Approximating Longest Spanning Tree with Neighborhoods

Ahmad Biniaz \boxtimes ヘ
School of Computer Science, University of Windsor, Canada

Abstract

We study the following maximization problem in the Euclidean plane: Given a collection of neighborhoods (polygonal regions) in the plane, the goal is to select a point in each neighborhood so that the longest spanning tree on selected points has maximum length. It is not known whether or not this problem is NP-hard. We present an approximation algorithm with ratio 0.548 for this problem. This improves the previous best known ratio of 0.511 .

The presented algorithm takes linear time after computing a diameter. Even though our algorithm itself is fairly simple, its analysis is rather involved. In some part we deal with a minimization problem with multiple variables. We use a sequence of geometric transformations to reduce the number of variables and simplify the analysis.

2012 ACM Subject Classification Theory of computation \rightarrow Computational geometry; Theory of computation \rightarrow Approximation algorithms analysis

Keywords and phrases Euclidean maximum spanning tree, spanning tree with neighborhoods, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.7
Funding Supported by NSERC.

1 Introduction

The spanning tree is a well-studied and fundamental structure in graph theory and combinatorics. The well-known minimum spanning tree (Min-ST) problem asks for a spanning tree with minimum total edge-weight. In contrast, the maximum spanning tree (Max-ST) problem asks for a spanning tree with maximum total edge-weight. In the context of abstract graphs, the two problems are algorithmically equivalent in the sense that an algorithm that finds a Min-ST can also find a Max-ST within the same time bound (by simply negating the edge weights), and vice versa. The situation is quite different in the context of geometric graphs where vertices are points in the plane and edge-weights are Euclidean distances between points. In geometric graphs, an algorithm that exploits geometry for finding a Min-ST is not necessarily useful for finding a Max-ST because there is no known geometric transformation between the "nearest" and "farthest" relations among points [22]. The existing geometric algorithms, for solving these two problems, exploit different sets of techniques.

Problems related to maximum configurations in the plane (also know as long configurations) have received considerable attention after the seminal work of Alon, Rajagopalan, and Suri [2]. In this paper we study the longest spanning tree with neighborhoods (Max-ST-NB) problem. We are given a collection of n neighborhoods (polygonal regions) in the Euclidean plane and we want to find a maximum-length tree that connects n representative points, one point from each neighborhood, as in Figure 1(a). The length of the tree is the total Euclidean length of its edges. Each neighborhood is the union of simple polygons, and the neighborhoods are not necessarily disjoint. The neighborhoods are assumed to be colored by n different colors. The classical Euclidean Max-ST problem is a special case of the Max-ST-NB in which each neighborhood consists of exactly one point, as in Figure 1(b). Although the Euclidean Max-ST problem can be solved in $O(n \log n)$ time [22], it is not known whether or

© Ahmad Biniaz;
licensed under Creative Commons License CC-BY 4.0
not the Max-ST-NB problem can be solved in polynomial time. The difficulty lies in choosing representative points from neighborhoods; once these points are selected, the problem is reduced to the Euclidean Max-ST problem.

(a) Max-ST-NB

(b) Max-ST

Figure 1 (a) Longest spanning tree with four polygonal neighborhoods that are colored red, green, blue, and purple. (b) Euclidean maximum spanning tree.

It is easily seen (see Section 2) that the longest star (which connects a point in one neighborhood to a point in each of the other neighborhoods) achieves a 0.5 -approximate solution for the Max-ST-NB problem. Recently, Chen and Dumitrescu [10] present an approximation algorithm with ratio 0.511 , which is the first improvement beyond 0.5 .

Although any optimal solution for the Max-ST problem contains a diametral pair (two points with maximum distance) as an edge, an optimal solution for the Max-ST-NB problem does not necessarily contain any bichromatic diametral pair (two points with maximum distance that belong to different neighborhoods). Another result of Chen and Dumitrescu [10] shows that any algorithm, that always includes a bichromatic diametral pair in the solution, cannot achieve an approximation ratio better than $\sqrt{2-\sqrt{3}} \approx 0.517$. This somehow breaks the hope of getting a good approximation ratio by using greedy techniques. Thus, to improve the ratio beyond 0.517 one needs to employ some nontrivial ideas.

1.1 Our contributions and approach

We present an approximation algorithm for the Max-ST-NB problem with improved ratio $\frac{\sqrt{7}-1}{3} \approx 0.548$. Our algorithm is not complicated: We compute a double-star (a tree of diameter 3) centered at a bichromatic diametral pair, and compute up to three stars (trees of diameter 2) centered at points on the smallest enclosing circle, and then report the longest one. Our algorithm takes linear time after computing a bichromatic diameter. Our analysis involves a minimization problem with multiple variables. We employ a sequence of geometric transformations to reduce the number of variables and simplify the analysis. The following theorem summarizes our main contribution.

- Theorem 1. A 0.548-approximation for the longest spanning tree with neighborhoods can be computed in linear time after computing a bichromatic diameter.

As a minor result we improve the upper bound 0.517 on the approximation ratio of algorithms that always include a bichromatic diameter in their solutions. We show that the ratio of such algorithms cannot be better than 0.5 . This upper bound is tight because there exists a 0.5 -approximation algorithm that always includes a bichromatic diameter (see Section 2). Therefore, to obtain a ratio of better than 0.5 one should take into account also spanning trees that do not contain any bichromatic diameter.

1.2 Related problems and applications

The Max-ST-NB problem has the same flavor as the Euclidean group Steiner tree problem in which we are given n groups of points in the plane and the goal is to find a shortest tree that contains "at least" one point from each group. The group Steiner tree problem in graphs is NP-hard and cannot be approximated by a factor $O\left(\log ^{2-\epsilon} n\right)$ for any $\epsilon>0$ [16]. The Max-ST-NB also lies in the concept of imprecision in computational geometry where each input point is provided as a region of uncertainty and the exact position of the point may be anywhere in the region; see e.g. [13, 18]. Analogous problems have been studied for other structures, e.g., minimum spanning tree with neighborhoods [8, 13, 25], traveling salesman tour with neighborhoods [3, 20, 21] (which is APX-hard [12]), and convex hulls [18, 23], to name a few. We refer the interested readers to the thesis of Löffler [17].

The maximum spanning tree and related problems, in addition to their fundamental nature, find applications in worst-case analysis of various heuristics in combinatorial optimization [2], and in approminating maximum triangulations [5, pp. 338]. They also appear in clustering algorithms where one needs to partition a set of entities into well-separated and homogeneous clusters [4, 22]. Maximum spanning trees are directly related to computing diameter and farthest neighbors which are fundamental problems in computational geometry, with many applications [1].

2 Preliminaries for the algorithm

The output of our algorithm is either a star or a double-star. A star, centered at a vertex p, is a tree in which every edge is incident to p. A double-star, centered at two vertices p and q, is a tree that contains the edge $p q$ and its every other edge is incident to either p or q.

Let P be a set of points in the Euclidean plane. The smallest enclosing disk for P is the smallest disk that contains all the points of P. A diametral pair of P is a pair of points in P that attain the maximum distance. If the points in P are colored, then a bichromatic diametral pair of P is defined as a pair of points in P with different colors that attain the maximum distance. The center of mass of P (also knows as the centroid) is a point m in the plane such that for any arbitrary point u in the plane we have

$$
\begin{equation*}
\sum_{p \in P} \overrightarrow{u p}=|P| \cdot \overrightarrow{u m} \tag{1}
\end{equation*}
$$

The intersection of two disks is called a lens. We denote the Euclidean distance between two points p and q in the plane by $|p q|$. In our context, a geometric graph is a graph whose vertices are points in the plane and whose edges are straight line segments. The length of a geometric graph G, denoted by len (G), is the total Euclidean length of its edges.

A simple 0.5-approximation algorithm

Chen and Dumitrescu [10] pointed out the following simple 0.5 -approximation algorithm for the Max-ST-NB problem (a similar approach was previously used in [2] and [14]). Take a bichromatic diametral pair (a, b) from the given n neighborhoods; a and b belong to two different neighborhoods. Choose an arbitrary point from each of the other $n-2$ neighborhoods. Let S_{a} be the star obtained by connecting a to b and to all chosen points. Define S_{b} analogously on the same point set. Every edge of any optimal solution T^{*} has length at most $|a b|$, and thus len $\left(T^{*}\right) \leqslant(n-1)|a b|$. By the triangle inequality $\operatorname{len}\left(S_{a}\right)+\operatorname{len}\left(S_{b}\right) \geqslant n|a b| \geqslant \operatorname{len}\left(T^{*}\right)$. Therefore the longer of S_{a} and S_{b} is a 0.5 -approximate solution for the problem.

3 The approximation algorithm

In this section we prove Theorem 1. Put $\delta=\frac{\sqrt{7}-1}{3} \approx 0.548$.
To facilitate comparisons we use the same notation as of Chen and Dumitrescu [10]. Let $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the given collection of n polygonal neighborhoods of total N vertices. We assume that each X_{i} is colored by a unique color. Our algorithm selects representative points only from boundary vertices of polygonal neighborhoods. Thus, in the algorithm (but not in the analysis) we consider each polygonal neighborhood X_{i} as the set of its boundary vertices, and consequently we consider \mathcal{X} as a collection of N points colored by n colors. Define the longest spanning star centered at a point $p \in X_{i}$ as the star connecting p to its farthest point in every other neighborhood.

The algorithm

The main idea of the algorithm is simple: we compute a spanning double-star D and (at most) three spanning stars S_{1}, S_{2}, S_{3}, and then report the longest one.

We compute D as follows. Let (a, b) be a bichromatic diametral pair of \mathcal{X}. After a suitable relabeling assume that $a \in X_{1}$ and $b \in X_{2}$. Add the edge $a b$ to D. For each X_{i}, with $i \in\{3, \ldots, n\}$, find a vertex $p_{i} \in X_{i}$ that is farthest from a and find a vertex $q_{i} \in X_{i}$ that is farthest from b (it might be the case that $p_{i}=q_{i}$). If $\left|a p_{i}\right| \geqslant\left|b q_{i}\right|$ then add $a p_{i}$ to D otherwise add $b q_{i}$ to D. Observe that D spans all neighborhoods in \mathcal{X}, and each edge of D has length at least $|a b| / 2$, as in Figure 2(a). Now we introduce the stars. Let C be the smallest enclosing disk for \mathcal{X}. Notice that the boundary of C contains at least two points of \mathcal{X}. If it contains exactly two points then we define S_{1} and S_{2} as the two longest spanning stars that are centered at these points (in this case we do not have S_{3}). If it contains three or more points then there exist three of them such that the triangle formed by those points contains the center of C [11, Chapter 4, Section 4.7]. In this case we define S_{1}, S_{2}, and S_{3} as the three longest spanning stars that are centered at those three points, as in Figure 2(b).

(a)

(b)

Figure 2 Illustration of the algorithm: (a) the double-star D, and (b) the stars S_{1}, S_{2}, and S_{3}.

Running time analysis

The smallest enclosing disk C for \mathcal{X} can be computed in $O(N)$ time [9, 19, 24]. The result of [7], that computes a maximum spanning tree on multicolored points, implies that a bichromatic diametral pair (a, b) for \mathcal{X} can be found in $O(N \log N \log n)$ time (the algorithm of Bhattacharya and Toussaint [6] also computes a bichromatic diameter, but only for twocolored points). The rest of our algorithm (finding farthest points from a, b, and from the points on the boundary of C) takes $O(N)$ time.

3.1 Analysis of the approximation ratio

Our main plan for analysis works as follows: we show that if the radius of C is at least δ then one of the stars S_{i} is a desired tree, otherwise the double-star D is a desired tree.

For the analysis we consider \mathcal{X} as the initial collection of polygonal neighborhoods. Let T^{*} denote a longest spanning tree with neighborhoods in \mathcal{X}. It is not hard to see that for any point in the plane, its farthest point in a polygon P must be a vertex of P (see also [11, Chapter 7, Section 7.4]). Thus, any bichromatic diameter of \mathcal{X} is introduced by two vertices of polygons in \mathcal{X}. Hence the pair (a, b), selected in the algorithm, is a bichromatic diameter of the initial collection \mathcal{X}. Therefore, $|a b|$ is an upper bound for the length of edges in T^{*}. After a suitable scaling assume that $|a b|=1$. Since T^{*} has $n-1$ edges,

$$
\begin{equation*}
\operatorname{len}\left(T^{*}\right) \leqslant(n-1)|a b|=n-1 \tag{2}
\end{equation*}
$$

Recall the smallest enclosing disk C from the algorithm. Let c denote the center of C and r denote its radius. If the boundary of C has exactly two points of \mathcal{X} then denote them by c_{1} and c_{2}. In this case the segment $c_{1} c_{2}$ is a diameter of C; see [11, Chapter 4, Section 4.7]. If the boundary of C has three or more points of \mathcal{X} then denote the three points (that are chosen in the algorithm) by c_{1}, c_{2}, and c_{3}. In this case the triangle $c_{1} c_{2} c_{3}$ is acute and it contains the center c; see [11, Chapter 4, Section 4.7]. Recall the longest spanning stars S_{1}, S_{2}, S_{3} from the algorithm. After a suitable relabeling assume that the star S_{i} is centered at the point c_{i}.

- Lemma 2. If $r \geqslant \delta$ and the boundary of C contains exactly two points of \mathcal{X} then

$$
\max \left\{\operatorname{len}\left(S_{1}\right), \operatorname{len}\left(S_{2}\right)\right\} \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)
$$

Proof. In this case $c_{1} c_{2}$ is a diameter of C, and thus $\left|c_{1} c_{2}\right|=2 r \geqslant 2 \delta$. We consider two cases depending on similarity of colors of c_{1} and c_{2}.

- The points c_{1} and c_{2} have different colors. This case is depicted in Figure 3(a). After a suitable relabeling assume that $c_{1} \in X_{1}$ and $c_{2} \in X_{2}$. Pick an arbitrary point p_{i} from each X_{i} with $i \in\{3, \ldots, n\}$. Let S_{1}^{\prime} be the spanning star with center c_{1} that connects c_{1} to all $p_{i} \mathrm{~S}$ and to c_{2}. Let S_{2}^{\prime} be the spanning star with center c_{2} that connects c_{2} to all $p_{i} \mathrm{~S}$ and to c_{1}. Since S_{1} and S_{2} are longest spanning stars centered at c_{1} and c_{2}, it holds that $\operatorname{len}\left(S_{1}^{\prime}\right) \leqslant \operatorname{len}\left(S_{1}\right)$ and $\operatorname{len}\left(S_{2}^{\prime}\right) \leqslant \operatorname{len}\left(S_{2}\right)$. By bounding the maximum with the average, then using the triangle inequality and (2) we get:

$$
\begin{aligned}
\max \left\{\operatorname{len}\left(S_{1}\right), \operatorname{len}\left(S_{2}\right)\right\} & \geqslant \max \left\{\operatorname{len}\left(S_{1}^{\prime}\right), \operatorname{len}\left(S_{2}^{\prime}\right)\right\} \geqslant \frac{1}{2}\left(\operatorname{len}\left(S_{1}^{\prime}\right)+\operatorname{len}\left(S_{2}^{\prime}\right)\right) \\
& =\frac{1}{2}\left(\left|c_{1} c_{2}\right|+\left|c_{1} c_{2}\right|+\sum_{i=3}^{n}\left(\left|c_{1} p_{i}\right|+\left|p_{i} c_{2}\right|\right)\right) \\
& \geqslant \frac{1}{2}\left(2\left|c_{1} c_{2}\right|+\sum_{i=3}^{n}\left|c_{1} c_{2}\right|\right)=\frac{\left|c_{1} c_{2}\right|}{2} \cdot n \geqslant \delta \cdot n \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)
\end{aligned}
$$

- The points c_{1} and c_{2} have the same color. Assume that $c_{1}, c_{2} \in X_{1}$. Pick an arbitrary point p_{i} from each X_{i} with $i \in\{2, \ldots, n\}$. Let S_{1}^{\prime} be the spanning star that connects c_{1} to all $p_{i} \mathrm{~s}$. Let S_{2}^{\prime} be the spanning star that connects c_{2} to all $p_{i} \mathrm{~s}$. Notice that $\operatorname{len}\left(S_{1}^{\prime}\right) \leqslant \operatorname{len}\left(S_{1}\right)$ and $\operatorname{len}\left(S_{2}^{\prime}\right) \leqslant \operatorname{len}\left(S_{2}\right)$. Similar to the previous case we have:

$$
\max \left\{\operatorname{len}\left(S_{1}\right), \operatorname{len}\left(S_{2}\right)\right\} \geqslant \frac{1}{2} \sum_{i=2}^{n}\left(\left|c_{1} p_{i}\right|+\left|p_{i} c_{2}\right|\right) \geqslant \frac{\left|c_{1} c_{2}\right|}{2} \cdot(n-1) \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)
$$

(a)

(b)

(c)

Figure 3 Illustration of the proofs of (a) Lemma 2, (b) Lemma 3, and (c) Lemma 4.

- Lemma 3. If the boundary of C contains three or more points of \mathcal{X} then for any point m in the plane there exists a point $c_{j} \in\left\{c_{1}, c_{2}, c_{3}\right\}$ such that $\left|c_{j} m\right| \geqslant r$.

Proof. Let C_{i} be the disk of radius r centered at each c_{i}. The boundary of each C_{i} passes through the center c of C, as in Figure 3(b). Since the triangle $c_{1} c_{2} c_{3}$ contains c it holds that $C_{1} \cap C_{2} \cap C_{3}=c$. Therefore there exists a disk C_{j} that does not have m in its interior, and thus $\left|c_{j} m\right| \geqslant r$.

- Lemma 4. If $r \geqslant \delta$ and the boundary of C contains three or more points of \mathcal{X} then $\max \left\{\operatorname{len}\left(S_{1}\right), \operatorname{len}\left(S_{2}\right), \operatorname{len}\left(S_{3}\right)\right\} \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)$.

Proof. In this case the triangle $c_{1} c_{2} c_{3}$ contains the center c of C. We consider three cases depending on similarity of colors of c_{1}, c_{2}, and c_{3}.

- The points c_{1}, c_{2}, c_{3} have pairwise distinct colors. Thus, they belong to three different neighborhoods. After a suitable relabeling assume that $c_{1} \in X_{1}, c_{2} \in X_{2}$, and $c_{3} \in X_{3}$. Pick an arbitrary point from each X_{i} with $i \in\{4, \ldots, n\}$. Denote the selected points by P. Let m be the center of mass of P. By Lemma 3 there exists a point $c_{j} \in\left\{c_{1}, c_{2}, c_{3}\right\}$ where $\left|c_{j} m\right| \geqslant r$. After a suitable relabeling assume that $c_{j}=c_{1}$, and thus $\left|c_{1} m\right| \geqslant r$. By (1) we get

$$
\sum_{p \in P}\left|c_{1} p\right| \geqslant|P| \cdot\left|c_{1} m\right| \geqslant(n-3) \cdot r \geqslant(n-3) \cdot \delta
$$

Let S_{1}^{\prime} be the star that connects c_{1} to all points of P and to c_{2} and c_{3}. Since S_{1} is the longest spanning star centered at c_{1}, we have that $\operatorname{len}\left(S_{1}\right) \geqslant \operatorname{len}\left(S_{1}^{\prime}\right)$. Since the triangle $c_{1} c_{2} c_{3}$ contains c, we have $\left|c_{2} c_{1}\right|+\left|c_{3} c_{1}\right| \geqslant\left|c_{2} c\right|+\left|c_{3} c\right|=2 r \geqslant 2 \delta$. These inequalities and (2) give

$$
\operatorname{len}\left(S_{1}\right) \geqslant \operatorname{len}\left(S_{1}^{\prime}\right)=\left|c_{1} c_{2}\right|+\left|c_{1} c_{3}\right|+\sum_{p \in P}\left|c_{1} p\right| \geqslant 2 \delta+(n-3) \cdot \delta=(n-1) \cdot \delta \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)
$$

- All points c_{1}, c_{2}, c_{3} have the same color. Assume that $c_{1}, c_{2}, c_{3} \in X_{1}$. Pick an arbitrary point from each X_{i} with $i \in\{2, \ldots, n\}$. Denote the selected points by P. Let m be the centroid of P, and let c_{1} be the point in $\left\{c_{1}, c_{2}, c_{3}\right\}$ for which $\left|c_{1} m\right| \geqslant r$ (by Lemma 3). Let S_{1}^{\prime} be the star that connects c_{1} to all points of P. Similar to the previous case by using (1) we get

$$
\operatorname{len}\left(S_{1}\right) \geqslant \operatorname{len}\left(S_{1}^{\prime}\right) \geqslant \sum_{p \in P}\left|c_{1} p\right| \geqslant|P| \cdot\left|c_{1} m\right| \geqslant(n-1) \cdot r \geqslant(n-1) \cdot \delta \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)
$$

- Only two of c_{1}, c_{2}, c_{3} have the same color. This case is depicted in Figure 3(c). Assume that c_{2} and c_{3} have the same color and they belong to X_{2}. Also assume that $c_{1} \in X_{1}$. We handle this case in a slightly different way; this is because if the point c_{j} from Lemma 3 (which would have distance at least r to the centroid) belongs to $\left\{c_{2}, c_{3}\right\}$ then there is no guarantee that $\left|c_{j} c_{1}\right| \geqslant \delta$, and hence we may not be able to establish the lower bound $\delta \cdot(n-1)$.
Pick an arbitrary point from each X_{i} with $i \in\{3, \ldots, n\}$. Let P be the set containing all selected points together with the point c_{1}. Let m be the centroid of P. Consider the point c_{j} (from Lemma 3) for which $\left|c_{j} m\right| \geqslant r$. If $c_{j}=c_{2}$ then let S_{2}^{\prime} be the star that connects c_{2} to all points of P. In this case

$$
\operatorname{len}\left(S_{2}\right) \geqslant \operatorname{len}\left(S_{2}^{\prime}\right)=\sum_{p \in P}\left|c_{2} p\right| \geqslant|P| \cdot\left|c_{2} m\right| \geqslant(n-1) \cdot r \geqslant(n-1) \cdot \delta \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)
$$

If $c_{j}=c_{3}$ then by a similar argument we can show that $\operatorname{len}\left(S_{3}\right) \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)$.
Now assume that $c_{j}=c_{1}$, and thus $\left|c_{1} m\right| \geqslant r$. Let $P^{\prime}=P \backslash\left\{c_{1}\right\}$, and let m^{\prime} be the centroid of P^{\prime}. Using the recursive definition of centroid [15] (based on the Euclidean rule of the lever) the point m lies on the segment $c_{1} m^{\prime}$, as in Figure 3(c). Informally speaking, if we remove c_{1} from P then its (new) centroid moves away from c_{1}. Therefore $\left|c_{1} m^{\prime}\right| \geqslant\left|c_{1} m\right| \geqslant r$. Let S_{1}^{\prime} be the star obtained by connecting c_{1} to all points of P^{\prime} and to the one of c_{2} and c_{3} that is farther from c_{1}. Assume that c_{2} is the farther one, and notice that $\left|c_{1} c_{2}\right| \geqslant r$. Then,

$$
\begin{aligned}
\operatorname{len}\left(S_{1}\right) & \geqslant \operatorname{len}\left(S_{1}^{\prime}\right)=\left|c_{1} c_{2}\right|+\sum_{p \in P^{\prime}}\left|c_{1} p\right| \geqslant r+\left|P^{\prime}\right| \cdot\left|c_{1} m^{\prime}\right| \\
& \geqslant r+(n-2) \cdot r \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)
\end{aligned}
$$

Lemmas 2 and 4 take care of our analysis for the case where the radius r of C is at least δ. The next lemma takes care of the case where $r \leqslant \delta$ by showing that in this case the double-star D is a desired tree. We employ a collection of geometric transformations to simplify the proof.

- Lemma 5. If $r \leqslant \delta$ then $\operatorname{len}(D) \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)$.

Proof. Recall (a, b) as a bichromatic diametral pair of \mathcal{X}. Also recall our assumptions that $a \in X_{1}, b \in X_{2}$, and that $|a b|=1$.

One challenge that we face here is that the vertices of our double-star D could be different from the vertices of the optimal tree T^{*}; this could make it difficult to obtain a lower bound for the length of D in terms of the length of T^{*}. But we know that the vertices of both D and T^{*} come from the same ground sets X_{1}, \ldots, X_{n}. Our plan is to compare the length of D with the length of T^{*} by comparing the lengths of their edges separately. For each $i \in\{1, \ldots, n\}$ let p_{i}^{*} and p_{i} be the vertices of T^{*} and D that belong to X_{i}, respectively (it might be that $p_{i}^{*}=p_{i}$). Notice that $a=p_{1}$ and $b=p_{2}$. Direct all edges of T^{*} towards p_{1}^{*} and direct all edges of D towards p_{1}. To each vertex of T^{*} and D (except p_{1}^{*} and p_{1}) assign its unique outgoing edge. For each $i \in\{2, \ldots, n\}$ let len $\left(p_{i}^{*}\right)$ and len $\left(p_{i}\right)$ be the length of edges that are assigned to p_{i}^{*} and p_{i}, respectively. We already know that len $\left(p_{2}\right)=|a b|=1$ and $\operatorname{len}\left(p_{i}^{*}\right) \leqslant|a b|=1$ for all i. Thus, in order to show that $\operatorname{len}(D) \geqslant \delta \cdot \operatorname{len}\left(T^{*}\right)$ it suffices to show that $\operatorname{len}\left(p_{i}\right) \geqslant \delta \cdot \operatorname{len}\left(p_{i}^{*}\right)$ for each $i \in\{3, \ldots, n\}$. From the optimization point of view, we are interested in the minimum value of the ratio

$$
\begin{equation*}
\frac{\operatorname{len}\left(p_{i}\right)}{\operatorname{len}\left(p_{i}^{*}\right)} \tag{3}
\end{equation*}
$$

over all pairs $\left(p_{i}, p_{i}^{*}\right)$. In particular we want this value to be at least δ.

From now on we consider a fixed value of $i \in\{3, \ldots, n\}$. For brevity we write p for p_{i}, p^{*} for p_{i}^{*}, and X for X_{i}. In the rest of this section we will show that len $(p) \geqslant \delta \cdot \operatorname{len}\left(p^{*}\right)$. Recall from the algorithm that p is connected to the farther of a and b, and thus $\operatorname{len}(p)=\max \{|p a|,|p b|\}$. Let $D(a, \delta)$ and $D(b, \delta)$ be the disks of radii δ that are centered at a and b, respectively. If p is outside $D(a, \delta)$ then $\operatorname{len}(p) \geqslant|p a| \geqslant \delta \geqslant \delta \cdot \operatorname{len}\left(p^{*}\right)$. Likewise, if p is outside $D(b, \delta)$ then $\operatorname{len}(p) \geqslant \delta \cdot \operatorname{len}\left(p^{*}\right)$, and we are done.

In the rest of this section we assume that p is in the lens $L=D(a, \delta) \cap D(b, \delta)$ which is depicted in Figure $4(\mathrm{a})$. In the current setting, the neighborhood X (which contains p) lies entirely in L because otherwise our algorithm would have picked a point of X outside L. Therefore, the point p^{*} (which also belongs to X) lies in L. Moreover $\max \{|a p|,|b p|\} \geqslant$ $\max \left\{\left|a p^{*}\right|,\left|b p^{*}\right|\right\}$ because otherwise our algorithm would have picked p^{*} instead of p. Thus, in view of (3), it suffices to show that

$$
\begin{equation*}
\frac{\max \left\{\left|a p^{*}\right|,\left|b p^{*}\right|\right\}}{\operatorname{len}\left(p^{*}\right)} \geqslant \delta . \tag{4}
\end{equation*}
$$

For any point q in disk C let q_{C} be the intersection point of the boundary of C with the ray emanating from q and passing through the center c; Figure 4(a) depicts this for point $q=p^{*}$. The point q_{C} is the farthest point of C from q. Thus the largest possible length of the edge of T^{*} that is assigned to p^{*} is $\left|p^{*} p_{C}^{*}\right|$, that is, len $\left(p^{*}\right) \leqslant\left|p^{*} p_{C}^{*}\right|$. Thus, in view of (4), it suffices to show that

$$
\begin{equation*}
\frac{\max \left\{\left|a p^{*}\right|,\left|b p^{*}\right|\right\}}{\left|p^{*} p_{C}^{*}\right|} \geqslant \delta . \tag{5}
\end{equation*}
$$

Inequality (5) deals with a minimization problem which has multiple variables, including the coordinates of a, b, p^{*}, and c. We use a sequence of geometric transformations to reduce the number of variables and simplify the analysis. Our transformations will not increase the ratio in (5).

If we increase the radius of C (while fixing its center c) then $\left|p^{*} p_{C}^{*}\right|$ would increase but $\left|a p^{*}\right|$ and $\left|b p^{*}\right|$ remain unchanged. Thus, for the purpose of (5) we can assume that C has maximum possible radius which is δ. Then, for any point $q \in C$ it holds that $\left|q q_{C}\right|=|q c|+\left|c q_{C}\right|=|q c|+\delta$.

Let $\ell(a, b)$ be the line through a and b. If p^{*} lies in the same side of $\ell(a, b)$ as c does, then let $\overline{p^{*}}$ be the reflection of p^{*} with respect to $\ell(a, b)$. Notice that $\overline{p^{*}}$ also lies in lens L. Moreover $\left|a \overline{p^{*}}\right|=\left|a p^{*}\right|$ and $\left|b \overline{p^{*}}\right|=\left|b p^{*}\right|$, but $\left|p^{*} p_{C}^{*}\right| \leqslant\left|\overline{p^{*}} \overline{p_{C}^{*}}\right|$. Thus, in view of (5), the point $\overline{p^{*}}$ achieves a smaller ratio than p^{*}. Therefore we can assume that p^{*} lies in a different side of $\ell(a, b)$ than c does.

Let \mathcal{L} denote the configuration that is the union of the lens L, the segment $a b$, and the point p^{*}. Notice that any translation, rotation, and reflection of \mathcal{L} will not change $\left|a p^{*}\right|$ and $\left|b p^{*}\right|$. Move \mathcal{L} along the ray, that is emanating from c and passing through p^{*}, and stop as soon as one of a and b lies on the boundary of C. Assume that b is the point that lies on C. This translation can only increase $\left|p^{*} p_{C}^{*}\right|$, but not decrease. Now fix \mathcal{L} at b and rotate it in the direction, that moves p^{*} away from c, until a also lies on the boundary of C. The lens L is small enough and does not intersect the boundary of C after rotation. This rotation can only increase $\left|p^{*} p_{C}^{*}\right|$, but not decrease. (Such a rotation moves p_{C}^{*} on the boundary of C, but that does not affect the argument because the value $\left|c p_{C}^{*}\right|$, which is equal to the radius of C, remains unchanged.) Therefore, above transformations do not increase the ratio in (5). After these transformations assume, without loss of generality, that $a b$ is horizontal, a is to the left of b, and c lies above $a b$. The current setting is depicted in Figure 4(b). Notice that

(a)

(b)

(c)

Figure 4 Illustration of (a) the lens L and the point p_{C}^{*} associated with p^{*}, (b) the configuration \mathcal{L} after translation and rotation, (c) the points q, c_{1}, c_{2}.
$\left|p^{*} p_{C}^{*}\right|=\left|c p^{*}\right|+\left|c p_{C}^{*}\right|=\left|c p^{*}\right|+\delta$. Due to symmetry we may assume that p^{*} lies to the right side of the vertical line through c, and thus $\left|a p^{*}\right| \geqslant\left|b p^{*}\right|$, as in Figure 4(c). In view of (5), in the current setting our goal is to show that

$$
\begin{equation*}
\frac{\left|a p^{*}\right|}{\left|c p^{*}\right|+\delta} \geqslant \delta \tag{6}
\end{equation*}
$$

Let q be the intersection point of $a p^{*}$ with the vertical line through c, as in Figure 4(c). Then $\left|a p^{*}\right|=|a q|+\left|q p^{*}\right|$ and $\left|c p^{*}\right| \leqslant|c q|+\left|q p^{*}\right|$. Thus,

$$
\frac{\left|a p^{*}\right|}{\left|c p^{*}\right|+\delta} \geqslant \frac{|a q|+\left|q p^{*}\right|}{|c q|+\left|q p^{*}\right|+\delta} \geqslant \frac{|a q|}{|c q|+\delta},
$$

where the second inequality is valid because we subtract the same amount $\left|q p^{*}\right|$ from the numerator and denominator of a fraction which is smaller than 1 (notice that $|a q|<|c q|+\delta$). Thus, for showing (6) it suffices to show that

$$
\begin{equation*}
\frac{|a q|}{|c q|+\delta} \geqslant \delta \tag{7}
\end{equation*}
$$

Recall the definition of L, and notice that its topmost point lies on the center c. Let c_{1} be the intersection point of $a b$ with the vertical line through c, and let c_{2} be the lowest point of L; see Figure 4(c). Then $\left|c c_{1}\right|=\left|c_{1} c_{2}\right|,|a c|=\left|a c_{2}\right|=\delta$, and $\left|a c_{1}\right|=1 / 2$. Notice that q lies on the segment $c_{1} c_{2}$, and $|c q|=\left|c c_{1}\right|+\left|q c_{1}\right|$. Denote the length $\left|q c_{1}\right|$ by x. Then $0 \leqslant x \leqslant\left|c_{1} c_{2}\right|$. Using the Pythagorean theorem we get $|a q|=\sqrt{x^{2}+1 / 4}$ and $\left|c_{1} c_{2}\right|=\sqrt{\delta^{2}-1 / 4}$. Thus we can write the ratio in (7) as a function f which depends only on x :

$$
f(x)=\frac{|a q|}{|c q|+\delta}=\frac{\sqrt{x^{2}+1 / 4}}{x+\delta+\sqrt{\delta^{2}-1 / 4}}
$$

where $x \in\left[0, \sqrt{\delta^{2}-1 / 4}\right]$. The function $f(x)$ is decreasing on this interval of x and thus its minimum value is attained at $\sqrt{\delta^{2}-1 / 4}$. Plugging this into f we get $f\left(\sqrt{\delta^{2}-1 / 4}\right)=$ $\frac{\sqrt{7}-1}{3}=\delta$. This verifies (7) and finishes the proof of the lemma.

The cases considered in Lemmas 2, 4, and 5 ensure that the length of one of S_{1}, S_{2}, S_{3}, and D is at least $\delta \cdot \operatorname{len}\left(T^{*}\right)$. This concludes our analysis and finishes the proof of Theorem 1.

3.2 Inclusion of bichromatic diameter

Here we show that the approximation ratio of an algorithm, that always includes a bichromatic diametral pair in its solution, cannot be larger than 0.5.

Figure 5 Illustration of the upper bound 0.5 for inclusion of a bichromatic diametral pair.

We introduce an input instance with n neighborhoods. Consider four points $p_{0}=(0,0)$, $p_{1}=(1,0), p_{2}=(2,0)$, and $p_{3}=(3-2 \varepsilon, 0)$ for arbitrary small $\varepsilon>0$, e.g. $\varepsilon=1 / n$. Our input consists of neighborhoods X_{1}, \ldots, X_{n} where $X_{1}=\left\{p_{0}, p_{3}\right\}, X_{2}=\left\{p_{2}\right\}$, and each of X_{3}, \ldots, X_{n} has exactly one point that is placed at distance at most ε from p_{1}; see Figure 5. In this setting, $\left(p_{0}, p_{2}\right)$ is the unique bichromatic diametral pair. Consider any tree T that contains the bichromatic diameter $p_{0} p_{2}$ (this means that p_{3} is not in T). Any edge of T incident to X_{3}, \ldots, X_{4} has length at most $1+\varepsilon$. Therefore len $(T) \leqslant 2+(1+\varepsilon)(n-2)<n+1$. Now consider the tree T^{*} that does not contain $p_{0} p_{2}$ but connects each of X_{2}, \ldots, X_{n} to p_{3}. The length of T^{*} is at least $(1-2 \varepsilon)+(2-3 \varepsilon)(n-2)>2 n-6$. Then, the ratio

$$
\frac{\operatorname{len}(T)}{\operatorname{len}\left(T^{*}\right)}<\frac{n+1}{2 n-6}
$$

tends to $1 / 2$ in the limit. This establishes the upper bound 0.5 on the approximation ratio.

4 Conclusions

A natural open problem is to further improve the approximation ratio for the Max-ST-NB problem. We believe that our algorithm has better approximation guarantee, however this requires more detailed analysis. We obtained the ratio of 0.548 by analyzing the stars S_{1}, S_{2}, S_{3} and the double-star D separately. One might be able to improve the ratio by analyzing the stars and the double-star together and then taking the longest one.

References

1 Pankaj K. Agarwal, Jirí Matousek, and Subhash Suri. Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Comput. Geom., 1:189-201, 1991.
2 Noga Alon, Sridhar Rajagopalan, and Subhash Suri. Long non-crossing configurations in the plane. Fundam. Inform., 22(4):385-394, 1995. Also in SoCG 1993.
3 Esther M. Arkin and Refael Hassin. Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math., 55(3):197-218, 1994.
4 Tetsuo Asano, Binay K. Bhattacharya, J. Mark Keil, and F. Frances Yao. Clustering algorithms based on minimum and maximum spanning trees. In Proceedings of the 4 th Annual Symposium on Computational Geometry (SoCG), pages 252-257, 1988.
5 Marshall Bern and David Eppstein. Approximation algorithms for geometric problems. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 296-345. PWS Publishing, 1996.
6 Binay K. Bhattacharya and Godfried T. Toussaint. Efficient algorithms for computing the maximum distance between two finite planar sets. J. Algorithms, 4(2):121-136, 1983.
7 Ahmad Biniaz, Prosenjit Bose, David Eppstein, Anil Maheshwari, Pat Morin, and Michiel Smid. Spanning trees in multipartite geometric graphs. Algorithmica, 80(11):3177-3191, 2018.

8 Víctor Blanco, Elena Fernández, and Justo Puerto. Minimum spanning trees with neighborhoods: Mathematical programming formulations and solution methods. Eur. J. Oper. Res., 262(3):863-878, 2017.
9 Bernard Chazelle and Jirí Matoušek. On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms, 21(3):579-597, 1996.
10 Ke Chen and Adrian Dumitrescu. On the longest spanning tree with neighborhoods. Discrete Mathematics, Algorithms and Applications, 12(5), 2020. Also in FAW'18.
11 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational geometry: algorithms and applications, 3rd Edition. Springer, 2008.
12 Mark de Berg, Joachim Gudmundsson, Matthew J. Katz, Christos Levcopoulos, Mark H. Overmars, and A. Frank van der Stappen. TSP with neighborhoods of varying size. J. Algorithms, 57(1):22-36, 2005. Also in ESA 2002.
13 Reza Dorrigiv, Robert Fraser, Meng He, Shahin Kamali, Akitoshi Kawamura, Alejandro López-Ortiz, and Diego Seco. On minimum- and maximum-weight minimum spanning trees with neighborhoods. Theory Comput. Syst., 56(1):220-250, 2015.
14 Adrian Dumitrescu and Csaba D. Tóth. Long non-crossing configurations in the plane. Discret. Comput. Geom., 44(4):727-752, 2010. Also in STACS 2010.
15 G. A. Galperin. A concept of the mass center of a system of material points in the constant curvature spaces. Communications in Mathematical Physics, 154(1):63-84, 1993.
16 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pages 585-594, 2003.
17 Maarten Löffler. Data Imprecision in Computational Geometry. Phd thesis, Utrecht University, 2009.

18 Maarten Löffler and Marc J. van Kreveld. Largest and smallest convex hulls for imprecise points. Algorithmica, 56(2):235-269, 2010.
19 Nimrod Megiddo. Linear-time algorithms for linear programming in \mathbb{R}^{3} and related problems. SIAM J. Comput., 12(4):759-776, 1983. Also in FOCS 1982.
20 Joseph S. B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 11-18, 2007.
21 Joseph S. B. Mitchell. A constant-factor approximation algorithm for TSP with pairwisedisjoint connected neighborhoods in the plane. In Proceedings of the 26th ACM Symposium on Computational Geometry (SoCG), pages 183-191, 2010.
22 Clyde L. Monma, Mike Paterson, Subhash Suri, and F. Frances Yao. Computing Euclidean maximum spanning trees. Algorithmica, 5(3):407-419, 1990.
23 Marc J. van Kreveld and Maarten Löffler. Approximating largest convex hulls for imprecise points. J. Discrete Algorithms, 6(4):583-594, 2008.
24 Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In Maurer H. (eds) New Results and New Trends in Computer Science, pages 359-370. LNCS 555, 1991.
25 Yang Yang, Mingen Lin, Jinhui Xu, and Yulai Xie. Minimum spanning tree with neighborhoods. In Proceedings of the 3rd International ConferenceAlgorithmic Aspects in Information and Management (AAIM), pages 306-316, 2007.

