ .

Algorithm 4 V3
γ -optimal alignment of S.

Input: a k-sequence S = s1, . . . , sk such that ni = |si|
Output: optV3

γ (S)
1: D(⃗0, 0)← 0
2: for each L ̸= 0 do D(⃗0, L)←∞
3: for each v⃗ ̸= 0⃗ do D(v⃗, 0)←∞
4: for each 0⃗ < v⃗ ≤ n⃗ in lexicographical order do
5: for L← 1, 2, . . . , N(k − 1) do
6: D(v⃗, L)← minb⃗∈Bk ,⃗b≤v⃗,∥⃗b∥≤L

{
D(v⃗ − b⃗, L− ∥⃗b∥) + vSPγ [⃗b · S(v⃗)]

}
7: return minL

{
D(n⃗, L)/L

}
Assume that all sequences in S have length n. The table D is computed for all possible

values of L = 1, . . . ,
(

k
2
)
(2n)(= nk2 − nk) and, after this, we determine optSPγ(S) =

minL

{
D(n⃗, L)/L

}
. Thus, table D needs space equivalent to (nk2 − nk + 1) · (n + 1)k =

Θ(k2(n + 1)k+1). Since the time required to determine each entry of D is O(2kk2), the
running time of Algorithm 4 is O(2kk4(n + 1)k+1).

5 Approximation algorithms for MSA and NMSA-2

Gusfield [15] described a 2-approximation algorithm for MSA. It assumes that γ ∈MC. In
this section, we adapt Gusfield’s algorithm, proposing a 6-approximation algorithm for MSA
when γ ∈MA and a 12-approximation algorithm for NMSA-2 problem when γ ∈MN.

We consider here a generic function v to score an alignment of a 2-sequence such that
opt(s, s) = 0 (identity) and opt(s, t) = opt(t, s) (symmetry), where opt(s, t) is the score of
a v-optimal alignment of a 2-sequence s, t. Notice that vAγ and vNγ have these properties
when γ ∈ MA and γ ∈ MN, respectively. Let S be a k-sequence and A in AS be an
alignment. We define V and OPT as functions such that V [A] =

∑k−1
h=1

∑k
i=h+1 v[A{h,i}]

and OPT(S) = minA∈AS
V (A). Thus, a V -optimal alignment is an alignment A such that

V [A] = OPT(S).
Let c be an integer with 1 ≤ c ≤ k. A star X with center c of S = s1, . . . , sk, also

called a c-star, is a collection of k − 1 alignments: alignment Xh = [s′
h, sh

c ] of sh, sc, for
each h < c, where v[s′

h, sh
c ] = v[sh

c , s′
h], and alignment Xh = [sh

c , s′
h] of sc, sh, for each

h > c, where v[sh
c , s′

h] = v[s′
h, sh

c ]. The set of all c-stars is denoted by Xc. The score
of the c-star X is cStar(X) =

∑
h ̸=c v[Xh] and a v-optimal star is one whose score is

optStar(S) = minX∈Xc,c∈N{cStar(X)}. Notice that optStar(S) = minc

{ ∑
h̸=c opt(sh, sc)

}
,

and if v = vAγ and γ ∈MA, optStar(S) can be computed in O(k2n2)-time, and if v = vNγ

and γ ∈MN, optStar(S) can be computed in O(k2n3)-time when |si| ≤ n, for each si in S.
We say that an alignment A of a k-sequence S and a c-star X of S are compatible (A is

compatible with X or X is compatible with A) in S when either A{h,c} or A{c,h} is equal to
Xh, for each h. It is easy to obtain, from an alignment A and c in N, the unique c-star X
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that is compatible with A. On the other hand, it is known from Feng and Doolitte [14] that
one can find an alignment A compatible with a given c-star X in O(kn)-time, where |si| ≤ n

for each sequence si in the k-sequence S. In this case, there exists one or more compatible
alignments with X.

The next result is a straightforward consequence of a result from Gusfield [15], where v is
the scoring function. See the proof in [4].

▶ Lemma 5.1. Given a k-sequence S, optStar(S) ≤ (2/k) OPT(S).

From now on, we consider v = vAγ , or v = vNγ and γ = MA or γ = MN, respectively.
Let s, t ∈ Σ∗ be sequences. Suppose that A = [s′, t′] is an alignment of s, t. We say that a
column j is splittable in A if s′(j) ̸= -, t′(j) ̸= - and min{γt′(j)→-, γs′(j)→-} ≤ γs′(j)→t′(j).
Let J := {ji ∈ N : 1 ≤ j1 < · · · < jm ≤ |A| and ji is splittable in A}. An A-splitting is the
alignment[

s′(1 :j1 − 1) s′(j1) - s′(j1 + 1:j2 − 1) s′(j2) - . . . s′(jm + 1: |A|)
t′(1 :j1 − 1) - t′(j1) t′(j1 + 1:j2 − 1) - t′(j2) . . . t′(jm + 1: |A|)

]
.

We say that J is required to split A. The following proposition is used to check properties of
an A-splitting. See its proof in [4].

▶ Proposition 5.2. Consider γ ∈ MA and a, b ∈ Σ. If γa→- > γa→b or γa→- > γb→a, then
γa→b = γb→a.

Let X = {X1, . . . , Xc−1, Xc+1, Xk} be a c-star. The X-starsplitting is the c-star Y =
{Y1, . . . , Yc−1, Yc+1, Yk}, where Yj is the Xj-splitting for each j. The next result shows that
the v-score of the star Y is bounded by the v-score of the star X when γ ∈MA and v = vAγ ,
or γ ∈MN and v = vNγ . Thus, as a consequence of Preposition 5.2, we have the following
lemma. The formal proof can be seen in [4].

▶ Lemma 5.3. Let S = s1, . . . , sk be a k-sequence, X be a c-star of S, Y be the X-starsplitting
and v be a function to score alignments. Consider γ ∈ MA and v = vAγ, or γ ∈ MA and
v = vNγ . Then, Y is also a c-star and cStar(Y ) ≤ 3 cStar(X).

Proof sketch. As a consequence of γ ∈ MA and Proposition 5.2, we have that Y is also a
c-star. Let h ∈ {1, . . . , k} and J be a set required to split X. We prove that vAγ [Yh] ≤
3 vAγ [Xh] and vNγ [Yh] ≤ 3 vNγ [Xh] hold since γ ∈ MA when v = vAγ and γ ∈ MN when
v = vNγ , and J ⊆ {1, 2, . . . , |A|}. Therefore, in these cases, we have

cStar(Y ) =
∑
h ̸=c

v[Yh] =
∑
h<c

v[Yh] +
∑
h>c

v[Yh] ≤ 3
∑
h̸=c

v[Xh] = 3 cStar(X) . ◀

Notice that the time consumption for computing an X-splitting from X is O(kn) when
|si| ≤ n, for each si ∈ S. Considering a star X of S = s1, . . . , sk, there can exist many
compatible alignments with a v-star Y which is a X-splitting. Let CompatibleAlign be
a subroutine that receives the c-star Y and returns an alignment A compatible with Y .
It is quite simple: if symbols sh(j1) and sc(j2) are aligned in Xh, they are also aligned
in A; otherwise, sh(j) aligns only with - in A. This property is enough to guarantee the
approximation factor of MSA and NMSA-2.

Let Qmax := maxa∈Σ{γa→-, γ-→a} and consider the following result, whose proof can be
found in [4].
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▶ Proposition 5.4. Let S be a k-sequence, X be a c-star of S and Y be a X-starsplitting.
Assume that γ ∈MA and that CompatibleAlign(Y ) returns A = [s′

1, . . . , s′
k]. If h ̸= c and

i ̸= c, we have that
(i) γs′

h
(j)→s′

i
(j) ≤ γs′

h
(j)→s′

c(j) + γs′
c(j)→s′

i
(j) for each j = 1, . . . , |A|, and

(ii) vNγ [A{h,i}] ≤ 2 Qmax when γ ∈MN.

Proposition 5.4 is an auxiliary result to show the following lemma.

▶ Lemma 5.5. Let S be a k-sequence, X be a c-star of S, Y be a X-starsplitting and
CompatibleAlign(Y ) = A. Then, for each h < i, h ̸= c and i ̸= c,

(i) vAγ [A{h,i}] ≤ vAγ [A{h,c}] + vAγ [A{c,i}] when γ ∈MA, and
(ii) vNγ [A{h,i}] ≤ 2

(
vNγ [A{h,c}] + vNγ [A{c,i}]

)
when γ ∈MN.

Proof. Let A = [s′
1, . . . , s′

k] and Z = {j : s′
c(j) ̸= - and s′

h(j) = s′
i(j) = -}. We have

vAγ [A{h,i}] ≤ vAγ [A{h,c}] + vAγ [A{c,i}]−
∑

j∈Z(γ-→s′
c(j) + γs′

c(j)→-) from a consequence of
Proposition 5.4. Besides, since γ ∈MA, we have that γ-→s′

c(j), γs′
c(j)→- > 0. It implies that

(i) is proven.
For proving (ii), observe first that, by definition of MN, we have that Qmax ≤ γ-→s′

c(j) +
γs′

c(j)→- for every j. Furthermore, following these statements, we have that

vNγ [A{h,i}] =
vAγ [A{h,i}]
|A{h,i}|

≤
vAγ [A{h,i}] + 2 ·Qmax |Z|

|A{h,i}|+ |Z|

≤ 2 ·
vAγ [A{h,i}] + Qmax |Z|

|A{h,i}|+ |Z|
(6)

≤ 2 ·
vAγ [A{h,c}] + vAγ [A{c,i}]−

∑
j∈Z(γ-→s′

c(j) + γs′
c(j)→-)+Qmax |Z|

|A{h,i,c}| − |Z|+ |Z|
(7)

≤ 2 ·
vAγ [A{h,c}] + vAγ [A{c,i}]−Qmax |Z|+ Qmax |Z|

|A{h,i,c}| − |Z|+ |Z|

= 2 ·
(

vAγ [A{h,c}]
|[A{h,i,c}]| +

vAγ [A{c,i}]
|[A{h,i,c}]|

)
(8)

≤ 2 ·
(

vNγ [A{h,c}] + vNγ [A{c,i}]
)

, (9)

where the first inequality of (6) is a consequence of Proposition 5.4 and the second inequality
follows since every entry of γ is nonnegative, (7) follows from the result in the first paragraph
and from |A{h,i}| = |A{h,i,c}| − |Z|, (8–9) follow as a consequence of the definition of Qmax,
and as a consequence of |A{h,c}| ≤ |A{h,i,c}| and |A{c,i}| ≤ |A{h,i,c}|. ◀

We can now describe the approximation algorithm (Algorithm 5).

Algorithm 5 Approximation algorithm for MSA and NMSA-2.

Input: k-sequence S = s1, . . . , sk

Output: v[A], where A is an alignment of S, and vSPγ [A] ≤ 6 optSPγ(S) if v = vAγ and
γ ∈MA, and V2

γ [A] ≤ 12 optNSP2
γ (S) if v = vNγ and γ ∈MN.

1: Let X be a v-optimal star of S with center c

2: Compute the X-splitting Y

3: A← CompatibleAlign(Y )
4: return v[A]
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Clearly, Algorithm 5 is correct. Furthermore, Lemmas 5.1, 5.3 and 5.5 are auxiliary to
prove its approximation factor. Since the running time of CompatibleAlign is O(k2n), a
straightforward running time analysis allows us to state the following theorem. The detailed
proof is presented in [4].

▶ Theorem 5.6. Let S = s1, . . . , sk be a k-sequence and γ be a scoring matrix. Then,
Algorithm 5 computes v[A] correctly:

(i) in O(k2n2)-time such that vSPγ [A] ≤ 6 optSPγ(S), if v = vAγ and γ = MA, or
(ii) in O(k2n3)-time such that V2

γ [A] ≤ 12 optNSP2
γ (S), if v = vNγ and γ ∈MN, where A

is the alignment of S computed by the algorithm.

6 Conclusion and future work

We presented and discussed several aspects of normalized multiple sequence alignment
(NMSA). We defined three new criteria for computing normalized scores when aligning
multiple sequences, showing the NP-hardness and exact algorithms for solving the NMSA-z
given criterion Vz

γ for each z. In addition, we adapted an existing 2-approximation algorithm
for MSA when the scoring matrix γ is in the common class MC, leading to a 6-approximation
algorithm for MSA when γ is in the broader class MA ⊇ MC, and to a 12-approximation
for NMSA-2 when γ is in MN ⊆MA, a slightly more restricted class compared to MA such
that the cost of a deletion for any symbol is at most twice the cost for any other.

This work is an effort to expand the boundaries of multiple sequence alignment algorithms
towards normalization, an unexplored domain that can produce results with higher accuracy
in some applications. In future work, we will implement our algorithms in order to verify
how large are the sequences that our algorithms are able to handle. Also, we plan to
perform practical experiments, measuring how well alignments provided by our algorithms
and other MSA algorithms agree with multiple alignment benchmarks. In addition, we intend
to measure the accuracy of phylogenetic tree reconstruction based on our alignments for
simulated and real genomes. Finally, we will work on heuristics and parallel versions of our
algorithms in order to faster process large datasets.
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