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Abstract
We give a distributed algorithm which given ϵ > 0 finds a (1− ϵ)-factor approximation of a maximum
f -matching in graphs G = (V, E) of sub-logarithmic expansion. Using a similar approach we also
give a distributed approximation of a maximum b-matching in the same class of graphs provided the
function b : V → Z+ is L-Lipschitz for some constant L. Both algorithms run in O(log∗ n) rounds
in the LOCAL model, which is optimal.
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1 Introduction

A matching in a graph G = (V, E) is a set of edges M ⊆ E such that every vertex v ∈ V

belongs to at most one edge e ∈ M . Although the concept of a matching can be generalized
in a few different ways, two natural and useful notions that have been considered in this
context are that of an f -matching and a b-matching. Let G = (V, E) be a (simple) graph
and let f : V → Z+. A set M ⊆ E is called an f-matching in G if for every v ∈ V , v is
incident to at most f(v) edges from M . Given a function b : V → Z+, a b-matching in G is
a function x : E → N such that for every vertex v ∈ V ,

∑
y∈N(v) x(vy) ≤ b(v). Sometimes

an f -matching is called a simple b-matching (a capacitated b-matching with bound one for
capacities) [15].

In particular, in the case when f = 1 (b = 1) , then an f -matching (b-matching)
is simply a matching. The main difference between f -matchings and b-matchings is
that in the case of b-matchings x : E → N and the corresponding assignment x for f -
matching satisfies x : E → {0, 1}. We shall use νf (G) and νb(G) to denote the maximum
f -matching and b-matching, that is νf (G) = max{|M | : M is an f -matching in G} and
νb(G) = max{

∑
e∈E x(e) : x is a b-matching in G}. In addition, we use ν(G) for the size of

a maximum matching in G.
We will use the LOCAL model from Peleg’s book [14]. In this model a distributed

network is modeled as an undirected graph with vertices corresponding to computational units
and edges representing bidirectional links between them. The computations are synchronized,
and in each round every vertex can send and receive messages from its neighbors, and, in
addition, can perform some local computations. Neither the size of messages sent nor the
amount of computations is restricted in any way. In addition, vertices have unique identifiers
from {1, . . . , n} where n is the order of the graph.
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1.1 Related Work
Although distributed algorithms for matchings have been studies extensively, little is known
about f -matchings and b-matchings.

A maximal matching gives a 1/2-factor approximation of a maximum and there has been
some success in designing distributed algorithms that find a maximal matching. Seminal
papers of Hanćkowiak, Karoński and Panconesi [8, 9] give deterministic poly-logarithmic
algorithms for the maximal matching problem. Recently, a faster distributed algorithm for the
maximal matching problem was given by Fischer [5]. This algorithm runs in O(log2 |V | log ∆)
rounds in graphs G = (V, E) of maximum degree ∆. At the same time Kuhn et al. [12]
showed that finding a maximal matching in a graph G of order n and maximum degree ∆
requires Ω(log ∆/ log log ∆ +

√
log n/ log log n) rounds.

Distributed approximations for the maximum matching problem which run in a poly-
logarithmic number of rounds are known [2, 3]. Quite recently, Ghaffari, Harris and Kuhn
[6] gave a O(log2 n log5 (∆/ϵ9)) algorithm that finds a (1 − ϵ)-factor approximation of a
maximum matching in a graph on n vertices with maximum degree ∆, and Harris [10] gave
fast approximation algorithms for weighted maximum matching and hypergraph matching.

As impressive as these algorithms are, their time complexity is often prohibitively high.
Not surprisingly, there has been a lot of interest in designing faster distributed algorithms for
special classes of graphs. For planar graphs, there is a distributed deterministic algorithm [4]
which given ϵ > 0 finds in a graph G of order n in O(log∗ n) rounds, a matching M such that
|M | ≥ (1 − ϵ)ν(G). This algorithm proceeds in two main steps. First, an ad-hoc procedure
is used to reduce a given graph G = (V, E) to a graph G′ = (V ′, E′) such that (1) |V ′| is
proportional to the size of a maximum matching and (2) a maximum matching in G′ is also
maximum in G and (3) G′ is still planar. Second, a clustering algorithm is used to partition
V ′ into sets V1, . . . , Vl so that it is possible to quickly find optimal solutions in graphs G′[Vi]
and combine them to obtain a good approximation in the whole graph G′ and so G.

The notions of an f -matching and b-matching are significantly more general. Very little
is known about the distributed complexity of f -matchings except what can be concluded
from the case f = 1. Using the Tutte’s construction (see for example [15]) one can reduce
b-matchings to matchings but this reduction infuses potentially large complete bipartite
graphs.

Hanćkowiak [7] gave a poly-logarithmic running time algorithm for the maximal f -
matching problem in general graphs which builds on the approach for matchings [8]. In
addition, extending the approach for matchings, Fischer [5] managed to give a deterministic
distributed algorithm for (1/2 − ϵ)-approximating a maximum f -matching in general graphs
that runs in O(log2 ∆ log 1/ϵ + log∗ |V |) rounds. In the case of a maximum b-matching it is
possible to reduce it to the problem of a maximum matching but the reduction leads to graphs
which can potentially contain large complete bipartite graphs. Consequently, the graph
obtained after reduction can have minors of large cliques. As a result, maximum matching
algorithms that exploit sparseness conditions cannot be invoked in the graph obtained by
the reduction.

1.2 Results
We will give approximation algorithms for f -matchings and b-matchings. Although our
primary interest comes from graphs that are Km-minor-free for a fixed integer m, it is possible
to phrase the results in terms of graphs of sub-logarithmic expansion which generalize the
former class. (See Section 2 for definitions.)
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Our first contribution is a distributed algorithm which given a graph G = (V, E) of
sub-logarithmic expansion and ϵ > 0 finds a (1 − ϵ)-factor approximation of a maximum
f -matching in G. The algorithm runs in O(log∗ |V |) rounds (Theorem 7). The algorithm
proceeds in two main steps, the first, described in detail in what follows, reduces the input
graph to a graph in which a maximum f -matching is proportional to the number of vertices
and the second invokes the clustering procedure of Amiri et al. [1].

The case of b-matchings is surprisingly more subtle in the realm of sparse graphs and
our approach requires an additional assumption about function b. Specifically, we shall
require that b is L-Lipschitz for some constant L, which is known to the algorithm. Under
the same regime as f -matchings, we again give a O(log∗ |V |)-time distributed (1 − ϵ)-factor
approximation (Theorem 17).

It is known [4] that finding a constant approximation of a maximum matching or maximum
independent set in a cycle on n vertices requires Ω(log∗ n) rounds and so the running time in
Theorem 7 and Theorem 17 cannot be improved.

Algorithms for both theorems use in their second main step, i.e. the clustering procedure,
the procedure of Amiri et al. [1] which is based on the algorithm of Czygrinow et al. [4].
However the first main step of both algorithms, i.e. the reduction phase is new and relies on
the Gallai-Edmonds theorem [11]. The rest of the paper is structured as follows. In Section
2 we introduce necessary terminology. In Section 3 we discuss f -matchings and Section 4 is
devoted to b-matchings.

2 Preliminaries

For a positive integer r and a graph H, we say that H is a minor of depth r of graph
G = (V, E) if for some subgraph G′ = (V ′, E′) of G it is possible to partition V ′ into
sets V1, . . . , Vl so that for every i, G′[Vi] has radius at most r and the graph obtained by
contracting each Vi to a vertex is isomorphic to H. We will set ∇r(G) = maxH

|E(H)|
|V (H)| where

the maximum is taken over all minors H of depth r of G. A graph G is said to have a
bounded expansion if there exists g : N → N such that for every r ∈ N, ∇r(G) ≤ g(r). Note
that surprisingly many classes of graphs have bounded expansion and we refer to [13] for an
extensive discussion. In this paper, we will consider graphs G of sub-logarithmic expansion,
that is graphs G such that ∇r(G) ≤ g(r) for some g(r) ∈ o(log r). The class was introduced
by Amiri et al. [1] where it is shown that the clustering algorithm from [4] works in this
more general setting. In the case graph G is Km-minor-free for some fixed m, ∇r(G) can be
bounded from above by a constant which depends on m only and so graphs of sub-logarithmic
expansion include graphs that are Km-minor-free for a fixed m. In addition, we obviously
have ∇r(G) ≤ ∇r+1(G).

Our analysis relies on the Gallai-Edmonds theorem. To state it we need some additional
terminology. A k-factor of a graph G is a spanning k-regular subgraph of G. In particular, a
1-factor is a perfect matching. For a graph H, we use CH to denote the set of (connected)
components of H. A graph H is called factor-critical if, for every v ∈ V (H), graph H − v has
a 1-factor. Note that a component with only one vertex is factor-critical. Gallai-Edmonds
theorem (see for example Kotlov [11]) will play a major role in our analysis. For a graph
G = (V, E) let A be the set of vertices v ∈ V such that there is a maximum matching in G

that does not cover v. Let B := N(A) = {v ∈ V \A | ∃w∈Avw ∈ E}, and let C := V \(A∪B).
Clearly, {A, B, C} is a partition V (although some sets can be empty) which we will call a
Gallai-Edmonds decomposition of graph G. We have the following theorem.

ISAAC 2021
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▶ Theorem 1 (Gallai-Edmonds Theorem). Let G = (V, E) be a graph and let {A, B, C} be a
Gallai-Edmonds decomposition of G. Then the following conditions hold.
(a) Every odd component H of G − B is factor-critical and V (H) ⊆ A.
(b) Every even component H of G − B has a perfect matching and V (H) ⊆ C.
(c) For every non-empty subset X ⊆ B, N(X) has vertices from more than |X| odd com-

ponents of G − B.
In particular, in view of Hall’s theorem, B is matchable to the set of odd components in
G − B.

Fix g : N → N such that g(r) = o(log r) and ∇r(G) ≤ g(r). It will be convenient to define
D := 2 · g(1). Although the algorithms do not need to have perfect information about g, they
certainly need to know D. By definition, for every subgraph H of G we have∑

v∈V (H)

degH(v) ≤ D · |V (H)|. (1)

We will call a clique S an i-clique if |S| = i.

▶ Lemma 2. Let G be a graph of order n, D be such that ∇0(G) ≤ D/2 and let i ≥ 2. Then
there is a vertex v ∈ V (G) that belongs to at most

(
D

i−1
)

i-cliques.

Proof. Note that the statement is true when i = 2. For i ≥ 3, let v be a vertex of minimum
degree which by (1) is at most D. Then every i-clique containing v is a subset of N [v]. ◀

3 f -matchings

Assume that G satisfies ∇r(G) ≤ g(r) and D = 2 · g(1). We call u, v ∈ V (G) i-clones if
N(u) = N(v) and |N(u)| = i. Note that we consider open neighborhoods and so if uv

is an edge then u and v are not clones. The relation of being i-clones, ∼i, is symmetric,
transitive, and reflexive on the set Vi := {v | deg(v) = i}. Let v1, . . . , vl be i-clones such that
N(v1) = {u1, . . . , ui} and l ≥ i + 1. Since for every j ∈ {1, . . . , i}, deg(uj) ≥ l ≥ i + 1, uj

cannot be an i-clone of any other vertex.
In the first phase of the algorithm we trim graph G, discard some edges, and delete isolated

vertices so that for the trimmed graph G′ we have νf (G′) = νf (G) and νf (G′) = Ω(|G′|).
Phase 1 is split into two procedures Discard Edges and Trimming.

Procedure Discard Edges (G, i).

Let G′ be the graph obtained from G by deleting the following edges. For every equivalence
class {v1, . . . , vl} of ∼i in Vi which satisfies f(v1) ≥ f(v2) ≥ · · · ≥ f(vl):

If l ≥ D and N(v1) = {u1, . . . , ui} then, assuming f(u1) ≤ f(uj) for every j ∈
{1, . . . , i}, delete edges u1vj for j > max{f(u1), D}.

Return G′.

We will first show that graph G′ obtained by Discard Edges has the same size of a
maximum f -matching as G does.

▶ Lemma 3. Let i ∈ Z+ and let G′ denote the graph returned by Discard Edges(G, i).
Then

νf (G′) = νf (G).
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Figure 1 Case 2 of the proof of Lemma 3.

Proof. Clearly νf (G′) ≤ νf (G). To prove the opposite inequality consider f -matching F in G

of size νf (G) that contains as few edges from E(G) \ E(G′) as possible. Note that only edges
incident to u1 are removed from G. Suppose F contains u1vk for some k > max{f(u1), D}.
Thus from all edges u1v1, . . . , u1vf(u1) that are in G′, at least one of them, say u1v1, is not
in F .
Case 1: If ujv1 ∈ F for at most f(v1) − 1 edges ujv1, then consider F ′ = F − u1vk + u1v1

and note that F ′ is an f -matching of size |F | with fewer edges from E(G) \ E(G′) than
F .

Case 2: For some j ∈ {1, . . . , i}, ujv1 ∈ F but ujvk /∈ F . Then consider F ′ = F − u1vk −
ujv1 + u1v1 + ujvk.

If none of the cases 1 and 2 hold, then v1 is incident to f(v1) edges v1uj ∈ F such that
j ≥ 2 and vk is incident to f(v1) + 1 edges from F because we have that ujvk ∈ F whenever
ujv1 ∈ F and additionally ujvk ∈ F . Thus f(vk) > f(v1), but by definition of the algorithm,
f(vk) is at most f(vj) for every j ≤ max{f(u1), D} . ◀

We now consider the main trimming procedure.

Procedure Trimming(G).

For i = D − 1 downto 1, let G := Discard Edges(G, i).
Let H be obtained from G by deleting all isolated vertices.
Return H.

Let H be the graph returned by Trimming(G) for the original graph G. In addition, we
use Gi to denote graph G for which we call Discard Edges(G, i) in the ith iteration of the
loop in step one. Before proving our main lemma, we show the following observation.

▶ Lemma 4. Let 1 ≤ k ≤ D − 1, and let Y = {y1, . . . , yj}, |Y | = j, be k-clones in H such
that NH(y1) = {u1, . . . , uk}. Then

j ≤ D · f∗,

where f∗ = min1≤i≤k{f(ui)}.

Proof. We claim that y1, . . . , yj are k-clones in Gk. First note that in view of the main step
of Discard Edges, if x is a vertex in G such that degGl

(x) ≥ D for some l < D, then
degH(x) ≥ D. Indeed, vj has degree less than D as l < D , moreover for u1 edges u1vj can
be deleted, but Discard Edges always keeps at least D edges incident to u1.

ISAAC 2021
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We clearly have NH(yl) ⊆ NGk
(yl) for every l = 1, . . . , j. Suppose k = degH(yl) <

degGk
(yl) for some l. Then yl had some edges deleted from the set of edges incident to yl in

Gk in iteration i for some i ≤ k. However in iteration i, we delete edges incident to vertices
of degree i or vertices of degree larger than D, keeping at least D of them. Thus either
degH(yl) < k ,which is not possible, or degH(yl) ≥ D, contradicting k ≤ D − 1.

Since y1, . . . , yj are k-clones in Gk, we have j ≤ max{f∗, D} after step two of Discard
Edges(Gk, k). Consequently, j ≤ D · f∗ because f∗ and D are at least one. ◀

By Lemma 3, we have

νf (H) = νf (G), (2)

and H has no isolated vertices.
We will now establish our second fact which shows that νf (H) is proportional to the

order of H.

▶ Lemma 5. Let G be a graph such that ∇1(G) ≤ D/2 and let H be obtained by calling
Trimming(G). Then νf (H) ≥ cD|V (H)| for some cD which depends on D only.

Proof. We will use Theorem 1. Let {A, B, C} be a Gallai-Edmonds decomposition of H.
Then the size of a maximum matching in H is Ω(|B| +

∑
W |W |) where the sum is taken

over components W of H − B of order at least two. Since a maximum f -matching has size
larger than or equal to the size of a maximum matching,

νf (H) = Ω(|B| +
∑
W

|W |).

Let X be the set of components of H − B of size one. We will identify each component
from X with the vertex it contains. Since H has no isolated vertices, every component
from X has at least one neighbor in B. Let Y be the set of components in X which have
at least D neighbors in B. We have D · |Y | ≤ |EH(Y, B)| ≤ D(|Y | + |B|)/2 from (1), and
so |Y | ≤ |B|. Thus νf (H) = Ω(|Y |). For i = 1, . . . , D − 1, let Xi ⊆ X denote the set of
components that have exactly i neighbors in B. In the rest of the argument we will show
that for i ∈ {1, . . . , D − 1}, νf (H) = ΩD(|Xi|). Given that this is the case, we can conclude

νf (H) = Ω(|B| +
∑
W

|W | + |Y | +
∑
i<D

|Xi|) = ΩD(|V (H)|).

▷ Claim 6. For i ∈ {1, . . . , D − 1}, νf (H) = ΩD(|Xi|).

Proof. Let H∗ := (B, ∅) be the edge-less graph on the set B. Order the vertices in Xi and
proceed one by one for as long as possible using the following procedure. Take y ∈ Xi. If
NH(y) is not an i-clique in H∗, then take two non-adjacent vertices v1, v2 from NH(y) ⊆ B,
add an edge between them to H∗, and delete y from Xi. Formally, we delete all edges
incident to y except yv1, yv2 and contract the edge yv1. Let X∗

i denote the set of deleted
vertices. Then |X∗

i | = |E(H∗)| ≤ ∇1(G)|B| ≤ D|B|/2. We will now bound the number of
remaining vertices. Unlike the previous part of the argument, we will show that there is an
f -matching F in H such that |F | ≥ ΩD(|Xi \ X∗

i |).
For every vertex y ∈ Xi \ X∗

i , NH(y) is an i-clique in H∗, and if y, y′ ∈ Xi \ X∗
i are

such that NH(y) = NH(y′), then y and y′ are i-clones. We will put weights on these cliques.
Specifically, the weight of an i-clique T is the number of vertices y in Xi \ X∗

i such that
NH(y) = T . By Lemma 4, for every i-clique T in H∗, the weight of T satisfies ω(T ) ≤ D · fT ,
where fT = minu∈T f(u). In addition, we have∑

T

ω(T ) = |Xi \ X∗
i |. (3)
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We will now assign i-cliques to vertices from B so that the following conditions hold:
If T is assigned to v, then v ∈ T ;
There are at most

(
D

i−1
)

cliques assigned to every vertex v;
Every i-clique in H∗ is assigned to exactly one vertex from B.

This is possible, because by Lemma 2, there is a vertex v in B which is in at most
(

D
i−1

)
i-cliques

T in H∗. We assign these cliques to v and continue the process (note that ∇0(H∗ − v) ≤
∇0(H∗)). Let Ev denote the set of cliques assigned to v. For every T ∈ Ev, the weight
satisfies ω(T ) ≤ D · fT ≤ D · f(v) because v ∈ T . Let Tv ∈ Ev be an i-clique in Ev of the
largest weight. Then, by (3),

∑
v

ω(Tv) ≥
∑

v

∑
T ∈Ev

ω(T )/
(

D

i − 1

)
=

∑
T ω(T )(

D
i−1

) = |Xi \ X∗
i |/

(
D

i − 1

)
.

Since f(x) ≥ 1 for every x, we can select ⌈ω(Tv)/D⌉ ≤ f(v) vertices y ∈ Xi \ X∗
i to get star

Fv with center at v and selected vertices y as its leaves. Since Fu ∩ Fv = ∅ when u ̸= v,
⋃

Fv

is an f -matching in H of size at least |Xi \ X∗
i |/(D ·

(
D

i−1
)
). Consequently,

|Xi| = |X∗
i | + |Xi \ X∗

i | = OD(|B|) + OD(νf (H)) = OD(νf (H)). ◁

That concludes the proof of Lemma 5. ◀

We will now proceed to Phase 2 of the algorithm. For this phase we need to know that
the graph G has sub-logarithmic expansion g. Note that to use the algorithm in Phase 2,
constant cD (or a bound for it) must be provided and, in addition, the algorithm from [1]
which is used in step 2 requires some knowledge of the function g.

Procedure Approximation(G, ϵ, g).

Use Trimming(G) to obtain graph H.
Use the algorithm from [1] to find a partition of V (H) into sets V1, . . . , Vl such that
diam(Vi) = Oϵ,D(1) and the number of edges with endpoints in different sets Vi is at
most ϵ · cD|H|.
Find an optimal solution Fi in H[Vi] and return

⋃
Fi.

▶ Theorem 7. There is a distributed algorithm which given a graph G on n vertices of
expansion g such that g(r) = o(log r) and ϵ > 0 finds an f-matching F in G such that
|F | ≥ (1 − ϵ)νf (G). The algorithm runs in Oϵ,D(log∗ n) rounds.

Proof. Use Approximation(G, ϵ, g). By (2), νf (H) = νf (G) and by Lemma 5, νf (H) ≥
cD|H|. We have

νf (G) ≤
∑

i

|Fi| + ϵ · cD|V (H)| ≤ |F | + ϵνf (G).

Trimming runs in the number of rounds which depends on D only and the running time of
the algorithm from [1] is O(log∗ n). ◀

ISAAC 2021
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4 b-matchings

In this section, we will discuss maximum b-matchings. All graphs are finite and simple. As
before, we will consider graphs with sub-logarithmic expansion g and set D := 2 · g(1).

▶ Definition 8. Given a (simple) graph G = (V, E) and a function b : V → Z+, let
νb(G) = max{

∑
e∈E x(e)} where the maximum is taken over all functions x : E → N such

that for every vertex v ∈ V ,
∑

y∈N(v) x(vy) ≤ b(v).

In our reduction algorithm, we will assume that b is L-Lipschitz for some given constant L,
that is b : (V, d1), → (Z+, d2) satisfies d2(b(u), b(v)) ≤ Ld1(u, v) for any u, v ∈ V , where d1
is the metric determined by the distance in graph G = (V, E) and d2(a, b) = |a − b|. The
condition will be of no relevance if u and v are in different connected components of G.

To start the analysis we have the following observation.

▶ Fact 9. Let G = (V, E) be a graph with ∇0(G) ≤ D/2 and let b : V → Z+. Define
ω : E → Z+ as

ω(uv) := min{b(u), b(v)}. (4)

Then (a) ω(E) ≤ D · b(V ) and (b) νb(G) ≤ ω(E).

Proof. We shall prove (a) by induction on |V |. The base case is obvious. For the inductive
step, by (1), the average degree of G is at most D and so there is a vertex v ∈ V of degree at
most D. By induction, ω(E(G − v)) ≤ D · b(V \ {v}) and the weight on edges incident to v

is at most D · b(v) by (4). For (b), if x : E → N is such that x(E) = νb(G), then for every
e ∈ E, x(e) ≤ ω(e). ◀

The general idea behind the approach is the same as in the case of f -matchings. We first
reduce graph G using the notion of i-clones and then apply clustering. However, the reduction
and the fact that it accomplishes the desired result (Lemma 16) require additional care.

Procedure Modify(G, b, i).

Let G′ be the graph obtained from G by deleting the following edges. For every equivalence
class {v1, . . . , vl} of ∼i in Vi in parallel:

If l > D and N(v1) = {u1, . . . , ui}, then delete vertices vD+1, . . . , vl. Set b′(vD) :=
b(vD) + · · · + b(vl) and b′(w) := b(w) for any other vertex w.

Return (G′, b′).

For a graph G = (V, E) and v ∈ V , we used EG(v) to denote the set of edges e ∈ E such
that v ∈ e.

▶ Fact 10. Let (G′, b′) denote the pair returned by Modify(G, b, i).
(a) Then νb′(G′) = νb(G).
(b) For every u ∈ V (G′) either degG′(u) ≥ D or NG′(u) = NG(u).

Proof. We will first show part (a). Let x : E(G) → N be a maximum b-matching in G

and let ap =
∑i

k=1 x(vpuk). Let x′ be obtained by setting x′(vDuk) :=
∑l

p=D x(vpuk) and
x′(vjuk) := x(vjuk) for j < D. Then x′ : E(G′) → N and for every k ∈ {1, . . . , i},∑

e∈EG(uk)

x(e) =
∑

e∈EG′ (uk)

x′(e)
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as the total value of x on edges between uk and v1, . . . , vl stays the same. Obviously, for
j < D, we have

∑i
k=1 x′(vjuk) =

∑i
k=1 x(vjuk) and, in addition,

i∑
k=1

x′(vDuk) =
l∑

p=D

ap ≤
l∑

p=D

b(vp) = b′(vD)

as ap ≤ b(vp). Thus x′ is a b′-matching in G′ of the same value as x.
Similarly, let x′ : E(G′) → N be a maximum b′-matching in G′. Then

∑
e∈EG′ (uk) x′(e) ≤

b′(uk) = b(uk) for every k ∈ {1, . . . , i}, and
∑i

k=1 x′(vDuk) ≤ b′(vD). For p > D, taking
ap to be the maximum value such that 0 ≤ ap ≤ b(vp) and

∑i
k=1 x′(vDuk) − ap ≥ 0, we

can write ap =
∑i

k=1 api where 0 ≤ api ≤ x′(vDuk) and assign api to vpuk so that the total
of ap is reassigned from E({vD}, {u1, . . . , ui}) to E({vp}, {u1, . . . , ui}). Proceeding one by
one with p = D + 1, . . . , l gives x : E(G) → N such that x(E(G)) = x′(E(G′)) and x is a
b-matching in G.

For part (b), removing vertices vj for j > D only affects the neighborhoods of vertices
u1, . . . , ui. However, for every k ∈ {1, . . . , i}, degG′(uk) ≥ D as we keep D of i-clones from
v1, . . . , vl. ◀

After Modify(G, b, i) we obtain a graph (G′, b′), where some vertices were removed from G

and for some vertices v, we have b(v) < b′(v). In this cases v will be called special. Note that
it is easy to reverse Modify and obtain x on G from x′ on G′ by making special vertices
distribute x′ to deleted vertices as described in the proof.

We will now obtain a reduction of G which will be used in further computations.

Procedure Reduction(G, b).

1. For i = D − 1 downto 1, let (G, b) :=Modify(G, b, i).
2. Return (G, b).

▶ Lemma 11. Let (G′, b′) denote the pair returned by Reduction(G, b). Then we have the
following:
(a) νb′(G′) = νb(G);
(b) For every i < D, if S ⊆ V has size i, then there are at most D i-clones v in G′ such

that NG′(v) = S.

Proof. The first part follows from Fact 10 (a). For the second part, if w1, . . . , wl are i-clones
in G′ and NG′(w1) = S, then, by Fact 10 (b), we have NG(wk) = S for every k ∈ {1, . . . , l}.
Consequently, w1, . . . wl are i-clones in the original graph G and all graphs obtained in step
one of Reduction(G, b). Therefore, in the ith iteration, all but at most D of w1, . . . , wl are
removed, and so l ≤ D. ◀

To prove our main fact (Lemma 16) we need some additional preparation. In the proof of
the main lemma, we will use the Tutte’s construction that reduce the problem of b-matchings
to matchings.

▶ Definition 12. Let G̃ = (Ṽ , Ẽ) be obtained from G = (V, E) as follows. Replace vertex v

from V with an independent set Uv of size |Uv| = b(v) so that for i ̸= j, Uv ∩ Uw = ∅. If
vw ∈ E then add all edges xy to Ẽ for every x ∈ Uv and y ∈ Uw.

The following fact is easy to see [16]:
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▶ Fact 13. νb(G) = ν(G̃).

Let {Ã, B̃, C̃} be a Gallai-Edmonds decomposition of G̃. Recall that properties of the
decomposition are given before Theorem 1.

▶ Lemma 14. Let G = (V, E) and G̃ = (Ṽ , Ẽ). Then partition {Uv | v ∈ V } of Ṽ is a
refinement of {Ã, B̃, C̃}.

Proof. Let v ∈ V and let Uv = {v1, . . . , vk}.
Suppose for some i, vi ∈ Ã and let M̃ be a maximum matching in G̃ that does not cover
vi. If vj is covered by M̃ , then vjw ∈ M̃ for some w ∈ Ṽ . By the construction, viw ∈ Ẽ

and so M̃ − vjw + viw is a maximum matching that does not cover vj . Consequently,
vj ∈ Ã.

If vi ∈ B̃ then vi /∈ Ã and viw ∈ Ẽ for some w ∈ Ã. For any j ∈ {1, . . . , k}, by the
previous observation vj /∈ Ã and by the construction vjw ∈ Ẽ. Thus vj ∈ B̃.

If vi ∈ C̃ then for any j, vj ∈ C̃, because otherwise vj ∈ Ã ∪ B̃ which in view of previous
observations gives vi ∈ Ã ∪ B̃. ◀

Lemma 14 easily gives the following fact.

▶ Fact 15. Let H̃ be a component of G̃ − B̃ that satisfies |V (H̃)| ≥ 2 and let v ∈ V (G). If
Uv ∩ V (H̃) ̸= ∅, then Uv ⊆ V (H̃).

Proof. Suppose u ∈ Uv ∩ V (H̃). Since |V (H̃)| ≥ 2, there is w ∈ V (H̃) such that wu ∈ Ẽ.

By construction, for every u′ ∈ Uv, u′w ∈ Ẽ. By Theorem 1, u /∈ B̃ and so by Lemma 14,
u′ /∈ B̃. Consequently, since H̃ is a component in G̃ − B̃, u′ ∈ V (H̃). ◀

We can now prove the main lemma. We will define ω on the edges set of G′ where (G′, b′) is
returned by Reduction(G, b) for the original graph G and function b, that is ω : E(G′) → Z+

as ω(uv) = min{b′(u), b′(v)}.

▶ Lemma 16. For every D, L ∈ Z+ there is cD,L > 0 such that the following holds. Let G

be a graph with ∇1(G) ≤ D/2, let b : V → Z+ be L-Lipschitz, and let (G′, b′) be the pair
returned by Reduction(G, b). Then

νb′(G′) ≥ cD,L · ω(E(G′)). (5)

Proof. Consider G̃ obtained from G′ and let {Ã, B̃, C̃} be the Gallai-Edmonds decomposition
of G̃. By Lemma 14, suppressing each set Uv to v gives partition {A, B, C} of V (G) defined
as A =

⋃
Uv⊆Ã{v}, B =

⋃
Uv⊆B̃{v}, C =

⋃
Uv⊆C̃{v}.

Let H̃ be a component of G̃ − B̃ such that |V (H̃)| ≥ 2 and let H be obtained by
suppressing each Uv ⊆ V (H̃) to v. If |V (H̃)| is even then H̃ has a perfect matching M̃ by
Theorem 1, and by Lemma 14, H contains a b′-matching xH : E(H) → N such that for each
vertex v ∈ V (H),

∑
e∈EH (v) xH(e) = b′(v). Thus

xH(E(H)) =
∑

v∈V (H)

b′(v). (6)

If |V (H̃)| is odd, then |V (H̃)| ≥ 3 and H̃ is factor-critical. Consequently, there is a b′-
matching xH in H such that

∑
e∈EH (v) xH(e) = b′(v) − 1 for any specified vertex v ∈ V (H)

and
∑

e∈EH (w) xH(e) = b′(w) for every vertex w ∈ V (H) \ {v}. Therefore,

xH(E(H)) =

 ∑
v∈V (H)

b′(v)

 − 1 >
1
2

∑
v∈V (H)

b′(v). (7)



A. Czygrinow, M. Hanćkowiak, and M. Witkowski 59:11

In addition, by Lemma 1, we know that B̃ is matchable to the set of odd components in
G̃ − B̃, and so, by Lemma 14, there is a b′-matching xB in G′ such that

xB(E(B, V \ B)) = |B̃| =
∑
v∈B

b′(v). (8)

Let G1 := G′[B ∪
⋃

V (H)] where the union is over all components H of G′ − B that satisfy
|V (H̃)| ≥ 2. By (6), (7), there is b′-matching x in G1 such that

x(E(G′)) ≥ 1
2

∑
H

∑
v∈V (H)

b′(v) (9)

where the sum is taken over all components H in G′ − B of order at least two. Since
1
2 (c + d) ≤ max{c, d}, by (8) and (9), there is a b′-matching x in G′ (not necessarily G1),
such that

x(E(G′)) >
1
2

xB(E(B, V \ B)) + 1
2

∑
H

∑
v∈V (H)

b′(v)

 ≥ b′(V (G1))/4 > ω(E(G1))/(4·D)

where the last inequality follow from Fact 9 (a).
We will now bound the weight of the edges of G′ that are not in G1. Let Ũ be the set of

components of size one in G̃ − B̃, and let U be obtained by suppressing each Uv ⊆ Ũ to v.
Note that each u ∈ U is a component of size one in G′ − B.

Let U ′ ⊆ U denote the set of vertices u ∈ U such that degG′(u) = |NG′(u) ∩ B| ≥ D.
From (1), for every set S ⊆ U ′,

D|S| ≤ |E(G′[S, NG′(S)])| ≤ D(|NG′(S)| + |S|)/2

which gives |S| ≤ |NG′(S)|. Thus, by Hall’s theorem, there is a matching of U ′ in G′[U ′, B].
Let {uvu | u ∈ U ′, vu ∈ B} be such a matching, and let H := G′[U ′, B]. We have |U ′| ≤ |B|
and there is orientation −→

H of the edges of H such that ∆+(−→H ) ≤ D. By definition of ω, for
v ∈ B, ω(E(v, N+(v)) ≤ D · b′(v). Similarly for u ∈ U ′,

ω(E(u, N+(u)) ≤ D · b′(u) = D · b(u) ≤ D · (b(vu) + L) ≤ D · (b′(vu) + L) ≤ D(L + 1)b′(vu)

because b ≤ b′, b is L-Lipschitz, and Reduction(G, b) does not change the values of b for
vertices of degree at least D. Consequently,

ω(E(H)) ≤ D(L + 2)
∑
v∈B

b′(v) = D(L + 2) · xB(E(B, V \ B)).

Let U ′′ := U \ U ′ and for 1 ≤ i < D, let Ui ⊆ U ′′ denote the set of vertices u ∈ U ′′ such that
degG′(u) = |NG′(u) ∩ B| = i. Let Sv = NG′(v) ∩ B for v ∈ Ui, and note that by Lemma 11
part (b) for any v ∈ Ui there are at most D vertices w ∈ Ui such that Sw = Sv. Out of these
vertices w all but at most one satisfy b(w) = b′(w) and potentially there is one vertex, called
special vertex, w such that b(w) < b′(w).

Before continuing with the main line of the argument we observe that if w ∈ Sv for some
v ∈ Ui, then b(w) = b′(w). Indeed, for b′(w) to be larger than b(w), w would have to have at
least D clones in G and v would be the neighbor of all of them. However, degG′(v) = i < D

and by Fact 10 (b), NG(v) = NG′(v) and so v cannot have D neighbors in B.
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We will now go back to the main line of the argument which is similar to the proof of
Claim 6. Starting with H∗ := (B, ∅), we add edges to H∗ as in the proof of Claim 6, i.e. if
for u ∈ Ui, there are v, w ∈ NG′(u) ⊆ B such that vw is not already in E(H∗), then add vw

to E(H∗) and remove u from Ui. We continue the process for as long as possible. After it
ends, H∗ satisfies |E(H∗)| ≤ D|̇B|/2 because ∇1(G) ≤ D/2.

Let U ′
i denote vertices from Ui that correspond to edges of H∗ and let U ′′

i = Ui \ U ′
i . As

before, there is an orientation of the edges of H∗ such that the maximum out-degree is at
most D. If the arc (v1, v2) is obtained by suppressing vertex u from Ui, then we say that u

belongs to v1. Let Wv denote the set of vertices that belong to v. Then |Wv| ≤ D and for
every u ∈ Wv, ω(uv) ≤ b′(v) = b(v) by the previous observation. Since b is L-Lipschitz, the
total weight of edges incident to vertices from Wv is at most Di(2L + 1) because if u ∈ Wv

and uv′ ∈ E(G′) for some v′ ∈ B then ω(uv′) ≤ b′(v′) = b(v′) ≤ b(v) + 2L ≤ (2L + 1)b(v) =
(2L + 1)b′(v). Consequently, the total weight of edges incident to vertices from U ′

i is a most
Di(2L + 1)

∑
v∈B b′(v) = Di(2L + 1)xB(E(B, V \ B)).

Now consider U ′′
i . By construction, for every u ∈ U ′′

i , NH∗(u) is a clique on i vertices.
Since ∇0(H∗) < D/2, by Lemma 2, we can assign i-cliques in H∗ to vertices from B so
that each vertex has at most

(
D

i−1
)

cliques assigned to it. If K1, . . . , Kl are assigned to
v, then the number of vertices u in U ′′

i such that NH∗(u) = Kj for some j ∈ {1, . . . , l}
is a most Dl ≤ D

(
D

i−1
)
, and the weight on edges incident to them is at most Di(2L +

1)
(

D
i−1

)
b′(v). Consequently, the weight of edges incident to vertices from U ′′

i is at most
Di(2L + 1)

(
D

i−1
) ∑

v∈B b′(v) = Di(2L + 1)
(

D
i−1

)
xB(E(B, V \ B)). As a result, the weight

of edges incident to vertices from Ui is at most Di(2L + 1)(1 +
(

D
i−1

)
)νb′(G′). Summing

over i = 1, . . . , D − 1 shows that the weight of edges of G′ that are not in G1 is O(νb′(G′)),
completing the proof of (5). ◀

As in the case of f -matchings, next algorithm uses constant cD,L and so it needs to know L

and D = 2 · g(1), but the clustering procedure from [1] also needs some information about g.

Procedure b-matching Approximation(G, b, g, L, ϵ).

Use Reduction(G, b) to obtain graph G′ and function b′.
Define the weights ω on E(G′) as in (4). Use the algorithm from [1] to find a partition
of V (G′) into sets V ′

1 , . . . , V ′
l such that diamG′(V ′

i ) = Oϵ,L,D(1) and the total weight of
edges with endpoints in different sets V ′

i is at most ϵ · cD,Lω(E(G′)).
Find an optimal solution x′

i in G′[V ′
i ] and let x′ : E(G′) → N be given by x′(e) := x′

i(e)
if e ∈ E(G′[V ′

i ]) and x′(e) := 0 otherwise. This gives (using the formula in Modify)
solution x in G. Return x.

▶ Theorem 17. There is a distributed algorithm which given graph G = (V, E) on n vertices,
ϵ > 0 and two functions b and g such that ∇r(G) ≤ g(r) = o(log r), and b : V ′ → Z+

is L-Lipschitz, finds a b-matching x in (G, b) such that
∑

e∈E x(e) ≥ (1 − ϵ)νb(G). The
algorithm runs in Oϵ,L,g(log∗ n) rounds.
Proof. Use b-matching Approximation(G, b, g, L, ϵ) and note that x′ is a b′-matching
in G′, and so x is a b-matching in G. By Lemma 11, νb′(G′) = νb(G) and by Lemma 5,
νb′(G′) ≥ cD,Lω(E(G′)). Consequently,

νb(G) = νb′(G′) ≤
∑

i

x′
i(E(G′[V ′

i ])) + ϵ · cD,Lω(E(G′))

≤
∑

e∈E(G)

x(e) + ϵνb′(G′) =
∑

e∈E(G)

x(e) + ϵνb(G).
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Reduction runs in the number of rounds which depends on D only and the running time
of the algorithm from [1] is Oϵ,L,g(log∗ n). Obtaining solution x from x′ requires only a
constant number of steps. ◀
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