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Abstract
We study the following maximization problem in the Euclidean plane: Given a collection of
neighborhoods (polygonal regions) in the plane, the goal is to select a point in each neighborhood so
that the longest spanning tree on selected points has maximum length. It is not known whether
or not this problem is NP-hard. We present an approximation algorithm with ratio 0.548 for this
problem. This improves the previous best known ratio of 0.511.

The presented algorithm takes linear time after computing a diameter. Even though our algorithm
itself is fairly simple, its analysis is rather involved. In some part we deal with a minimization
problem with multiple variables. We use a sequence of geometric transformations to reduce the
number of variables and simplify the analysis.
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1 Introduction

The spanning tree is a well-studied and fundamental structure in graph theory and combin-
atorics. The well-known minimum spanning tree (Min-ST) problem asks for a spanning tree
with minimum total edge-weight. In contrast, the maximum spanning tree (Max-ST) problem
asks for a spanning tree with maximum total edge-weight. In the context of abstract graphs,
the two problems are algorithmically equivalent in the sense that an algorithm that finds a
Min-ST can also find a Max-ST within the same time bound (by simply negating the edge
weights), and vice versa. The situation is quite different in the context of geometric graphs
where vertices are points in the plane and edge-weights are Euclidean distances between
points. In geometric graphs, an algorithm that exploits geometry for finding a Min-ST is not
necessarily useful for finding a Max-ST because there is no known geometric transformation
between the “nearest” and “farthest” relations among points [22]. The existing geometric
algorithms, for solving these two problems, exploit different sets of techniques.

Problems related to maximum configurations in the plane (also know as long configurations)
have received considerable attention after the seminal work of Alon, Rajagopalan, and Suri [2].
In this paper we study the longest spanning tree with neighborhoods (Max-ST-NB) problem.
We are given a collection of n neighborhoods (polygonal regions) in the Euclidean plane and
we want to find a maximum-length tree that connects n representative points, one point from
each neighborhood, as in Figure 1(a). The length of the tree is the total Euclidean length
of its edges. Each neighborhood is the union of simple polygons, and the neighborhoods
are not necessarily disjoint. The neighborhoods are assumed to be colored by n different
colors. The classical Euclidean Max-ST problem is a special case of the Max-ST-NB in
which each neighborhood consists of exactly one point, as in Figure 1(b). Although the
Euclidean Max-ST problem can be solved in O(n log n) time [22], it is not known whether or
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7:2 Approximating Longest Spanning Tree with Neighborhoods

not the Max-ST-NB problem can be solved in polynomial time. The difficulty lies in choosing
representative points from neighborhoods; once these points are selected, the problem is
reduced to the Euclidean Max-ST problem.

(a) Max-ST-NB (b) Max-ST

Figure 1 (a) Longest spanning tree with four polygonal neighborhoods that are colored red,
green, blue, and purple. (b) Euclidean maximum spanning tree.

It is easily seen (see Section 2) that the longest star (which connects a point in one
neighborhood to a point in each of the other neighborhoods) achieves a 0.5-approximate
solution for the Max-ST-NB problem. Recently, Chen and Dumitrescu [10] present an
approximation algorithm with ratio 0.511, which is the first improvement beyond 0.5.

Although any optimal solution for the Max-ST problem contains a diametral pair (two
points with maximum distance) as an edge, an optimal solution for the Max-ST-NB problem
does not necessarily contain any bichromatic diametral pair (two points with maximum
distance that belong to different neighborhoods). Another result of Chen and Dumitrescu [10]
shows that any algorithm, that always includes a bichromatic diametral pair in the solution,
cannot achieve an approximation ratio better than

√
2 −

√
3 ≈ 0.517. This somehow breaks

the hope of getting a good approximation ratio by using greedy techniques. Thus, to improve
the ratio beyond 0.517 one needs to employ some nontrivial ideas.

1.1 Our contributions and approach

We present an approximation algorithm for the Max-ST-NB problem with improved ratio√
7−1
3 ≈ 0.548. Our algorithm is not complicated: We compute a double-star (a tree of

diameter 3) centered at a bichromatic diametral pair, and compute up to three stars (trees of
diameter 2) centered at points on the smallest enclosing circle, and then report the longest
one. Our algorithm takes linear time after computing a bichromatic diameter. Our analysis
involves a minimization problem with multiple variables. We employ a sequence of geometric
transformations to reduce the number of variables and simplify the analysis. The following
theorem summarizes our main contribution.

▶ Theorem 1. A 0.548-approximation for the longest spanning tree with neighborhoods can
be computed in linear time after computing a bichromatic diameter.

As a minor result we improve the upper bound 0.517 on the approximation ratio of
algorithms that always include a bichromatic diameter in their solutions. We show that
the ratio of such algorithms cannot be better than 0.5. This upper bound is tight because
there exists a 0.5-approximation algorithm that always includes a bichromatic diameter (see
Section 2). Therefore, to obtain a ratio of better than 0.5 one should take into account also
spanning trees that do not contain any bichromatic diameter.
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1.2 Related problems and applications
The Max-ST-NB problem has the same flavor as the Euclidean group Steiner tree problem in
which we are given n groups of points in the plane and the goal is to find a shortest tree that
contains “at least” one point from each group. The group Steiner tree problem in graphs
is NP-hard and cannot be approximated by a factor O(log2−ϵ n) for any ϵ > 0 [16]. The
Max-ST-NB also lies in the concept of imprecision in computational geometry where each
input point is provided as a region of uncertainty and the exact position of the point may be
anywhere in the region; see e.g. [13, 18]. Analogous problems have been studied for other
structures, e.g., minimum spanning tree with neighborhoods [8, 13, 25], traveling salesman
tour with neighborhoods [3, 20, 21] (which is APX-hard [12]), and convex hulls [18, 23], to
name a few. We refer the interested readers to the thesis of Löffler [17].

The maximum spanning tree and related problems, in addition to their fundamental nature,
find applications in worst-case analysis of various heuristics in combinatorial optimization [2],
and in approminating maximum triangulations [5, pp. 338]. They also appear in clustering
algorithms where one needs to partition a set of entities into well-separated and homogeneous
clusters [4, 22]. Maximum spanning trees are directly related to computing diameter and
farthest neighbors which are fundamental problems in computational geometry, with many
applications [1].

2 Preliminaries for the algorithm

The output of our algorithm is either a star or a double-star. A star, centered at a vertex p,
is a tree in which every edge is incident to p. A double-star, centered at two vertices p and q,
is a tree that contains the edge pq and its every other edge is incident to either p or q.

Let P be a set of points in the Euclidean plane. The smallest enclosing disk for P is
the smallest disk that contains all the points of P . A diametral pair of P is a pair of points
in P that attain the maximum distance. If the points in P are colored, then a bichromatic
diametral pair of P is defined as a pair of points in P with different colors that attain the
maximum distance. The center of mass of P (also knows as the centroid) is a point m in the
plane such that for any arbitrary point u in the plane we have∑

p∈P

−→up = |P | · −→um. (1)

The intersection of two disks is called a lens. We denote the Euclidean distance between
two points p and q in the plane by |pq|. In our context, a geometric graph is a graph whose
vertices are points in the plane and whose edges are straight line segments. The length of a
geometric graph G, denoted by len(G), is the total Euclidean length of its edges.

A simple 0.5-approximation algorithm

Chen and Dumitrescu [10] pointed out the following simple 0.5-approximation algorithm for
the Max-ST-NB problem (a similar approach was previously used in [2] and [14]). Take a
bichromatic diametral pair (a, b) from the given n neighborhoods; a and b belong to two
different neighborhoods. Choose an arbitrary point from each of the other n−2 neighborhoods.
Let Sa be the star obtained by connecting a to b and to all chosen points. Define Sb analogously
on the same point set. Every edge of any optimal solution T ∗ has length at most |ab|, and
thus len(T ∗) ⩽ (n − 1)|ab|. By the triangle inequality len(Sa) + len(Sb) ⩾ n|ab| ⩾ len(T ∗).
Therefore the longer of Sa and Sb is a 0.5-approximate solution for the problem.

ISAAC 2021



7:4 Approximating Longest Spanning Tree with Neighborhoods

3 The approximation algorithm

In this section we prove Theorem 1. Put δ =
√

7−1
3 ≈ 0.548.

To facilitate comparisons we use the same notation as of Chen and Dumitrescu [10].
Let X = {X1, X2, . . . , Xn} be the given collection of n polygonal neighborhoods of total
N vertices. We assume that each Xi is colored by a unique color. Our algorithm selects
representative points only from boundary vertices of polygonal neighborhoods. Thus, in the
algorithm (but not in the analysis) we consider each polygonal neighborhood Xi as the set of
its boundary vertices, and consequently we consider X as a collection of N points colored by
n colors. Define the longest spanning star centered at a point p ∈ Xi as the star connecting
p to its farthest point in every other neighborhood.

The algorithm

The main idea of the algorithm is simple: we compute a spanning double-star D and (at
most) three spanning stars S1, S2, S3, and then report the longest one.

We compute D as follows. Let (a, b) be a bichromatic diametral pair of X . After a
suitable relabeling assume that a ∈ X1 and b ∈ X2. Add the edge ab to D. For each Xi,
with i ∈ {3, . . . , n}, find a vertex pi ∈ Xi that is farthest from a and find a vertex qi ∈ Xi

that is farthest from b (it might be the case that pi = qi). If |api| ⩾ |bqi| then add api to
D otherwise add bqi to D. Observe that D spans all neighborhoods in X , and each edge of
D has length at least |ab|/2, as in Figure 2(a). Now we introduce the stars. Let C be the
smallest enclosing disk for X . Notice that the boundary of C contains at least two points of
X . If it contains exactly two points then we define S1 and S2 as the two longest spanning
stars that are centered at these points (in this case we do not have S3). If it contains three
or more points then there exist three of them such that the triangle formed by those points
contains the center of C [11, Chapter 4, Section 4.7]. In this case we define S1, S2, and S3
as the three longest spanning stars that are centered at those three points, as in Figure 2(b).

X3, . . . , Xn

a b

S1

S2

S3

C

(a) (b)

Figure 2 Illustration of the algorithm: (a) the double-star D, and (b) the stars S1, S2, and S3.

Running time analysis

The smallest enclosing disk C for X can be computed in O(N) time [9, 19, 24]. The result
of [7], that computes a maximum spanning tree on multicolored points, implies that a
bichromatic diametral pair (a, b) for X can be found in O(N log N log n) time (the algorithm
of Bhattacharya and Toussaint [6] also computes a bichromatic diameter, but only for two-
colored points). The rest of our algorithm (finding farthest points from a, b, and from the
points on the boundary of C) takes O(N) time.
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3.1 Analysis of the approximation ratio
Our main plan for analysis works as follows: we show that if the radius of C is at least δ

then one of the stars Si is a desired tree, otherwise the double-star D is a desired tree.
For the analysis we consider X as the initial collection of polygonal neighborhoods. Let

T ∗ denote a longest spanning tree with neighborhoods in X . It is not hard to see that for
any point in the plane, its farthest point in a polygon P must be a vertex of P (see also [11,
Chapter 7, Section 7.4]). Thus, any bichromatic diameter of X is introduced by two vertices
of polygons in X . Hence the pair (a, b), selected in the algorithm, is a bichromatic diameter
of the initial collection X . Therefore, |ab| is an upper bound for the length of edges in T ∗.
After a suitable scaling assume that |ab| = 1. Since T ∗ has n − 1 edges,

len(T ∗) ⩽ (n − 1)|ab| = n − 1. (2)

Recall the smallest enclosing disk C from the algorithm. Let c denote the center of C and
r denote its radius. If the boundary of C has exactly two points of X then denote them by
c1 and c2. In this case the segment c1c2 is a diameter of C; see [11, Chapter 4, Section 4.7].
If the boundary of C has three or more points of X then denote the three points (that are
chosen in the algorithm) by c1, c2, and c3. In this case the triangle c1c2c3 is acute and it
contains the center c; see [11, Chapter 4, Section 4.7]. Recall the longest spanning stars S1,
S2, S3 from the algorithm. After a suitable relabeling assume that the star Si is centered at
the point ci.

▶ Lemma 2. If r ⩾ δ and the boundary of C contains exactly two points of X then

max{len(S1), len(S2)} ⩾ δ · len(T ∗).

Proof. In this case c1c2 is a diameter of C, and thus |c1c2| = 2r ⩾ 2δ. We consider two
cases depending on similarity of colors of c1 and c2.

The points c1 and c2 have different colors. This case is depicted in Figure 3(a). After a
suitable relabeling assume that c1 ∈ X1 and c2 ∈ X2. Pick an arbitrary point pi from
each Xi with i ∈ {3, . . . , n}. Let S′

1 be the spanning star with center c1 that connects c1
to all pis and to c2. Let S′

2 be the spanning star with center c2 that connects c2 to all pis
and to c1. Since S1 and S2 are longest spanning stars centered at c1 and c2, it holds that
len(S′

1) ⩽ len(S1) and len(S′
2) ⩽ len(S2). By bounding the maximum with the average,

then using the triangle inequality and (2) we get:

max {len(S1), len(S2)} ⩾ max {len(S′
1), len(S′

2)} ⩾
1
2 (len(S′

1) + len(S′
2))

= 1
2

(
|c1c2| + |c1c2| +

n∑
i=3

(|c1pi| + |pic2|)
)

⩾
1
2

(
2|c1c2| +

n∑
i=3

|c1c2|

)
= |c1c2|

2 · n ⩾ δ · n ⩾ δ · len(T ∗).

The points c1 and c2 have the same color. Assume that c1, c2 ∈ X1. Pick an arbitrary
point pi from each Xi with i ∈ {2, . . . , n}. Let S′

1 be the spanning star that connects
c1 to all pis. Let S′

2 be the spanning star that connects c2 to all pis. Notice that
len(S′

1) ⩽ len(S1) and len(S′
2) ⩽ len(S2). Similar to the previous case we have:

max {len(S1), len(S2)} ⩾
1
2

n∑
i=2

(|c1pi| + |pic2|) ⩾ |c1c2|
2 · (n − 1) ⩾ δ · len(T ∗). ◀

ISAAC 2021
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X3, . . . , Xn

c2c1
S ′
1 S ′

2

c3

c2

c1

C

C2

C3

C1 = Cj

r

m c

m′

c1 X3, . . . , Xn

c2 c3m

(a) (b) (c)

Figure 3 Illustration of the proofs of (a) Lemma 2, (b) Lemma 3, and (c) Lemma 4.

▶ Lemma 3. If the boundary of C contains three or more points of X then for any point m

in the plane there exists a point cj ∈ {c1, c2, c3} such that |cjm| ⩾ r.

Proof. Let Ci be the disk of radius r centered at each ci. The boundary of each Ci passes
through the center c of C, as in Figure 3(b). Since the triangle c1c2c3 contains c it holds
that C1 ∩ C2 ∩ C3 = c. Therefore there exists a disk Cj that does not have m in its interior,
and thus |cjm| ⩾ r. ◀

▶ Lemma 4. If r ⩾ δ and the boundary of C contains three or more points of X then

max{len(S1), len(S2), len(S3)} ⩾ δ · len(T ∗).

Proof. In this case the triangle c1c2c3 contains the center c of C. We consider three cases
depending on similarity of colors of c1, c2, and c3.

The points c1, c2, c3 have pairwise distinct colors. Thus, they belong to three different
neighborhoods. After a suitable relabeling assume that c1 ∈ X1, c2 ∈ X2, and c3 ∈ X3.
Pick an arbitrary point from each Xi with i ∈ {4, . . . , n}. Denote the selected points by
P . Let m be the center of mass of P . By Lemma 3 there exists a point cj ∈ {c1, c2, c3}
where |cjm| ⩾ r. After a suitable relabeling assume that cj = c1, and thus |c1m| ⩾ r. By
(1) we get∑

p∈P

|c1p| ⩾ |P | · |c1m| ⩾ (n − 3) · r ⩾ (n − 3) · δ.

Let S′
1 be the star that connects c1 to all points of P and to c2 and c3. Since S1 is the

longest spanning star centered at c1, we have that len(S1) ⩾ len(S′
1). Since the triangle

c1c2c3 contains c, we have |c2c1| + |c3c1| ⩾ |c2c| + |c3c| = 2r ⩾ 2δ. These inequalities and
(2) give

len(S1) ⩾ len(S′
1) = |c1c2|+ |c1c3|+

∑
p∈P

|c1p| ⩾ 2δ +(n−3) ·δ = (n−1) ·δ ⩾ δ · len(T ∗).

All points c1, c2, c3 have the same color. Assume that c1, c2, c3 ∈ X1. Pick an arbitrary
point from each Xi with i ∈ {2, . . . , n}. Denote the selected points by P . Let m be the
centroid of P , and let c1 be the point in {c1, c2, c3} for which |c1m| ⩾ r (by Lemma 3).
Let S′

1 be the star that connects c1 to all points of P . Similar to the previous case by
using (1) we get

len(S1) ⩾ len(S′
1) ⩾

∑
p∈P

|c1p| ⩾ |P | · |c1m| ⩾ (n − 1) · r ⩾ (n − 1) · δ ⩾ δ · len(T ∗).
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Only two of c1, c2, c3 have the same color. This case is depicted in Figure 3(c). Assume
that c2 and c3 have the same color and they belong to X2. Also assume that c1 ∈ X1. We
handle this case in a slightly different way; this is because if the point cj from Lemma 3
(which would have distance at least r to the centroid) belongs to {c2, c3} then there is no
guarantee that |cjc1| ⩾ δ, and hence we may not be able to establish the lower bound
δ · (n − 1).
Pick an arbitrary point from each Xi with i ∈ {3, . . . , n}. Let P be the set containing
all selected points together with the point c1. Let m be the centroid of P . Consider the
point cj (from Lemma 3) for which |cjm| ⩾ r. If cj = c2 then let S′

2 be the star that
connects c2 to all points of P . In this case

len(S2) ⩾ len(S′
2) =

∑
p∈P

|c2p| ⩾ |P | · |c2m| ⩾ (n − 1) · r ⩾ (n − 1) · δ ⩾ δ · len(T ∗).

If cj = c3 then by a similar argument we can show that len(S3) ⩾ δ · len(T ∗).
Now assume that cj = c1, and thus |c1m| ⩾ r. Let P ′ = P \ {c1}, and let m′ be the
centroid of P ′. Using the recursive definition of centroid [15] (based on the Euclidean
rule of the lever) the point m lies on the segment c1m′, as in Figure 3(c). Informally
speaking, if we remove c1 from P then its (new) centroid moves away from c1. Therefore
|c1m′| ⩾ |c1m| ⩾ r. Let S′

1 be the star obtained by connecting c1 to all points of P ′ and
to the one of c2 and c3 that is farther from c1. Assume that c2 is the farther one, and
notice that |c1c2| ⩾ r. Then,

len(S1) ⩾ len(S′
1) = |c1c2| +

∑
p∈P ′

|c1p| ⩾ r + |P ′| · |c1m′|

⩾ r + (n − 2) · r ⩾ δ · len(T ∗). ◀

Lemmas 2 and 4 take care of our analysis for the case where the radius r of C is at
least δ. The next lemma takes care of the case where r ⩽ δ by showing that in this case
the double-star D is a desired tree. We employ a collection of geometric transformations to
simplify the proof.

▶ Lemma 5. If r ⩽ δ then len(D) ⩾ δ · len(T ∗).

Proof. Recall (a, b) as a bichromatic diametral pair of X . Also recall our assumptions that
a ∈ X1, b ∈ X2, and that |ab| = 1.

One challenge that we face here is that the vertices of our double-star D could be different
from the vertices of the optimal tree T ∗; this could make it difficult to obtain a lower bound
for the length of D in terms of the length of T ∗. But we know that the vertices of both D

and T ∗ come from the same ground sets X1, . . . , Xn. Our plan is to compare the length
of D with the length of T ∗ by comparing the lengths of their edges separately. For each
i ∈ {1, . . . , n} let p∗

i and pi be the vertices of T ∗ and D that belong to Xi, respectively (it
might be that p∗

i = pi). Notice that a = p1 and b = p2. Direct all edges of T ∗ towards p∗
1

and direct all edges of D towards p1. To each vertex of T ∗ and D (except p∗
1 and p1) assign

its unique outgoing edge. For each i ∈ {2, . . . , n} let len(p∗
i ) and len(pi) be the length of

edges that are assigned to p∗
i and pi, respectively. We already know that len(p2) = |ab| = 1

and len(p∗
i ) ⩽ |ab| = 1 for all i. Thus, in order to show that len(D) ⩾ δ · len(T ∗) it suffices to

show that len(pi) ⩾ δ · len(p∗
i ) for each i ∈ {3, . . . , n}. From the optimization point of view,

we are interested in the minimum value of the ratio
len(pi)
len(p∗

i ) (3)

over all pairs (pi, p∗
i ). In particular we want this value to be at least δ.

ISAAC 2021
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From now on we consider a fixed value of i ∈ {3, . . . , n}. For brevity we write p for pi, p∗ for
p∗

i , and X for Xi. In the rest of this section we will show that len(p) ⩾ δ · len(p∗). Recall from
the algorithm that p is connected to the farther of a and b, and thus len(p) = max{|pa|, |pb|}.
Let D(a, δ) and D(b, δ) be the disks of radii δ that are centered at a and b, respectively. If p

is outside D(a, δ) then len(p) ⩾ |pa| ⩾ δ ⩾ δ · len(p∗). Likewise, if p is outside D(b, δ) then
len(p) ⩾ δ · len(p∗), and we are done.

In the rest of this section we assume that p is in the lens L = D(a, δ) ∩ D(b, δ) which
is depicted in Figure 4(a). In the current setting, the neighborhood X (which contains p)
lies entirely in L because otherwise our algorithm would have picked a point of X outside
L. Therefore, the point p∗ (which also belongs to X) lies in L. Moreover max{|ap|, |bp|} ⩾
max{|ap∗|, |bp∗|} because otherwise our algorithm would have picked p∗ instead of p. Thus,
in view of (3), it suffices to show that

max{|ap∗|, |bp∗|}
len(p∗) ⩾ δ. (4)

For any point q in disk C let qC be the intersection point of the boundary of C with the
ray emanating from q and passing through the center c; Figure 4(a) depicts this for point
q = p∗. The point qC is the farthest point of C from q. Thus the largest possible length of
the edge of T ∗ that is assigned to p∗ is |p∗p∗

C |, that is, len(p∗) ⩽ |p∗p∗
C |. Thus, in view of

(4), it suffices to show that

max{|ap∗|, |bp∗|}
|p∗p∗

C |
⩾ δ. (5)

Inequality (5) deals with a minimization problem which has multiple variables, including
the coordinates of a, b, p∗, and c. We use a sequence of geometric transformations to reduce
the number of variables and simplify the analysis. Our transformations will not increase the
ratio in (5).

If we increase the radius of C (while fixing its center c) then |p∗p∗
C | would increase

but |ap∗| and |bp∗| remain unchanged. Thus, for the purpose of (5) we can assume that
C has maximum possible radius which is δ. Then, for any point q ∈ C it holds that
|qqC | = |qc| + |cqC | = |qc| + δ.

Let ℓ(a, b) be the line through a and b. If p∗ lies in the same side of ℓ(a, b) as c does,
then let p∗ be the reflection of p∗ with respect to ℓ(a, b). Notice that p∗ also lies in lens L.
Moreover |ap∗| = |ap∗| and |bp∗| = |bp∗|, but |p∗p∗

C | ⩽ |p∗ p∗
C |. Thus, in view of (5), the

point p∗ achieves a smaller ratio than p∗. Therefore we can assume that p∗ lies in a different
side of ℓ(a, b) than c does.

Let L denote the configuration that is the union of the lens L, the segment ab, and the
point p∗. Notice that any translation, rotation, and reflection of L will not change |ap∗| and
|bp∗|. Move L along the ray, that is emanating from c and passing through p∗, and stop as
soon as one of a and b lies on the boundary of C. Assume that b is the point that lies on C.
This translation can only increase |p∗p∗

C |, but not decrease. Now fix L at b and rotate it in
the direction, that moves p∗ away from c, until a also lies on the boundary of C. The lens L

is small enough and does not intersect the boundary of C after rotation. This rotation can
only increase |p∗p∗

C |, but not decrease. (Such a rotation moves p∗
C on the boundary of C,

but that does not affect the argument because the value |cp∗
C |, which is equal to the radius

of C, remains unchanged.) Therefore, above transformations do not increase the ratio in (5).
After these transformations assume, without loss of generality, that ab is horizontal, a is to
the left of b, and c lies above ab. The current setting is depicted in Figure 4(b). Notice that
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L
p∗

C

D(a, δ) D(b, δ)

p∗C

a bcc

p∗C

a b

p∗

c

δ
c

ba

p∗

c1

c2
q

x

(a) (b) (c)

Figure 4 Illustration of (a) the lens L and the point p∗
C associated with p∗, (b) the configuration

L after translation and rotation, (c) the points q, c1, c2.

|p∗p∗
C | = |cp∗| + |cp∗

C | = |cp∗| + δ. Due to symmetry we may assume that p∗ lies to the right
side of the vertical line through c, and thus |ap∗| ⩾ |bp∗|, as in Figure 4(c). In view of (5),
in the current setting our goal is to show that

|ap∗|
|cp∗| + δ

⩾ δ. (6)

Let q be the intersection point of ap∗ with the vertical line through c, as in Figure 4(c).
Then |ap∗| = |aq| + |qp∗| and |cp∗| ⩽ |cq| + |qp∗|. Thus,

|ap∗|
|cp∗| + δ

⩾
|aq| + |qp∗|

|cq| + |qp∗| + δ
⩾

|aq|
|cq| + δ

,

where the second inequality is valid because we subtract the same amount |qp∗| from the
numerator and denominator of a fraction which is smaller than 1 (notice that |aq| < |cq| + δ).
Thus, for showing (6) it suffices to show that

|aq|
|cq| + δ

⩾ δ. (7)

Recall the definition of L, and notice that its topmost point lies on the center c. Let c1 be
the intersection point of ab with the vertical line through c, and let c2 be the lowest point of
L; see Figure 4(c). Then |cc1| = |c1c2|, |ac| = |ac2| = δ, and |ac1| = 1/2. Notice that q lies on
the segment c1c2, and |cq| = |cc1| + |qc1|. Denote the length |qc1| by x. Then 0 ⩽ x ⩽ |c1c2|.
Using the Pythagorean theorem we get |aq| =

√
x2 + 1/4 and |c1c2| =

√
δ2 − 1/4. Thus we

can write the ratio in (7) as a function f which depends only on x:

f(x) = |aq|
|cq| + δ

=
√

x2 + 1/4
x + δ +

√
δ2 − 1/4

,

where x ∈
[
0,
√

δ2 − 1/4
]
. The function f(x) is decreasing on this interval of x and thus

its minimum value is attained at
√

δ2 − 1/4. Plugging this into f we get f
(√

δ2 − 1/4
)

=
√

7−1
3 = δ. This verifies (7) and finishes the proof of the lemma. ◀

The cases considered in Lemmas 2, 4, and 5 ensure that the length of one of S1, S2, S3,
and D is at least δ · len(T ∗). This concludes our analysis and finishes the proof of Theorem 1.
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3.2 Inclusion of bichromatic diameter
Here we show that the approximation ratio of an algorithm, that always includes a bichromatic
diametral pair in its solution, cannot be larger than 0.5.

p0 p1 p2 p3
1 1 1−2ε

ε

X3, . . . , XnX1 X1X2

Figure 5 Illustration of the upper bound 0.5 for inclusion of a bichromatic diametral pair.

We introduce an input instance with n neighborhoods. Consider four points p0 = (0, 0),
p1 = (1, 0), p2 = (2, 0), and p3 = (3 − 2ε, 0) for arbitrary small ε > 0, e.g. ε = 1/n. Our
input consists of neighborhoods X1, . . . , Xn where X1 = {p0, p3}, X2 = {p2}, and each of
X3, . . . , Xn has exactly one point that is placed at distance at most ε from p1; see Figure 5.
In this setting, (p0, p2) is the unique bichromatic diametral pair. Consider any tree T that
contains the bichromatic diameter p0p2 (this means that p3 is not in T ). Any edge of T

incident to X3, . . . , X4 has length at most 1+ε. Therefore len(T ) ⩽ 2+(1+ε)(n−2) < n+1.
Now consider the tree T ∗ that does not contain p0p2 but connects each of X2, . . . , Xn to p3.
The length of T ∗ is at least (1 − 2ε) + (2 − 3ε)(n − 2) > 2n − 6. Then, the ratio

len(T )
len(T ∗) <

n + 1
2n − 6

tends to 1/2 in the limit. This establishes the upper bound 0.5 on the approximation ratio.

4 Conclusions

A natural open problem is to further improve the approximation ratio for the Max-ST-NB
problem. We believe that our algorithm has better approximation guarantee, however this
requires more detailed analysis. We obtained the ratio of 0.548 by analyzing the stars
S1, S2, S3 and the double-star D separately. One might be able to improve the ratio by
analyzing the stars and the double-star together and then taking the longest one.
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