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Abstract
A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past
several years, due to its close connection to circuit complexity and to the Minimum Circuit Size
Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the
problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK
(Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete.

Recently, some hardness results for MKTP were proved that are not (yet) known to hold for
MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤NC0

m reductions.
In this paper, we improve this, to show that MKTP is hard for the (apparently larger) class NISZKL

under not only ≤NC0
m reductions but even under projections. Also MKTP is hard for NISZK under

≤P/poly
m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs,

and NISZKL is the non-interactive version of the class SZKL that was studied by Dvir et al.
As an application, we provide several improved worst-case to average-case reductions to problems

in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP).
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1 Introduction

The study of time-bounded Kolmogorov complexity is tightly connected to the study of
circuit complexity. Indeed, the measure that we study most closely in this paper, denoted
KT, was initially defined in order to capitalize on the framework of Kolmogorov complexity in
investigations of the Minimum Circuit Size Problem (MCSP) [4]. If f is a bit string of length
2k representing the truth-table of a k-ary Boolean function, then KT(f) is polynomially
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related to the size of the smallest circuit computing f . Thus the problem of computing KT
complexity (denoted MKTP) was initially viewed as a more-or-less equivalent encoding of
MCSP, and it is still the case that all theorems that have been proved about the complexity
of MCSP hold also for MKTP (such as those in [5, 9, 10,17,21–24,30,31,33,34]).

In recent years, however, a few hardness results were proved for MKTP that are not yet
known to hold for MCSP [7, 8]. We believe that these results can be taken as an indication
of what is likely to be true also for MCSP. The present work gives significantly improved
hardness results for MKTP.

Reducibility and completeness are the most effective tools in the arsenal of complexity
theory for giving evidence of intractability. However, it is not clear whether MCSP or MKTP
is NP-complete; neither can be shown to be NP-complete – or even hard for ZPP – under
the usual ≤P

m reductions without first showing that EXP ̸= ZPP, a long-standing open
problem [17,31].

The strongest hardness results that have been proved thus far for MCSP and MKTP are
that both are hard for SZK under BPP-Turing reductions [5]. SZK is the class of problems
that have Statistical Zero Knowledge Interactive Proofs, and contains many problems of
interest to cryptographers. Indeed, if MCSP (or MKTP) is in P/poly, then there are no
cryptographically-secure one-way functions [26].

Our main results involve improving the hardness results for MKTP, by reducing the
number of queries from polynomially-many, to one. In the paragraphs that follow, we explain
the sense in which we accomplish this goal. Along the way, we also obtain a new circuit lower
bound for MKTP; it remains unknown whether this circuit lower bound also holds for MCSP.

SZK is not known to be contained in NP; until such a containment can be established,
there is no hope of improving the BPP-Turing reduction of [5] to a ≤P

m reduction. But
we come close in this paper. NISZK is the “non-interactive” subclass of SZK; it contains
intractable problems if and only if SZK does [18]. We show that MKTP is hard for NISZK
under ≤P/poly

m reductions. (Thus, instead of asking many queries, as in [5], a single query
suffices.1) Our proof also shows that MKTP is hard for NISZK under BPP reductions that
ask only one query. Combined with [18], this shows that MKTP is hard for SZK under
non-adaptive BPP reductions, yielding a modest improvement over [5]; this has implications
regarding the study of worst-case to average-case reductions. (See Section 1.1.)

But ≤P/poly
m reductions are still quite powerful. There is great interest currently in

proving lower bounds for MCSP, MKTP, and related problems such as MKtP (the problem
of computing a different kind of time-bounded Kolmogorov complexity, due to Levin [28]) on
very limited classes of circuits and formulae, as part of the “hardness magnification” program.
For instance, if modest lower bounds can be shown on the size required to compute MKtP
on de Morgan formulae augmented with PARITY gates at the leaves, then EXP is not
contained in non-uniform NC1 [32]. Also, there is great interest in finding lower bounds
against a variety of other models, such as depth-three threshold gates, or circuits consisting
of polynomial threshold gates [27]. If a lower bound is known against one of these limited
classes of circuits for some problem A that is reducible to, say, MKTP or MKtP under ≤P/poly

m
reductions, it implies nothing about the complexity of MKTP or MKtP, since the circuitry
involved in computing the reduction is much more powerful than the circuitry in the class of
circuits for which the lower bound is known.

1 Some readers may have mistakenly believed that we view our work as a step toward showing that MKTP
(or MCSP) is hard for SZK under (uniform) ≤P

m reductions. We do not. In fact, some of us doubt that
hardness under uniform deterministic reductions holds.
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Thus there is a great deal of interest in considering reductions that are much less powerful
than ≤P/poly

m reductions. For extremely weak (uniform) notions of reducibility (such as
log-time reductions), it is known that MCSP and MKTP are not hard for any complexity
class that contains the PARITY function [31]. However, this non-hardness result relies
on uniformity; it was later shown that MKTP is hard for the complexity class DET under
nonuniform ≤NC0

m reductions [8].
However, even ≤NC0

m reductions are too powerful a tool, when one is interested in lower
bounds against the classes of circuits discussed above, since they do not seem to be closed
under ≤NC0

m reductions. This motivates consideration of the most restrictive type of reduction
that we will be considering: projections.

A projection is a reduction that is computed by a circuit consisting only of wires and
NOT gates. Each output bit is either a constant, or is connected by a wire to a (possibly
negated) input bit. All of the classes of circuits mentioned above (and – indeed – most
conceivable classes of circuits) are closed under projections.

Prior to our work, the result of [8] showing that MKTP is hard for DET under ≤NC0

m
reductions was improved, to show that MKTP is hard for DET even under projections [3].
Since DET is a subclass of P, this provides little ammunition when one is seeking to prove
that MKTP is intractable. One of our main contributions is to show that MKTP is hard for
NISZKL under projections. As a corollary, we obtain that MKTP cannot be computed by
THRESHOLD◦MAJORITY circuits of size 2no(1) . This lower bound relies on the fact that
MKTP is hard under projections.

The reader will not be familiar with NISZKL; this complexity class makes its first ap-
pearance in the literature here. It is the “non-interactive” counterpart to the complexity
class SZKL that was studied previously by Dvir et al. [15], and was shown there to contain
several important natural problems of interest to cryptographers (such as Discrete Log and
Decisional Diffie-Hellman). NISZKL contains intractable problems if and only if SZKL does
(see Section 2). Thus, for the first time, we show that MKTP is hard under projections for
a complexity class that is widely believed to contain intractable problems. Our hardness
results carry over immediately to MKtP and to similar problems defined in terms of general
Kolmogorov complexity; no hardness results under projections had been known previously
for those problems. We present some complete problems for NISZKL and establish some
other basic facts about this class in Section 4.

1.1 Average-Case Complexity
Building on the techniques introduced in [20], we are able to establish new insights regarding
the relationship between worst-case and average-case complexity. In Theorem 35, capitalizing
on the fact that essentially every circuit complexity class C is closed under projections, we
show that if NISZKL does not lie in OR ◦ C, then there are problems A in NP that cannot
be solved in the average case by errorless heuristics in C. For instance, if one were able
to show that there is any problem NISZKL (including, but not limited to, some of the
candidate one-way functions believed to reside there) that cannot be solved in the worst
case by depth-four ACC0 circuits, it would follow that there are problems in NP that are
hard-on-average for depth-three ACC0 circuits. Such conclusions would not follow if our
reductions to MKTP had merely been computable in AC0 or NC0.

We are also able to shed more light on worst-case to average-case reductions, in the form
that they were studied by Bogdanov and Trevisan [14]. Bogdanov and Trevisan showed that
there were severe limits on the complexity of problems whose worst-case complexity could
be reduced to the average-case complexity of problems in NP via non-adaptive reductions;
all such problems lie in NP/poly ∩ coNP/poly. But it was not known how large this class of
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problems could be. Hirahara showed that every problem in SZK has an adaptive worst-case to
average-case reduction to a problem in NP [20], but the upper bound of NP/poly ∩ coNP/poly
proved by Bogdanov and Trevisan does not apply for adaptive reductions. As a consequence
of our Corollary 17, showing that MKTP is hard for SZK under nonadaptive BPP reductions,
we are able to show (in Corollary 37) that the class identified by Bogdanov and Trevisan lies
in the narrow range between SZK and NP/poly ∩ coNP/poly.
▶ Remark. This is an illustration of the utility of studying MKTP, as an example of a
theorem that does not explicitly mention MKTP or MCSP, but which was proved via the
study of MKTP. No such argument based on MCSP is known. We believe that MKTP can
in fact be viewed as a particularly convenient formulation of MCSP, since (a) KT complexity
is closely related to circuit size, (b) essentially all theorems known to hold for MCSP also
hold for MKTP, (c) some arguments that one might intend to formulate in terms of MCSP
elude current approaches, but can instead be successfully carried through by use of MKTP.
Furthermore, theorems proved for MKTP may serve as an indication of what is likely to be
true for MCSP as well.

The rest of the paper is organized as follows: Our ≤P/poly
m -hardness theorem for MKTP is

proved in Section 3. Then, after establishing some basic facts about NISZKL in Section 4, in
Section 5 we show that MKTP is hard for NISZKL under projections. We present applications
of our reductions and implications for average-case complexity in Section 6.

Due to space limitations, some proofs have been omitted from the version of this work
that appears in the ISAAC proceedings. The interested reader is encouraged to consult [6]
for complete details.

2 Preliminaries

2.1 Complexity Classes and Reducibilities
We assume familiarity with the complexity classes P, NP, L, BPP, and P/poly. We also make
use of the circuit complexity classes AC0 and NC0. For the purposes of this paper, AC0 can
be understood as the set of problems for which there is a family of circuits {Cn : n ∈ N}
with unbounded-fan-in AND and OR gates (and NOT gates of fan-in 1) of polynomial size
and constant depth. NC0 is defined similarly, but with AND and OR gates of bounded fan-in
(and thus each output bit depends on only a constant number of bits of the input). We deal
primarily with the “nonuniform” versions of these complexity classes (which means that the
mapping n 7→ Cn need not be computable).

Branching programs are a circuit-like model of computation that can be used to charac-
terize logspace computation. A branching program is a directed acyclic graph with a single
source and two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled
with a variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one
labeled 0. A branching program computes a Boolean function f on input x = x1 . . . xn by
first placing a pebble on the source node. At any time when the pebble is on a node v labeled
xi, the pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1
(or by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then
f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,
by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =
the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of
these complexity classes, circuits, and branching programs, see the text by Vollmer [35].

A promise problem Π is a pair of disjoint sets (ΠY ES , ΠNO). A solution to a promise
problem is any set A such that ΠY ES ⊆ A and ΠNO ⊆ A. A don’t-care instance of Π is any
string that is not in ΠY ES ∪ ΠNO. A language A can be viewed as a promise problem that
has no don’t-care instances.
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Given any class C of functions, there is an associated notion of m-reducibility or many-one
reducibility: For two languages A and B, we say that A≤C

mB if there is a function f in
C such that x ∈ A iff f(x) ∈ B. This notion of reducibility extends naturally to promise
problems, mapping yes-instances to yes-instances, and no-instances to no-instances. The
most familiar notion of m-reducibility is Karp reducibility: ≤P

m; NP-completeness is most
commonly defined in terms of Karp reducibility. However, in this paper, we will frequently
be reducing problems that are not known to reside in NP to MKTP, which does lie in NP.
Thus it is clear that a more powerful notion of reducibility is required. Some of our results
are most conveniently stated in terms of ≤P/poly

m reductions (i.e., reductions computed by
nonuniform polynomial-size circuits). We also consider restrictions of ≤P/poly

m reductions,
computed by nonuniform AC0 and NC0 circuits: ≤AC0

m and ≤NC0

m . Finally we also consider
projections (≤proj

m ), which are functions computed by NC0 circuits that have only NOT gates.
That is, in a projection, each output bit is either a constant 0 or 1, or is connected by a wire
to an input bit or its negation.

We will also make reference to various types of Turing reducibility, which are defined in
terms of oracle Turing machines, or in terms of circuit families that are augmented with
“oracle gates”. For instance, we say that A≤BPP

T B if there is a probabilistic polynomial time
oracle Turing machine M with oracle B that accepts every x ∈ A with probability 2

3 and
rejects every x ∈ A with probability 2

3 . Note that the computation tree of such a BPP-Turing
reduction can contain an exponential number of queries to different elements of B. Just as
BPP ⊆ P/poly, it also holds that A≤BPP

T B implies A≤P/poly
T B. Thus, on any input x, the

circuit computing the P/poly-Turing reduction queries only a polynomial number of elements
of B. It was shown in [5] that every problem in SZK (that is, every problem with a statistical
zero knowledge proof system) is ≤BPP

T -reducible (and hence ≤P/poly
T -reducible) to MCSP and

to MKTP. The question of interest to us here is: Is it necessary to ask so many queries?
What can we do if we ask only one query? What can be reduced to MKTP via a ≤P/poly

m
reduction?

The complexity class with which we are primarily concerned in this paper is the class of
problems that have non-interactive statistical zero knowledge proof systems: NISZK. NISZK
was originally defined and studied by Blum et al. [13]. The definition below (in terms of
promise problems) is due to Goldreich et al. [18].

▶ Definition 1. A non-interactive statistical zero-knowledge proof system for a promise
problem Π is defined by a triple of probabilistic machines P , V , and S, where V and S are
polynomial-time and P is computationally unbounded, and a polynomial r(n) (which will
give the size of the random reference string σ), such that:
1. (Completeness) For all x ∈ ΠY ES, the probability that V (x, σ, P (x, σ)) accepts is at least

1 − 2−|x|.
2. (Soundness) For all x ∈ ΠNO, the probability that V (x, σ, P (x, σ)) accepts is at most

2−|x|.
3. (Zero Knowledge) For all x ∈ ΠY ES, the statistical distance between the following two

distributions bounded by 1/β(|x|)
a. Choose σ uniformly from {0, 1}r(|x|), sample p from P (x, σ), and output (p, σ).
b. S(x) (where the coins for S are chosen uniformly at random.)

where β(n) is superpolynomial, and the probabilities in Conditions 1 and 2 are taken over
the random coins of V and P , and the choice of σ uniformly from {0, 1}r(n).

NISZK is the class of promise problems for which there is a non-interactive statistical
zero knowledge proof system.

ISAAC 2021
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NISZK is not known to be closed under complementation; co-NISZK is defined as the
class of promise problems Π = (ΠY ES , ΠNO) such that (ΠNO, ΠY ES) is in NISZK. It is
known that SZK = NISZK iff NISZK = co-NISZK, and that every promise problem in SZK
efficiently (and non-adaptively) Turing-reduces to a problem in NISZK [18]. Thus NISZK
contains intractable problems if and only if SZK does.

A subclass of SZK, which we will denote by SZKL, in which the verifier V and simulator
S are restricted to being logspace machines, was defined and studied by Dvir et al. [15].
Among other things, they showed that many of the important natural problems in SZK lie
in SZKL, including Graph Isomorphism, Quadratic Residuosity, Discrete Log, and Decisional
Diffie-Helman. The non-interactive version of SZKL, which we denote by NISZKL, has not
been studied previously, but it figures prominently in our results.

▶ Definition 2. The formal definition of NISZKL is obtained by replacing each occurrence of
“polynomial-time” in Definition 1 with “logspace”. (It is important to note that, in this model,
the logspace-bounded verifier V and simulator S are allowed two-way access to the reference
string σ and to their polynomially-long sequences of probabilistic coin flips.)

The reduction presented in [18] carries over directly to the logspace setting, showing that
NISZKL contains intractable problems if and only if SZKL does. In particular, we have:

▶ Proposition 3. Every promise problem in SZKL is non-adaptively AC0-Turing-reducible to
a problem in NISZKL.

Figure 1 Diagram showing the classes NISZK, co-NISZK, and SZK. The shaded oval represents
NP. Every problem in co-NISZK is ≤P/poly

m -reducible to MKTP.

2.2 KT Complexity
The measure KT was defined in [4]. We provide a reproduction of that definition below.

▶ Definition 4 (KT). Let U be a universal Turing machine. For each string x, define KTU (x)
to be

min{|d| + T : (∀σ ∈ {0, 1, ∗}) (∀i ≤ |x| + 1) Ud(i, σ) accepts in T steps iff xi = σ}

We define xi = ∗ if i > |x|; thus, for i = |x| + 1 the machine accepts iff σ = ∗. The notation
Ud indicates that the machine U has random access to the description d.
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To understand the motivation for this definition, see [4]. Briefly: KT is a version of time-
bounded Kolmogorov complexity that (in contrast to other notions of resource-bounded
Kolmogorov complexity that have been considered) is polynomially-related to circuit com-
plexity. The minimum KT problem, henceforth MKTP, is defined below.

▶ Definition 5 (MKTP). Suppose y ∈ {0, 1}n and θ ∈ N \ {0}, then

MKTP = {(y, θ) | KT(y) ≤ θ}.

In this paper when we view MKTP as a promise problem, yes-instances will be considered
those that are in the language, and no-instances those that are not in the language.

3 MKTP is Hard For NISZK

In this section, we prove our first hardness result for MKTP; MKTP is hard for co-NISZK
under ≤P/poly

m reductions. In order to prove hardness, it suffices to provide a reduction from
the entropy approximation problem: EA, which is known to be complete for NISZK under
≤P

m reductions [18].

▶ Definition 6 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

EAY ES = {(C, k) | H(X) > k + 1}
EANO = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.

We will make use of some machinery that was developed in [7], in order to relate the
entropy of a distribution to the KT complexity of samples taken from the distribution.
However, these tools are only useful when applied to distributions that are sufficiently “flat”.
The next subsection provides the necessary tools to “flatten” a distribution.

3.1 Flat Distributions
A distribution is considered flat if it is uniform on its support. Goldreich et al. [18] formalized
a relaxed notion of flatness, termed ∆-flatness, which relies on the concept of ∆-typical
elements. The definitions of both concepts follow:

▶ Definition 7 (∆-typical elements). Suppose X is a distribution with element x in its support.
We say that x is ∆-typical if,

2−∆ · 2−H(X) < Pr[X = x] < 2∆ · 2−H(X).

▶ Definition 8 (∆-flatness). Suppose X is a distribution. We say that X is ∆-flat if for every
t > 0 the probability that an element of the support, x, is t · ∆-typical is at least 1 − 2−t2+1.

▶ Lemma 9 (Flattening Lemma, [18]). Suppose X is a distribution such that for all x in its
support Pr[X = x] ≥ 2−m. Then Xk is (

√
k · m)-flat.

Observe that if X is a distribution represented by a circuit C : {0, 1}m → {0, 1}n, then the
hypothesis of the Flattening Lemma holds for m. Note also that, for any distribution X,
H(Xk) = k · H(X). Thus the entropy of the distribution Xk grows linearly with respect to
k, while the deviation from flatness diminishes much more rapidly with respect to k.

ISAAC 2021
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3.2 Encoding and Blocking
The Encoding Lemma is the primary tool that was developed in [7] to give short descriptions
of samples from a given distribution. Below, we give a precise statement of the version
of the Encoding Lemma that is stated informally as Remark 4.3 of [7]. (Although the
statement there is informal, the proof of the Encoding Lemma that is given there does yield
our Lemma 11.) First, we need to define Λ-encodings.

▶ Definition 10 (Λ-encodings). Let R : S → T be a random variable that induces a distribution
X. The Λ-heavy elements of T are those elements λ such that Pr[X = λ] > 1/2Λ. A Λ-
encoding of R is given by a mapping D : [N ] → S such that for every Λ-heavy element
λ, there exists i ∈ [N ] such that R(D(i)) = λ. We refer to ⌈log(N)⌉ as the length of the
encoding. The function D is also called the decoder for the encoding.

▶ Lemma 11 (Encoding Lemma). [7, Lemma 4.1] Consider an ensemble {Rx} of random
variables that sample distributions on strings of some length poly1(|x|), where there are
circuits Cx of size poly2(|x|) representing each Rx. Then there is a polynomial poly3 such
that, for every integer Λ, each Rx has a Λ-encoding of length Λ + log(Λ) + O(1) that is
decodable by circuits of size poly3(|x|).

By itself, the Encoding Lemma says nothing about KT complexity. The other important
ingredient in the toolbox developed in [7] is the Blocking Lemma, which refers to the process
of chopping a string into blocks. Let y be a string of length tn, which we think of as being the
concatenation of t samples yi of a distribution X on strings of length n. Thus y = y1 . . . yt.
Let r = ⌈t/b⌉. Equivalently, we consider y to be equal to z1 . . . zr where each zi is a string of
length bn sampled according to Xb. (In the case when |y| is not a multiple of b, zr is shorter;
this does not affect the analysis. We call the strings zi the blocks of y.)

▶ Lemma 12 (Blocking Lemma). [7, Lemma 3.3] Let {Tx} be an ensemble of sets of strings
such that all strings in Tx have the same length poly(|x|). Suppose that for each x ∈ {0, 1}∗

and for each b ∈ N there is an integer Λb and a random variable Rx,b whose image contains
(Tx)b, and such that Rx,b is computable by a circuit of size poly(|x|, b) and has a Λb-encoding
of length s′(x, b) decodable by a circuit of size poly(|x|, b). Then there are constants c1 and
c2 so that, for every constant α > 0, every t ∈ N, every sufficiently large x, and every
⌈tα⌉-suitable y ∈ (Tx)t,

KT(y) ≤ t1−α · s′(x, ⌈tα⌉) + tα·c1 · |x|c2 .

Here, we say that y ∈ (Tx)t is b-suitable if each block of y (of length bn) is Λb-heavy.

With the Encoding and Blocking Lemmas in hand, we can now show how to give upper
and lower bounds on the KT complexity of concatenated samples from a distribution. The
following lemma gives the upper bound.

▶ Lemma 13. Suppose X is a distribution sampled by a circuit Cx : {0, 1}m → {0, 1}n of
size polynomial in |x|. For every polynomial w = w(|x|) with |x| ≤ w, there exist constants
c0, c2, and α0 such that for every sufficiently large polynomial t and for all large x, if y is
the concatenation of t samples from X, then with probability at least (1 − 1/22|x|),

KT(y) ≤ tH(X) + wm(t1−α0/2) + t1−α0 |x|c0+c2

We now turn to a lower bound on KT(y).
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▶ Lemma 14. Let poly(|x|) denote some fixed polynomial in |x|, and let α0 be such that 0 <

α0 < 1/2. For all large x, if X is a distribution sampled by a circuit Cx : {0, 1}m → {0, 1}n

of polynomial size, then it holds that for every w and every t > w4, if y is sampled from Xt,
then with probability at least 1 − 2−w2 ,

KT(y) ≥ tH(X) − wm
√

t − t1−α0poly(|x|)

3.3 Reducing co-NISZK to MKTP
▶ Theorem 15. MKTP is hard for co-NISZK under P/poly many-one reductions.

Proof. We prove the claim by reduction from the NISZK-complete problem EA. Let x =
(Cx, k) be an arbitrary instance of Promise-EA, where Cx : {0, 1}m → {0, 1}n is a circuit
that represents distribution X. Let w = 2|x|, and let α0, c0, and c2 be the constants from
Lemma 13. Let λ = wmt1−α0/2. Pick the polynomial t so that t(|x|) > 2(λ + t1−α0 |x|c0+c2)
and w4 < t (and note that all large polynomials have this property). Construct y as t samples
from X. Let θ = tk + λ + t1−α0 |x|c0+c2 . We claim that, with probability at least 1 − 1

22|x| , if
(X, k) ∈ EAY ES , then (y, θ) ∈ MKTPNO and if (X, k) ∈ EANO, then (y, θ) ∈ MKTPY ES .

If (X, k) ∈ EANO, then H(X) < k. Then by Lemma 13, we have that, with high
probability,

KT(y) ≤ tH(X) + λ + t1−α0 |x|c0+c2

< tk + λ + t1−α0 |x|c0+c2

= θ

thus KT(y) ≤ θ, and thus (y, θ) ∈ MKTPY ES .
If (X, k) ∈ EAY ES , then H(X) > k + 1. Then by Lemma 14, with probability at least

1 − 2−w2
> 1 − 22|x|, we have that

KT(y) ≥ tH(X) − wm
√

t − t1−α0 |x|c0+c2 ,

> tH(X) − λ − t1−α0 |x|c0+c2 (since α0 < 1/2)
> t(k + 1) − λ − t1−α0 |x|c0+c2

> tk + λ + t1−α0 |x|c0+c2 (since t > 2(λ + t1−α0 |x|c0+c2))
= θ

thus KT(y) > θ, and thus (y, θ) ∈ MKTPNO.
We have shown that there is a polynomial-time-computable function f , such that, if

x ∈ EAY ES , then with high probability (for random r) f(x, r) = (y, θ) is in MKTPNO, and
if x ∈ EANO, then with high probability f(x, r) = (y, θ) is in MKTPY ES . By a standard
counting argument (similar to the proof that BPP ⊆ P/poly), since the probability of success
for either bound is greater than (1 − 1/22n), we can fix a sequence of random bits to hardwire
in to this reduction and obtain a family of circuits computing a ≤P/poly

m reduction from any
problem in NISZK to MKTP. ◀

▶ Corollary 16. MKTP is hard for NISZK under BPP reductions that make at most one
query along any path of the BPP machine.

Proof. This follows from the proof of Theorem 15. Namely, on input x = (Cx, k), construct
the string y consisting of t random samples from Cx and query the oracle on (y, θ). On
Yes-instances, y will have KT complexity greater than θ (with high probability), and on
No-instances, y will have KT complexity less than θ (with high probability). ◀
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▶ Corollary 17. MKTP is hard for SZK under non-adaptive BPP-Turing reductions.

Proof. Recall from [18] that SZK reduces to Promise-EA via non-adaptive (deterministic)
reductions. The result is now immediate, from Corollary 16. ◀

4 A Complete Problem for NISZKL

Having established a hardness result for MKTP under ≤P/poly
m reductions, we now establish

an analogous hardness result under the much more restrictive ≤proj
m reductions. For this, we

first need to present a complete problem for NISZKL.
Recall that the NISZK-complete problem EA deals with the question of approximating

the entropy of a distribution represented by a circuit. In order to talk about NISZKL, we
shall need to consider probability distributions that are represented using restricted class of
circuits. In particular, we shall focus on a problem that we denote EANC0 .

▶ Definition 18 (Promise-EANC0). Promise-EANC0 is the promise problem obtained from
Promise-EA, by considering only instances (C, k) such that C is a circuit of fan-in two gates,
where no output gate depends on more than four input gates.

It is not surprising that EANC0 is complete for NISZKL. The completeness proof that we
present owes much to the proof presented by Dvir et al. [15] (showing that an NC0-variant of
the SZK-complete problem EntropyDifference is complete for SZKL) and to the proof
presented by Goldreich et al. [18] showing that EA is complete for NISZK. We will need to
make use of various detailed aspects of the constructions presented in this prior work, and
thus we will present the full details here.

First, we show membership in NISZKL.

4.1 Membership in NISZKL

▶ Theorem 19. Promise-EANC0 ∈ NISZKL

The following corollary is a direct analog to [18, Proposition 1].

▶ Corollary 20. If Π is any promise problem that is ≤L
m reducible to EANC0 , then Π ∈ NISZKL.

We close this section by presenting an example of a well-studied natural problem in
NISZKL. (A graph is said to be rigid if it has no nontrivial automorphism.)

▶ Corollary 21. The Non-Isomorphism Problem for Rigid Graphs lies in NISZKL

Proof. First note that the proof of Theorem 19 carries over to show that a problem that
we may call EABP (defined just as EANC0 but where the distribution is represented as a
branching program instead of as an NC0 circuit) also lies in NISZKL. Now observe that
the reduction given in Section 3.1 of [7] shows how to take as input two rigid graphs on n

vertices (G0, G1) and build a branching program that takes as input a bitstring w of length t

and t permutations π1, . . . , πt and output the sequence of t permuted graphs πi(Gwi
). It is

observed in [7] that this distribution has entropy t(1+log n!) if the graphs are non-isomorphic,
and has entropy at most t log n! otherwise. ◀
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4.2 Hardness for NISZKL

In order to re-use the tools developed in [18], we will follow the structure of the proof
given there, showing that EA is hard for NISZK. Namely, we introduce the problem SDU
(Statistical Distance from Uniform) and its NC0 variant, and prove hardness for
SDUNC0 .

▶ Definition 22 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n

representing distributions X. The promise problem

SDU = (SDUY ES , SDUNO)

is given by

SDUY ES
def= {CX : ∆(X, Un) < 1/n}

SDUNO
def= {CX : ∆(X, Un) > 1 − 1/n}

where ∆(X, Y ) = Σα| Pr[X = α] − Pr[Y = α]|/2.
SDUNC0 is the analogous problem, where the distributions X are represented by NC0

circuits where no output bit depends on more than four input bits.

It is shown in [18, Lemma 4.1] that CX is in SDU if and only if (CX , n − 3) is in EA. This
yields the following corollary:

▶ Corollary 23. SDUNC0 ≤proj
m EANC0 .

Proof. This is trivial if we assume an encoding of SDUNC0 instances, such that the NC0

circuits CX : {0, 1}m 7→ {0, 1}n are encoded by strings of length given by the standard
pairing function m2+3m+2mn+n+n2

2 , so that the length of an instance of SDUNC0 completely
determines n. (An NC0 circuit with m inputs and n outputs has a description of size
O(n log m), and thus it is easy to devise a padded encoding of this much larger length.)
Thus, in the projection circuit computing the reduction CX 7→ (CX , n − 3), the output bits
encoding n−3 are hardwired to constants, and the input bits encoding CX are copied directly
to the output. ◀

▶ Theorem 24. Promise-EANC0 and Promise-SDUNC0 are hard for NISZKL under ≤proj
m

reductions.

Proof. By Corollary 23, it suffices to show hardness for SDUNC0 . In order to establish
hardness, we need to develop the machinery of perfect randomized encodings, which were
developed by Applebaum et al. [12] and then were applied in the setting of SZKL by Dvir
et al. [15]. Due to space limitations, we refer the reader to [6] for the discussion of perfect
randomized encodings.

4.2.1 SDUNC0 is Complete for NISZKL

We now have all of the tools required to complete the proof of Theorem 24.
Let

∏
be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator

S and let x be an instance of
∏

. Recall that the job of the simulator S is to take a string x

and some uniformly-generated random bits as input, and produce as output a transcript of the
form (σ, p), such that the probability that any transcript (σ, p) is output by S is very close to
the probability that, on input x with shared randomness σ, the prover P sends message p to
the verifier V . Let Mx(s) denote a routine that simulates S(x) with randomness s to obtain
a transcript (σ, p); if V (x, σ, p) accepts, then Mx(s) outputs σ, otherwise it outputs 0|σ|. (We
can assume without loss of generality that |σ| = |x|k.) It is shown in [18, Lemma 4.2] that
the map x 7→ Mx is a reduction of Π to SDU:
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▷ Claim 25. If x ∈
∏

Y ES , then ∆(Mx, U|x|k)) < 1/|x|k, and x ∈
∏

NO implies ∆(Mx, U|x|k ))
> 1 − 1/|x|k.

The proof of the preceding claim in [18, Lemma 4.2] actually shows a stronger result. It
shows that, if the statistical difference between the output distribution of the simulator and
the distribution of true transcripts is at most 1/e(n), then the statistical difference of Mx

and the uniform distribution is at most 1/e(n) + 2−n on inputs of length n. Thus, using
Definition 1 (which is equivalent to the definition of NISZK given in [18]), the simulator
produces a distribution that differs from the uniform distribution by only 1/nω(1). Thus we
have the following claim:

▷ Claim 26. Let c ∈ N. Then for all large x, If x ∈
∏

Y ES , then ∆(Mx, U|x|k)) < 1/|x|kc,
and x ∈

∏
NO implies ∆(Mx, U|x|k )) > 1 − 1/|x|kc.

Furthermore, it is also shown in [18, Lemma 3.1] that EA has a NISZK protocol in which
the completeness error, soundness error, and simulator deviation are all at most 2−m on
inputs of length m. Furthermore, that proof carries over to show that EABP ∈ NISZKL with
these same parameters. Thus we obtain the following fact, which we will use later in Section 6.

▷ Claim 27. Let c ∈ N. Then for all large x, If x is a Yes-instance of EABP, then
∆(Mx, U|x|k)) < 1/2|x|−1, and if x is a No-instance of EABP, then ∆(Mx, U|x|k )) > 1−1/2|x|−1.

Since S runs in logspace, each bit of Mx(s) can be simulated with a branching program
Qx. Furthermore, it is straightforward to see that there is an AC0-computable function that
takes x as input and produces an encoding of Qx as output, and it can even be seen that
this function can be a projection. (To see this, note that in the standard construction of a
Turing machine from a logspace-bounded Turing machine S (with input (x, s)) each node
of the branching program has a name that encodes a configuration of the machine, a time
step, and the position of the input head. This branching program can be constructed in AC0,
given only the length of x. In order to construct Qx, it suffices merely to hardwire in the
transitions from any node that is “scanning” some bit position xi. That is, if the transition
out of node v goes to node v0 if xi = 0 and to node v1 if xi = 1, then in the adjacency matrix
for Qx, entry (v, v1) = xi and entry (v, v0) is ¬xi. This is clearly a projection.)

Now apply the projection of [6, Lemma 37] to (each output bit of) the branching program
Qx of size ℓ, to obtain an NC0 circuit Cx computing a perfect randomized encoding with
blowup b = 2|x|k((ℓ

2)−1)(2(ℓ−1)2−1). (Cx has log b + |x|k output bits.)
Now consider |H(Cx)−H(Ulog b+|x|k )|. By [6, Lemma 28] this is equal to |H(Qx)+log b−

H(Ulog b+|x|k )|. Since H(Qx) = H(Mx) and H(Ulog b+|x|k ) = log b + H(U|x|k ), we have that
|H(Cx) − H(Ulog b+|x|k )| = |H(Mx) − H(U|xk|)|. The proof of Theorem 24 is now complete,
by appeal to Claim 26. ◀

5 Hardness of MKTP under Projections

▶ Theorem 28. MKTP is hard for co-NISZKL under nonuniform ≤AC0

m reductions.

An immediate corollary (making use of the “Gap Theorem” of [1]) is that MKTP is hard
for co-NISZKL under ≤NC0

m reductions. Below, we improve this, showing hardness under
projections.

▶ Corollary 29. MKTP is hard for co-NISZKL under nonuniform ≤NC0

m reductions.
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▶ Corollary 30. MKTP is hard for co-NISZKL under nonuniform ≤proj
m reductions.

Proof. We now need to claim that the AC0-computable reduction of Theorem 28 can be
replaced by a projection. Note that, since SDUNC0 is complete for NISZKL under projections,
and since the reduction from SDUNC0 to EANC0 given in Corollary 23 always uses the same
entropy bound n − 3, we have that it suffices to consider EANC0 instances x = (Cx, k) where
the bound k depends only on the length of x. Thus the bound θ produced by our AC0

reduction also depends only on the length of x, and hence can be hardwired in.
We now need only consider the string y. The ≤AC0

m reduction presented in the proof of
Theorem 28 takes as input Cx and r and produces the bits of y by feeding bits of r into Cx.
Let us recall where the NC0 circuitry producing the i-th bit of y comes from.

[6, Lemma35] shows how to take an arbitrary branching program and encode the
problem of whether the program accepts as a question about the entropy of a distribution
represented as a matrix of degree-three polynomials. Each term in this matrix is of the form∑

j,k R1 (i,k)L(k,j)R2 (j,m), where the matrices R1 and R2 are the same for all inputs of of the
same length. Thus we need only concern ourselves with the matrix L.

In Section 4.2.1, it is observed that, given an instance x of a promise problem in NISZKL,
the branching program Qx that is used, in order to build the matrix L, can be constructed
from x by means of a projection. The “input” to this branching program Qx is a sequence
of random bits (part of the random sequence r that is hardwired in, in order to create the
nonuniform AC0 reduction in the proof of Theorem 28). Thus, the only entries of the matrix
L that depend on x are entries of the form (u, v) where u and v are configurations of a
logspace machine, where the machine is scanning xi in configuration u, and it is possible
to move to configuration v. [6, Lemma 37] then shows how to construct NC0 circuitry for
each term in the degree-three polynomial constructed from Qx in the proof of [6, Lemma 35].
The important thing to notice here is that each output bit in the NC0 circuit depends on at
most one term of one of the degree-three polynomials, and hence it depends on at most one
entry of the matrix L – which means that it depends on at most one bit of the string x.

Thus, consider any bit yi of the string y produced by the nonuniform AC0 reduction from
Theorem 28. Either yi does not depend on any bit of x, or it depends on exactly one bit xj of
x. In the latter case, either yi = xj or yi = ¬xj . This defines the projection, as required. ◀

The following corollary was pointed out to us by Rahul Santhanam.

▶ Corollary 31. MKTP does not have THRESHOLD◦MAJORITY circuits of size 2no(1) .

Proof. This is immediate from the lower bound on the Inner Product mod 2 function that
is presented in [16]. (See also [11] for a slightly stronger lower bound.) ◀

It should be noted that it remains unknown whether MCSP has THRESHOLD◦MAJORITY
circuits of polynomial size.

6 An Application: Average-Case Complexity

The efficient reductions that we have presented have some immediate applications regarding
worst-case to average-case reductions. First, we recall the definition of errorless heuristics:

▶ Definition 32. Let A be any language. An errorless heuristic for A is an algorithm (or
oracle) H such that, for every x, H(x) ∈ {Yes, No, ?}, and

H(x) = Yes implies x ∈ A.
H(x) = No implies x ̸∈ A.
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▶ Definition 33. A language A has no average-case errorless heuristics in C if, for every
polynomial p, and every errorless heuristic H ∈ C for A, there exist infinitely many n such
where Prx∈Un

[H(x) =?] > 1 − 1/p(n).

In order to state our first theorem relating to average-case complexity, we need the
following circuit-based definition:

▶ Definition 34. Let C be any complexity class. (Usually, we will think of C being a class
defined in terms of circuits, and the definition is thus phrased in terms of circuits, although it
can be adapted for other complexity classes as well.) The class OR ◦ C is the class of problems
that can be solved by a family of circuits whose output gate is an unbounded fan-in OR gate,
connected to the outputs of circuits in the class C.

If problems in NISZKL are hard in the worst case, then there are problems in NP that are
hard on average:

▶ Theorem 35. Let C be any complexity class that is closed under ≤proj
m reductions. If

NISZKL ̸⊆ OR ◦ C, then there is a set A in NP that has no average-case errorless heuristics
in C.

The following definition is implicit in the work of Bogdanov and Trevisan [14].

▶ Definition 36. A worst-case to errorless average-case reduction from a promise problem
∏

to a language A is given by a polynomial p and BPP machine M , such that A is accepted by
MH for every oracle errorless heuristic H for A such that Prx∈Un

[H(x) =?] < 1 − 1/p(n).

▶ Corollary 37. There is a problem A ∈ NP such that there is a non-adaptive worst-case to
errorless average-case reduction from every problem in SZK to A.

▶ Remark. It is implicitly shown by Hirahara [20] that Corollary 37 holds under adaptive
reductions. The significance of the improvement from adaptive and non-adaptive reductions
lies in the fact that Bogdanov and Trevisan showed that the problems in NP for which there
is a non-adaptive worst-case to errorless average-case reduction to a problem in NP lie in
NP/poly ∩ coNP/poly [14, Remark (iii) in Section 4]. Thus SZK may be close to the largest
class of problems for which non-adaptive worst-case to errorless average-case reductions to
problems in NP exist.

The worst-case to average-case reductions of Definition 36, must work for every errorless
heuristic that has a sufficiently small probability of producing “?” as output. If we consider
a less-restrictive notion (allowing a different reduction for different errorless heuristics) then
in some cases we can lower the complexity of the reduction from BPP to AC0.

▶ Definition 38. Let D be a complexity class, and let R be a class of reducibilities. We say that
errorless heuristics for language A are average-case hard for D under R reductions if, for every
polynomial p and every errorless heuristic H for A where Prx∈U|x| [H(x) =?] < 1 − 1/p(|x|),
and for every language B ∈ D, there is a reduction r ∈ R reducing B to H.

▶ Corollary 39. There is a language A ∈ NP, such that errorless heuristics for A are
average-case hard for SZKL under non-adaptive AC0-Turing reductions.

▶ Corollary 40. Let C be any class that is closed under non-adaptive AC0-Turing reductions.
If SZKL ̸⊂ C, then there is a problem in NP that has no average-case errorless heuristic in C.

Proof. If SZKL ̸⊂ C, then by Proposition 3, NISZKL is also not contained in C. The result is
now immediate from Theorem 35. ◀
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▶ Remark. Building on earlier work of Goldwasser et al. [19], average-case hardness results
for some subclasses of P based on reductions computable by constant-depth threshold circuits
were presented in [2]. (Although certain aspects of the reductions presented in [2, 19] are
computable in AC0, in order to obtain deterministic worst-case algorithms, MAJORITY gates
are required in those constructions.) We are not aware of any prior work that provides average-
case hardness results based on reductions computable in AC0, particularly for classes that
are believed to contain problems whose complexity is suitable for cryptographic applications.

7 Conclusion and Open Problems

By focusing on non-uniform versions of ≤P
m reductions, we have shed additional light on

how MKTP relates to subclasses of SZK. Some researchers are of the opinion that MCSP
(and MKTP) are likely complete for NP under some type of reducibility, and some recent
progress seems to support this [25]. For those who share this opinion, a plausible first step
would be to show that MKTP is hard not only for co-NISZK, but also for NISZK, under
≤P/poly

m reductions. (Work by Lovett and Zhang points out obstacles to providing such a
reduction via “black box” techniques [29].) And of course, it will be very interesting to see if
our hardness results for MKTP hold also for MCSP.
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