Γ -Graphic Delta-Matroids and Their Applications

Donggyu Kim ⊠

Department of Mathematical Sciences, KAIST, Daejeon, South Korea Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea

Duksang Lee ⊠©

Department of Mathematical Sciences, KAIST, Daejeon, South Korea Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea

Sang-il Oum ⊠©

Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea Department of Mathematical Sciences, KAIST, Daejeon, South Korea

– Abstract

For an abelian group Γ , a Γ -labelled graph is a graph whose vertices are labelled by elements of Γ . We prove that a certain collection of edge sets of a Γ -labelled graph forms a delta-matroid, which we call a Γ -graphic delta-matroid, and provide a polynomial-time algorithm to solve the separation problem, which allows us to apply the symmetric greedy algorithm of Bouchet to find a maximum weight feasible set in such a delta-matroid. We present two algorithmic applications on graphs; MAXIMUM WEIGHT PACKING OF TREES OF ORDER NOT DIVISIBLE BY k and MAXIMUM WEIGHT S-TREE PACKING. We also discuss various properties of Γ -graphic delta-matroids.

2012 ACM Subject Classification Mathematics of computing \rightarrow Matroids and greedoids

Keywords and phrases delta-matroid, group-labelled graph, greedy algorithm, tree packing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.70

Related Version Full Version: https://arxiv.org/abs/2104.11383

Funding Supported by the Institute for Basic Science (IBS-R029-C1).

1 Introduction

We introduce the class of Γ -graphic delta-matroids arising from graphs whose vertices are labelled by elements of an abelian group Γ . This allows us to show that the following problems are solvable in polynomial time by using the symmetric greedy algorithm [1].

MAXIMUM WEIGHT PACKING OF TREES OF ORDER NOT DIVISIBLE BY k**Input:** An integer $k \ge 2$, a graph G, and a weight $w : E(G) \to \mathbb{Q}$. **Problem:** Find vertex-disjoint trees T_1, T_2, \ldots, T_m for some m such that $|V(T_i)| \neq 0$ (mod k) for each $i \in \{1, \ldots, m\}$ and $\sum_{i=1}^{m} \sum_{e \in E(T_i)} w(e)$ is maximized.

For a vertex set S of a graph G, a subgraph of G is an S-tree if it is a tree intersecting S.

MAXIMUM WEIGHT S-TREE PACKING **Input:** A graph G, a nonempty subset S of V(G), and a weight $w: E(G) \to \mathbb{Q}$. **Problem:** Find vertex-disjoint S-trees T_1, T_2, \ldots, T_m for some m such that $\bigcup_{i=1}^{m} V(T_i) = V(G)$ and $\sum_{i=1}^{m} \sum_{e \in E(T_i)} w(e)$ is maximized.

Let Γ be an abelian group. We assume that Γ is an additive group. A Γ -labelled graph is a pair (G,γ) of a graph G and a map $\gamma: V(G) \to \Gamma$. A subgraph H of G is γ -nonzero if, for each component C of H,

© Donggyu Kim, Duksang Lee, and Sang-il Oum; licensed under Creative Commons License CC-BY 4.0 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 70; pp. 70:1-70:13

Leibniz International Proceedings in Informatics LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

70:2 Γ-Graphic Delta-Matroids and Their Applications

(G1) $\sum_{v \in V(C)} \gamma(v) \neq 0$ or $\gamma|_{V(C)} \equiv 0$, and

(G2) if $\gamma|_{V(C)} \equiv 0$, then G[V(C)] is a component of G.

A subset F of E(G) is γ -nonzero in G if a subgraph (V(G), F) is γ -nonzero. A subset F of E(G) is acyclic in G if a subgraph (V(G), F) has no cycle.

Bouchet [1] introduced delta-matroids which are set systems (E, \mathcal{F}) satisfying certain axioms. Our first theorem proves that the set of acyclic γ -nonzero sets in a Γ -labelled graph (G, γ) forms a delta-matroid, which we call a Γ -graphic delta-matroid. For sets X and Y, let $X \bigtriangleup Y = (X - Y) \cup (Y - X).$

▶ **Theorem 1.** Let Γ be an abelian group and (G, γ) be a Γ -labelled graph. If \mathcal{F} is the set of acyclic γ -nonzero sets in G, then the following hold.

(1) $\mathcal{F} \neq \emptyset$.

(2) For $X, Y \in \mathcal{F}$ and $e \in X \triangle Y$, there exists $f \in X \triangle Y$ such that $X \triangle \{e, f\} \in \mathcal{F}$.

Bouchet [1] proved that the symmetric greedy algorithm finds a maximum weight set in \mathcal{F} for a delta-matroid (E, \mathcal{F}) . But it requires the *separation oracle*, which determines, for two disjoint subsets X and Y of E, whether there exists a set $F \in \mathcal{F}$ such that $X \subseteq F$ and $F \cap Y = \emptyset$. We provide the separation oracle that runs in polynomial time for Γ -graphic delta-matroids given by Γ -labelled graphs. As a consequence, we prove the following theorem.

MAXIMUM WEIGHT ACYCLIC γ -NONZERO SET **Input:** A Γ -labelled graph (G, γ) and a weight $w : E(G) \to \mathbb{Q}$. **Problem:** Find an acyclic γ -nonzero set F in G maximizing $\sum_{e \in F} w(e)$.

▶ **Theorem 2.** MAXIMUM WEIGHT ACYCLIC γ -NONZERO SET is solvable in polynomial time.

From Theorem 2, we can easily deduce that both MAXIMUM WEIGHT PACKING OF TREES OF ORDER NOT DIVISIBLE BY k and MAXIMUM WEIGHT S-TREE PACKING are solvable in polynomial time.

Corollary 3. MAXIMUM WEIGHT PACKING OF TREES OF ORDER NOT DIVISIBLE BY k is solvable in polynomial time.

Proof. Let $\Gamma = \mathbb{Z}_k$ and $\gamma : V(G) \to \mathbb{Z}_k$ be a map such that $\gamma(v) = 1$ for each $v \in V(G)$. Then, an edge set F is an acyclic γ -nonzero set in (G, γ) if and only if there exist vertex-disjoint trees T_1, \ldots, T_m for some m such that $\bigcup_{i=1}^m E(T_i) = F$ and $|V(T_i)| \neq 0 \pmod{k}$ for each $i \in \{1, \ldots, m\}$.

▶ Corollary 4. MAXIMUM WEIGHT S-TREE PACKING is solvable in polynomial time.

Proof. We may assume that every component of G has a vertex in S. Let $\Gamma = \mathbb{Z}$ and $\gamma : V(G) \to \mathbb{Z}$ be a map such that

$$\gamma(v) = \begin{cases} 1 & \text{if } v \in S, \\ 0 & \text{otherwise} \end{cases}$$

Then, an edge set F is an acyclic γ -nonzero set in (G, γ) if and only if there exist vertex-disjoint S-trees T_1, \ldots, T_m for some m such that $\bigcup_{i=1}^m V(T_i) = V(G)$ and $\bigcup_{i=1}^m E(T_i) = F$.

One of the major motivations to introduce Γ -graphic delta-matroids is to generalize the concept of graphic delta-matroids introduced by Oum [8], which are precisely \mathbb{Z}_2 -graphic delta-matroids. Oum [8] proved that every minor of graphic delta-matroids is graphic. We will prove that every minor of a Γ -graphic delta-matroid is Γ -graphic.

D. Kim, D. Lee, and S. Oum

A delta-matroid (E, \mathcal{F}) is *even* if $|X \triangle Y|$ is even for all $X, Y \in \mathcal{F}$. Oum [8] proved that every graphic delta-matroid is even. We characterize even Γ -graphic delta-matroids as follows.

▶ **Theorem 5.** Let Γ be an abelian group. Then a Γ -graphic delta-matroid is even if and only if it is graphic.

Bouchet [2] proved that for a symmetric or skew-symmetric matrix A over a field \mathbb{F} , the set of index sets of nonsingular principal submatrices of A forms a delta-matroid, which we call a delta-matroid *representable over* \mathbb{F} . Oum [8] proved that every graphic delta-matroid is representable over GF(2). Our next theorem partially characterizes a pair of an abelian group Γ and a field \mathbb{F} such that every Γ -graphic delta-matroid is representable over \mathbb{F} .

If \mathbb{F}_1 is a subfield of a field \mathbb{F}_2 , then \mathbb{F}_2 is an *extension field* of \mathbb{F}_1 , denoted by $\mathbb{F}_2/\mathbb{F}_1$. The *degree* of a field extension $\mathbb{F}_2/\mathbb{F}_1$, denoted by $[\mathbb{F}_2 : \mathbb{F}_1]$, is the dimension of \mathbb{F}_2 as a vector space over \mathbb{F}_1 .

▶ **Theorem 6.** Let p be a prime, k be a positive integer, and \mathbb{F} be a field of characteristic p. If $[\mathbb{F}: GF(p)] \ge k$, then every \mathbb{Z}_p^k -graphic delta-matroid is representable over \mathbb{F} .

For a prime p, an abelian group is an *elementary abelian* p-group if every nonzero element has order p.

▶ **Theorem 7.** Let \mathbb{F} be a finite field of characteristic p and Γ be an abelian group. If every Γ -graphic delta-matroid is representable over \mathbb{F} , then Γ is an elementary abelian p-group.

Theorems 6 and 7 allow us to partially characterize pairs of a finite field \mathbb{F} and an abelian group Γ for which every Γ -graphic delta-matroid is representable over \mathbb{F} as follows. We omit its easy proof.

- **Corollary 8.** Let Γ be a finite abelian group of order at least 2 and \mathbb{F} be a finite field.
 - (i) For every prime p and integers 1 ≤ k ≤ ℓ, every Z^k_p-graphic delta-matroid is representable over GF(p^ℓ).
- (ii) If every Γ-graphic delta-matroid is representable over F, then Γ is isomorphic to Z^k_p and F is isomorphic to GF(p^ℓ) for a prime p and positive integers k and ℓ.

We suspect that the following could be the complete characterization.

► Conjecture 9. Let Γ be a finite abelian group of order at least 2 and \mathbb{F} be a finite field. Then every Γ -graphic delta-matroid is representable over \mathbb{F} if and only if $(\Gamma, \mathbb{F}) = (\mathbb{Z}_p^k, \operatorname{GF}(p^\ell))$ for some prime p and positive integers $k \leq \ell$.

This paper is organized as follows. In Section 2, we review some terminologies and results on delta-matroids and graphic delta-matroids. In Section 3, we introduce Γ -graphic delta-matroids. We show that the class of Γ -graphic delta-matroids is closed under taking minors in Section 4. In Section 5, we present a polynomial-time algorithm to solve MAXIMUM WEIGHT ACYCLIC γ -NONZERO SET, proving Theorem 2. We characterize even Γ -graphic delta-matroids in Section 6. In Section 7, we prove Theorems 6 and 7. We provide some proofs in the full version when lemmas and theorems are marked by *.

2 Preliminaries

In this paper, all graphs are finite and may have parallel edges and loops. A graph is *simple* if it has neither loops nor parallel edges. For a graph G, *contracting* an edge e is an operation to obtain a new graph G/e from G by deleting e and identifying ends of e. For a set X and

70:4 Γ-Graphic Delta-Matroids and Their Applications

a positive integer s, let $\binom{X}{s}$ be the set of s-element subsets of X. For two sets A and B, let $A \triangle B = (A - B) \cup (B - A)$. For a function $f : X \to Y$ and a subset $A \subseteq X$, we write $f|_A$ to denote the restriction of f on A.

Delta-matroids. Bouchet [1] introduced delta-matroids. A *delta-matroid* is a pair $M = (E, \mathcal{F})$ of a finite set E and a nonempty set \mathcal{F} of subsets of E such that if $X, Y \in \mathcal{F}$ and $x \in X \triangle Y$, then there is $y \in X \triangle Y$ such that $X \triangle \{x, y\} \in \mathcal{F}$. We write E(M) = E to denote the ground set of M. An element of \mathcal{F} is called a *feasible* set. An element of E is a *loop* of M if it is not contained in any feasible set of M. An element of E is a *coloop* of M if it is contained in every feasible set of M.

Minors. For a delta-matroid $M = (E, \mathcal{F})$ and a subset X of E, we can obtain a new delta-matroid $M \triangle X = (E, \mathcal{F} \triangle X)$ from M where $\mathcal{F} \triangle X = \{F \triangle X : F \in \mathcal{F}\}$. This operation is called *twisting* a set X in M. A delta-matroid N is *equivalent* to M if $N = M \triangle X$ for some set X.

If there is a feasible subset of E - X, then $M \setminus X = (E - X, \mathcal{F} \setminus X)$ is a delta-matroid where $\mathcal{F} \setminus X = \{F \in \mathcal{F} : F \cap X = \emptyset\}$. This operation of obtaining $M \setminus X$ is called the *deletion* of X in M. A delta-matroid N is a *minor* of a delta-matroid M if $N = M \triangle X \setminus Y$ for some subsets X, Y of E.

A delta-matroid is *normal* if \emptyset is feasible. A delta-matroid is *even* if $|X \triangle Y|$ is even for all feasible sets X and Y. It is easy to see that all minors of even delta-matroids are even.

The following theorem gives the minimal obstruction for even delta-matroids, which is implied by Bouchet [3, Lemma 5.4].

▶ **Theorem 10** (Bouchet [3]). A delta-matroid is even if and only if it does not have a minor isomorphic to $(\{e\}, \{\emptyset, \{e\}\})$.

It is easy to observe the following.

▶ Lemma 11. Let N be a minor of a delta-matroid M such that |E(M)| > |E(N)|. Then there exists an element $e \in E(M) - E(N)$ such that N is a minor of $M \setminus e$ or a minor of $M \triangle \{e\} \setminus e$.

Representable delta-matroids. For an $R \times C$ matrix A and subsets X of R and Y of C, we write A[X, Y] to denote the $X \times Y$ submatrix of A. For an $E \times E$ square matrix A and a subset X of E, we write A[X] to denote A[X, X], which is called an $X \times X$ principal submatrix of A.

For an $E \times E$ square matrix A, let $\mathcal{F}(A) = \{X \subseteq E : A[X] \text{ is nonsingular}\}$. We assume that $A[\emptyset]$ is nonsingular and so $\emptyset \in \mathcal{F}(A)$. Bouchet [2] proved that, $(E, \mathcal{F}(A))$ is a deltamatroid if A is an $E \times E$ symmetric or skew-symmetric matrix. A delta-matroid $M = (E, \mathcal{F})$ is representable over a field \mathbb{F} if $\mathcal{F} = \mathcal{F}(A) \triangle X$ for a symmetric or skew-symmetric matrix A over \mathbb{F} and a subset X of E. Since $\emptyset \in \mathcal{F}(A)$, it is natural to define representable deltamatroids with twisting so that the empty set is not necessarily feasible in representable delta-matroids.

A delta-matroid is *binary* if it is representable over GF(2). Note that all diagonal entries of a skew-symmetric matrix are zero, even if the characteristic of a field is 2.

▶ **Proposition 12** (Bouchet [2]). Let $M = (E, \mathcal{F})$ be a delta-matroid. Then M is normal and representable over a field \mathbb{F} if and only if there is an $E \times E$ symmetric or skew-symmetric matrix A over \mathbb{F} such that $\mathcal{F} = \mathcal{F}(A)$.

D. Kim, D. Lee, and S. Oum

▶ Lemma 13 (Geelen [5, page 27]). Let M be a delta-matroid representable over a field \mathbb{F} . Then M is even if and only if M is representable by a skew-symmetric matrix over \mathbb{F} .

Pivoting. For a finite set *E* and a symmetric or skew-symmetric $E \times E$ matrix *A*, if *A* is represented by

$$A = \begin{array}{cc} X & Y \\ X & \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

after selecting a linear ordering of E and $A[X] = \alpha$ is nonsingular, then let

$$A * X = \begin{array}{cc} X & Y \\ A * X = \begin{array}{c} X & \left(\begin{matrix} \alpha^{-1} & \alpha^{-1}\beta \\ -\gamma\alpha^{-1} & \delta - \gamma\alpha^{-1}\beta \end{matrix} \right) \end{array}$$

This operation is called *pivoting*. Tucker [11] proved that when A[X] is nonsingular, A * X[Y] is nonsingular if and only if $A[X \triangle Y]$ is nonsingular for each subset Y of E. Hence, if X is a feasible set of a delta-matroid $M = (E, \mathcal{F}(A))$, then $M \triangle X = (E, \mathcal{F}(A * X))$. It implies that all minors of delta-matroids representable over a field \mathbb{F} are representable over \mathbb{F} [4].

Greedy algorithm. Let $M = (E, \mathcal{F})$ be a set system such that E is finite and $\mathcal{F} \neq \emptyset$. A pair (X, Y) of disjoint subsets X and Y of E is *separable* in M if there exists a set $F \in \mathcal{F}$ such that $X \subseteq F$ and $Y \cap F = \emptyset$. The following theorem characterizes delta-matroids in terms of a greedy algorithm. Note that this greedy algorithm requires an oracle which answers whether a pair (X, Y) of disjoint subsets X and Y of E is separable in M.

▶ **Theorem 14** (Bouchet [1]; see Moffatt [7]). Let $M = (E, \mathcal{F})$ be a set system such that E is finite and $\mathcal{F} \neq \emptyset$. Then M is a delta-matroid if and only if the symmetric greedy algorithm in Algorithm 1 gives a set $F \in \mathcal{F}$ maximizing $\sum_{e \in F} w(e)$ for each $w : E \to \mathbb{R}$.

Graphic delta-matroids. Oum [8] introduced graphic delta-matroid. A graft is a pair (G,T) of a graph G and a subset T of V(G). A subgraph H of G is T-spanning in G if V(H) = V(G), for each component C of H, either

(i) $|V(C) \cap T|$ is odd, or

(ii) $V(C) \cap T = \emptyset$ and G[V(C)] is a component of G.

An edge set F of G is T-spanning in G if a subgraph (V(G), F) is T-spanning in G. For a graft (G, T), let $\mathcal{G}(G, T) = (E(G), \mathcal{F})$ where \mathcal{F} is the set of acyclic T-spanning sets in G. Oum [8] proved that $\mathcal{G}(G, T)$ is an even binary delta-matroid. A delta-matroid is graphic if it is equivalent to $\mathcal{G}(G, T)$ for a graft (G, T).

3 Delta-matroids from group-labelled graphs

Let Γ be an abelian group. A Γ -labelled graph (G, γ) is a pair of a graph G and a map $\gamma : V(G) \to \Gamma$. We say $\gamma \equiv 0$ if $\gamma(v) = 0$ for all $v \in V(G)$. A Γ -labelled graph (G, γ) and a Γ' -labelled graph (G', γ') are *isomorphic* if there are a graph isomorphism f from G to G' and a group isomorphism $\phi : \Gamma \to \Gamma'$ such that $\phi(\gamma(v)) = \gamma'(f(v))$ for each $v \in V(G)$.

70:6 Γ-Graphic Delta-Matroids and Their Applications

Algorithm 1 Symmetric greedy algorithm.

function SYMMETRIC GREEDY ALGORITHM(M, w) $\triangleright M = (E, \mathcal{F}) \text{ and } w : E \to \mathbb{R}$ 1: Enumerate $E = \{e_1, e_2, ..., e_n\}$ such that $|w(e_1)| \ge |w(e_2)| \ge \cdots \ge |w(e_n)|$ 2: $X \leftarrow \emptyset$ and $Y \leftarrow \emptyset$ 3: for $i \leftarrow 1$ to n do 4: if $w(e_i) \ge 0$ then 5:if $(X \cup \{e_i\}, Y)$ is separable then 6: $X \leftarrow X \cup \{e_i\}$ 7: else 8: $Y \leftarrow Y \cup \{e_i\}$ 9: end if 10: else 11: if $(X, Y \cup \{e_i\})$ is separable then 12: $Y \leftarrow Y \cup \{e_i\}$ 13:else 14: $X \leftarrow X \cup \{e_i\}$ 15:end if 16:end if 17:end for 18:19: end function 20: return X $\triangleright X \in \mathcal{F}$

A subgraph H of G is γ -nonzero if, for each component C of H,

(G1) $\sum_{v \in V(C)} \gamma(v) \neq 0$ or $\gamma|_{V(C)} \equiv 0$, and

(G2) if $\gamma|_{V(C)} \equiv 0$, then G[V(C)] is a component of G.

An edge set F of E(G) is γ -nonzero in G if a subgraph (V(G), F) is γ -nonzero. An edge set F of E(G) is *acyclic* in G if a subgraph (V(G), F) has no cycle.

For an abelian group Γ and a Γ -labelled graph (G, γ) , let \mathcal{F} be the set of acyclic γ -nonzero sets in G. Now we are ready to show Theorem 1, which proves that $(E(G), \mathcal{F})$ is a deltamatroid. We denote $(E(G), \mathcal{F})$ by $\mathcal{G}(G, \gamma)$. A delta-matroid M is Γ -graphic if there exist a Γ -labelled graph (G, γ) and $X \subseteq E(G)$ such that $M = \mathcal{G}(G, \gamma) \triangle X$.

▶ **Theorem 1.** Let Γ be an abelian group and (G, γ) be a Γ -labelled graph. If \mathcal{F} is the set of acyclic γ -nonzero sets in G, then the following hold.

(1) $\mathcal{F} \neq \emptyset$.

(2) For $X, Y \in \mathcal{F}$ and $e \in X \triangle Y$, there exists $f \in X \triangle Y$ such that $X \triangle \{e, f\} \in \mathcal{F}$.

Proof. By considering each component, we may assume that G is connected. If $\gamma \equiv 0$, then we choose a vertex v of G and a map $\gamma' : V(G) \to \Gamma$ such that $\gamma'(u) \neq 0$ if and only if u = v. Then the set of acyclic γ -nonzero sets in G is equal to the set of acyclic γ' -nonzero sets in G. Hence, we can assume that γ is not identically zero. Therefore, a subgraph H of G is γ -nonzero if and only if $\sum_{u \in V(C)} \gamma(u) \neq 0$ for each component C of H.

Let us first prove (1), stating that $\mathcal{F} \neq \emptyset$. Let $S = \{v \in V(G) : \gamma(v) \neq 0\}$ and T be a spanning tree of G. Then by the assumption, we have $S \neq \emptyset$. We may assume that $\sum_{u \in V(G)} \gamma(u) = 0$ because otherwise E(T) is acyclic γ -nonzero in G. Let e be an edge of T such that one of two components C_1 and C_2 of $T \setminus e$ has exactly one vertex in S. Then $\sum_{u \in V(C_1)} \gamma(u) = -\sum_{u \in V(C_2)} \gamma(u) \neq 0$. So $E(T) - \{e\}$ is acyclic γ -nonzero in G, and (1) holds. Now let us prove (2). We proceed by induction on |E(G)|. It is obvious if |E(G)| = 0. If there is an edge g = vw in $X \cap Y$, then let $\gamma' : V(G/g) \to \Gamma$ such that, for each vertex x of G/g,

$$\gamma'(x) = \begin{cases} \gamma(v) + \gamma(w) & \text{if } x \text{ is the vertex of } G/g \text{ corresponding to } g, \\ \gamma(x) & \text{otherwise.} \end{cases}$$

Then both $X - \{g\}$ and $Y - \{g\}$ are acyclic γ' -nonzero sets in G/g. Let $e \in (X - \{g\}) \triangle (Y - \{g\}) = X \triangle Y$. By the induction hypothesis, there exists $f \in X \triangle Y$ such that $(X - \{g\}) \triangle \{e, f\}$ is an acyclic γ' -nonzero set in G/g.

We now claim that $X \triangle \{e, f\}$ is an acyclic γ -nonzero set in G. It is obvious that $X \triangle \{e, f\}$ is acyclic in G. If $\gamma' \equiv 0$, then $\gamma(v) = -\gamma(w) \neq 0$ and $\gamma(u) = 0$ for every u in $V(G) - \{v, w\}$. Then X is not γ -nonzero, contradicting our assumption. Hence, $\gamma' \neq 0$ and let C be a component of $(V(G), X \triangle \{e, f\})$. If C contains g, then $\sum_{u \in V(C)} \gamma(u) = \sum_{u \in V(C/g)} \gamma'(u) \neq 0$. If C does not contain g, then $\sum_{u \in V(C)} \gamma(u) = \sum_{u \in V(C)} \gamma'(u) \neq 0$. It implies that $X \triangle \{e, f\}$ is γ -nonzero in G, so the claim is verified.

Therefore we may assume that $X \cap Y = \emptyset$. Let $H_1 = (V(G), X)$ and $H_2 = (V(G), Y)$.

▶ Case 1. $e \in X$.

Let C be the component of H_1 containing e and C_1 , C_2 be two components of $C \setminus e$. If both $\sum_{u \in V(C_1)} \gamma(u)$ and $\sum_{u \in V(C_2)} \gamma(u)$ are nonzero, then $X \triangle \{e\}$ is acyclic γ -nonzero and so we can choose f = e. So we may assume that $\sum_{u \in V(C_1)} \gamma(u) = 0$ and therefore

$$\sum_{u \in V(C_2)} \gamma(u) = \sum_{u \in V(C)} \gamma(u) - \sum_{u \in V(C_1)} \gamma(u) \neq 0.$$

If there exists $f \in Y$ joining a vertex in $V(C_1)$ to a vertex in $V(G) - V(C_1)$, then $X \triangle \{e, f\}$ is acyclic γ -nonzero. Therefore, we may assume that there is a component D_1 of H_2 such that $V(D_1) \subseteq V(C_1)$. Since $\sum_{u \in V(D_1)} \gamma(u) \neq 0$, there is a vertex x of D_1 such that $\gamma(x) \neq 0$. So $\gamma|_{V(C_1)} \not\equiv 0$ and there is an edge f of C_1 such that one of the components of $C_1 \setminus f$, say U, has exactly one vertex v with $\gamma(v) \neq 0$. If U' is the component of $C_1 \setminus f$ other than U, then $\sum_{u \in V(U')} \gamma(u) = -\sum_{u \in V(U)} \gamma(u) \neq 0$. So $X \triangle \{e, f\}$ is acyclic γ -nonzero.

▶ Case 2. $e \in Y$.

Let $\tilde{H} = (V(G), X \cup \{e\})$. If \tilde{H} contains a cycle D, then, since X and Y are acyclic, D is a unique cycle of \tilde{H} and there is an edge $f \in E(D) - Y$. Then $X \triangle \{e, f\}$ is acyclic γ -nonzero. Therefore, we can assume that e joins two distinct components C', C'' of H_1 .

Since $\sum_{u \in V(C')} \gamma(u) \neq 0$, there is an edge f of C' such that one of the components of $C' \setminus f$, say U, has exactly one vertex v with $\gamma(v) \neq 0$. If U' is the component of $C' \setminus f$ other than U, then $\sum_{u \in V(U')} \gamma(u) = -\sum_{u \in V(U)} \gamma(u) \neq 0$. So $X \triangle \{e, f\}$ is acyclic γ -nonzero.

4 Minors of group-labelled graphs

Let Γ be an abelian group. Now we define minors of Γ -labelled graphs as follows. Let (G, γ) be a Γ -labelled graph and e = uv be an edge of G. Then $(G, \gamma) \setminus e = (G \setminus e, \gamma)$ is the Γ -labelled graph obtained by *deleting* the edge e from (G, γ) . For an isolated vertex v of G, $(G, \gamma) \setminus v = (G \setminus v, \gamma|_{V(G)-\{v\}})$ is the Γ -labelled graph obtained by *deleting* the vertex v from (G, γ) . If e is not a loop, then let $(G, \gamma)/e = (G/e, \gamma')$ such that, for each $x \in V(G/e)$,

$$\gamma'(x) = \begin{cases} \gamma(u) + \gamma(v) & \text{if } x \text{ is the vertex of } G/e \text{ corresponding to } e, \\ \gamma(x) & \text{otherwise.} \end{cases}$$

70:8 Γ-Graphic Delta-Matroids and Their Applications

If e is a loop, then let $(G, \gamma)/e = (G, \gamma) \setminus e$. Contracting the edge e is an operation obtaining $(G, \gamma)/e$ from (G, γ) . For an edge set $X = \{e_1, \ldots, e_t\}$, let $(G, \gamma)/X = (G, \gamma)/e_1/\ldots/e_t$ and $(G, \gamma) \setminus X = (G \setminus X, \gamma)$. A Γ -labelled graph (G', γ') is a minor of (G, γ) if (G', γ') is obtained from (G, γ) by deleting some edges, contracting some edges, and deleting some isolated vertices. Let $\kappa(G, \gamma)$ be the number of components C of G such that $\gamma(x) = 0$ for all $x \in V(C)$. An edge e of G is a γ -bridge if $\kappa((G, \gamma) \setminus e) > \kappa(G, \gamma)$. A non-loop edge e = uv of G is a γ -tunnel if, for the component C of G containing e, the following hold:

- (i) For each $x \in V(C)$, $\gamma(x) \neq 0$ if and only if $x \in \{u, v\}$.
- (ii) $\gamma(u) + \gamma(v) = 0.$

From the definition of a γ -tunnel, it is easy to see that an edge e is a γ -tunnel in G if and only if $\kappa((G, \gamma)/e) > \kappa(G, \gamma)$.

The following lemmas are analogous to properties of graphic delta-matroids in Oum [8, Propositions 8, 9, 10, and 11].

Lemma 15 (*). Let (G, γ) be a Γ -labelled graph and e be an edge of G. The following are equivalent.

- (i) Every acyclic γ -nonzero set in G contains e.
- (ii) The edge e is a γ -bridge in G.
- (iii) Every γ -nonzero set in G contains e.

Lemma 16 (*). Let (G, γ) be a Γ -labelled graph. Then, for an edge e of G,

$$\mathcal{G}((G,\gamma) \setminus e) = \begin{cases} \mathcal{G}(G,\gamma) \setminus e & \text{if } e \text{ is not } a \ \gamma \text{-bridge}, \\ \mathcal{G}(G,\gamma) \triangle \{e\} \setminus e & \text{otherwise.} \end{cases}$$

Lemma 17 (*). Let (G, γ) be a Γ -labelled graph and e be a non-loop edge of G. Then the following are equivalent.

- (i) No acyclic γ -nonzero set in G contains e.
- (ii) The edge e is a γ -tunnel in G.
- (iii) No γ -nonzero set in G contains e.

Lemma 18 (*). Let (G, γ) be a Γ -labelled graph. Then, for an edge e of G,

$$\mathcal{G}((G,\gamma)/e) = \begin{cases} \mathcal{G}(G,\gamma) \triangle \{e\} \setminus e & \text{if } e \text{ is neither a loop nor a } \gamma\text{-tunnel}, \\ \mathcal{G}(G,\gamma) \setminus e & \text{otherwise.} \end{cases}$$

We omit the proof of the following lemma.

▶ Lemma 19. Let (G, γ) be a Γ -labelled graph and v be an isolated vertex of G. Then $\mathcal{G}((G, \gamma) \setminus v) = \mathcal{G}(G \setminus v, \gamma|_{V(G) - \{v\}}).$

- ▶ Proposition 20. Let (G, γ) be a Γ-labelled graph and M = G(G, γ) ΔX for some X ⊆ E(G).
 (i) If (G', γ') is a minor of (G, γ), then G(G', γ') is a minor of M.
- (ii) If M' is a minor of M, then there exists a minor (G', γ') of (G, γ) such that M' = G(G', γ') △X' for some X' ⊆ E(G').

Proof. We may assume that $X = \emptyset$. Lemmas 16, 18, and 19 imply (i) and Lemmas 11, 16, 18, and 19 imply (ii).

D. Kim, D. Lee, and S. Oum

5 Maximum weight acyclic γ -nonzero set

In this section, we prove that one can find a maximum weight acyclic γ -nonzero set in a Γ -labelled graph (G, γ) in polynomial time by applying the symmetric greedy algorithm on Γ -graphic delta-matroids. Let us first state the problem.

MAXIMUM WEIGHT ACYCLIC γ -NONZERO SET Input: A Γ -labelled graph (G, γ) and a weight $w : E(G) \to \mathbb{Q}$. Problem: Find an acyclic γ -nonzero set F in G maximizing $\sum_{e \in F} w(e)$.

Recall that Theorem 14 allows us to find a maximum weight feasible set in a delta-matroid by using the symmetric greedy algorithm in Algorithm 1. As we proved that the set of acyclic γ -nonzero sets in a Γ -labelled graph (G, γ) forms a Γ -graphic delta-matroid in Section 3, we can apply Theorem 14 to solve MAXIMUM WEIGHT ACYCLIC γ -NONZERO SET, but it requires a subroutine that decides in polynomial time whether a pair of two disjoint sets X and Y of E(G) is separable in $\mathcal{G}(G, \gamma)$. In the remainder of this section, we focus on developing this subroutine.

We assume that the addition of two elements of Γ and testing whether an element of Γ is zero can be done in time polynomial in the length of the input.

▶ **Theorem 21.** Given a Γ -labelled graph (G, γ) and disjoint subsets X, Y of E(G), one can decide in polynomial time whether G has an acyclic γ -nonzero set F such that $X \subseteq F$ and $Y \cap F = \emptyset$.

To prove Theorem 21, we will characterize separable pairs (X, Y) in $\mathcal{G}(G, \gamma)$. Recall that, for a Γ -labelled graph (G, γ) , $\kappa(G, \gamma)$ is the number of components C of G such that $\gamma|_{V(C)} \equiv 0$.

▶ Lemma 22. Let Γ be an abelian group and (G, γ) be a Γ -labelled graph. Then $\kappa((G, \gamma) \setminus e) \ge \kappa(G, \gamma)$ and $\kappa((G, \gamma)/e) \ge \kappa(G, \gamma)$ for every edge e of G.

Proof. We may assume that G is connected and $\kappa(G, \gamma) = 1$. Then $\gamma \equiv 0$ and therefore $\kappa((G, \gamma) \setminus e) \ge 1$ and $\kappa((G, \gamma)/e) = 1$.

▶ Lemma 23. Let Γ be an abelian group, (G, γ) be a Γ -labelled graph, and X be an acyclic set of edges of G. Let $\gamma' : V(G/X) \to \Gamma$ be a map such that $(G/X, \gamma') = (G, \gamma)/X$. Then the following hold.

- (1) If $\kappa((G,\gamma)/X) = \kappa(G,\gamma)$ and F is an acyclic γ' -nonzero set in G/X, then $F \cup X$ is an acyclic γ -nonzero set in G.
- (2) If $\kappa((G,\gamma)/X) > \kappa(G,\gamma)$, then G has no acyclic γ -nonzero set containing X.

Proof. Let us first prove (1). By considering each component, we may assume that G is connected. Since X is acyclic, $F \cup X$ is acyclic in G.

If $\kappa((G,\gamma)/X) = \kappa(G,\gamma) = 1$, then $\gamma \equiv 0$ and F is the edge set of a spanning tree of G/X by (G2). Hence $F \cup X$ is the edge set of a spanning tree of G, which implies that $F \cup X$ is acyclic γ -nonzero in G.

If $\kappa((G,\gamma)/X) = \kappa(G,\gamma) = 0$, then let H' = (V(G/X), F) be a subgraph of G/X and $H = (V(G), F \cup X)$ be a subgraph of G. Then, for each component C of H, there exists a component C' of H' such that $C' = C/(E(C) \cap X)$. Then $\sum_{u \in V(C)} \gamma(u) = \sum_{u \in V(C')} \gamma'(u) \neq 0$ by (G1). Hence $F \cup X$ is an acyclic γ -nonzero set in G and (1) holds.

Now let us prove (2). We proceed by induction on |X|.

70:10 Γ-Graphic Delta-Matroids and Their Applications

If |X| = 1, then $e \in X$ is a γ -tunnel and by Lemma 17, there is no acyclic γ -nonzero set containing X. So we may assume that |X| > 1. Let $e \in X$ and $X' = X - \{e\}$.

By the induction hypothesis, we may assume that $\kappa((G,\gamma)/X') = \kappa(G,\gamma)$. Let $\gamma'' : V(G/X') \to \Gamma$ be a map such that $(G/X',\gamma'') = (G,\gamma)/X'$. Since $\kappa((G,\gamma)/X) = \kappa((G,\gamma)/X'/e) > \kappa((G,\gamma)/X')$, by the induction hypothesis, G/X' has no acyclic γ'' -nonzero set containing e. Therefore, G has no acyclic γ -nonzero set containing X.

Lemma 24. Let Γ be an abelian group, (G, γ) be a Γ -labelled graph, and Y be a set of edges of G. Then the following hold.

- (1) If $\kappa((G,\gamma) \setminus Y) = \kappa(G,\gamma)$ and F is an acyclic γ -nonzero set in $G \setminus Y$, then F is an acyclic γ -nonzero set in G.
- (2) If $\kappa((G,\gamma) \setminus Y) > \kappa(G,\gamma)$, then G has no acyclic γ -nonzero set F such that $Y \cap F = \emptyset$.

Proof. Let us first prove (1). By considering each component, we may assume that G is connected.

If $\kappa((G,\gamma) \setminus Y) = \kappa(G,\gamma) = 1$, then $\gamma \equiv 0$ and the set F is the edge set of a spanning tree of $G \setminus Y$ by (G2). Then F is an acyclic γ -nonzero set in G.

If $\kappa((G,\gamma) \setminus Y) = \kappa(G,\gamma) = 0$, then for each component C of $G \setminus Y$, we have $\gamma|_{V(C)} \neq 0$. Then, $\sum_{v \in V(C)} \gamma(v) \neq 0$ for each component C of (V(G), F). So F is an acyclic γ -nonzero set in G.

Let us show (2). We proceed by induction on |Y|. If |Y| = 1, then $e \in Y$ is a γ -bridge so it is done by Lemma 15. Now we assume $|Y| \ge 2$. Let $e \in Y$ and $Y' = Y - \{e\}$. By the induction hypothesis, we may assume that $\kappa(G \setminus Y', \gamma) = \kappa(G, \gamma)$. Since $\kappa(G \setminus Y, \gamma) = \kappa(G \setminus Y' \setminus e, \gamma) > \kappa(G \setminus Y', \gamma)$, by the induction hypothesis, every acyclic γ -nonzero set in $G \setminus Y'$ contains e. Since every acyclic γ -nonzero set F in G not intersecting Y' is an acyclic γ -nonzero set in $G \setminus Y'$, every acyclic γ -nonzero set in G intersects Y.

▶ **Proposition 25.** Let Γ be an abelian group and (G, γ) be a Γ -labelled graph. Let X and Y be disjoint subsets of E(G) such that X is acyclic in G. Then $\kappa((G, \gamma)/X \setminus Y) = \kappa(G, \gamma)$ if and only if G has an acyclic γ -nonzero set F such that $X \subseteq F$ and $Y \cap F = \emptyset$.

Proof. Let us prove the forward direction. By Lemma 22, $\kappa((G, \gamma)/X \setminus Y) = \kappa((G, \gamma)/X) = \kappa(G, \gamma)$. Let $\gamma' : V(G/X \setminus Y) \to \Gamma$ be a map such that $(G/X \setminus Y, \gamma') = (G, \gamma)/X \setminus Y$. By (1) of Theorem 1, there exists an acyclic γ' -nonzero set F' in $G/X \setminus Y$. Since $\kappa((G, \gamma)/X \setminus Y) = \kappa((G, \gamma)/X)$, F' is acyclic γ' -nonzero in G/X by (1) of Lemma 24. Since $\kappa((G, \gamma)/X) = \kappa(G, \gamma)$, $F := F' \cup X$ is acyclic γ -nonzero in G by (1) of Lemma 23. Therefore, F is an acyclic γ -nonzero set in G such that $X \subseteq F$ and $Y \cap F = \emptyset$.

Now let us prove the backward direction. Let F be an acyclic γ -nonzero set in G such that $X \subseteq F$ and $Y \cap F = \emptyset$. Let $\gamma' : V(G/X) \to \Gamma$ be a map such that $(G/X, \gamma') = (G, \gamma)/X$. Then F - X is an acyclic γ' -nonzero set in G/X not intersecting Y, so we have $\kappa((G, \gamma)/X \setminus Y) = \kappa((G, \gamma)/X)$ by (2) of Lemma 24. Since F is an acyclic γ -nonzero set containing X in G, we have $\kappa((G, \gamma)/X) = \kappa(G, \gamma)$ by (2) of Lemma 23.

Proof of Theorem 21. Given a Γ -labelled graph (G, γ) and disjoint subsets X, Y of E(G), we can compute $\kappa((G, \gamma)/X \setminus Y)$ in polynomial time and therefore, by Proposition 25, we can decide whether there exists an acyclic γ -nonzero set F in G such that $X \subseteq F$ and $Y \cap F = \emptyset$.

Now we are ready to show Theorem 2

▶ **Theorem 2.** MAXIMUM WEIGHT ACYCLIC γ -NONZERO SET is solvable in polynomial time.

Proof. Let $M = \mathcal{G}(G, \gamma)$ be a Γ -graphic delta-matroid. The set of acyclic γ -nonzero sets in G is equal to the set of feasible sets of M. By Theorem 21, we can decide in polynomial time whether a pair (X, Y) of disjoint subsets X and Y of E(G) is separable in M. It implies that the symmetric greedy algorithm in Algorithm 1 for M and w runs in polynomial time. By Theorem 14, we can obtain an acyclic γ -nonzero set F in G maximizing $\sum_{e \in F} w(e)$.

6 Even Γ-graphic delta-matroids

In this section, we show that every even Γ -graphic delta-matroid is graphic.

▶ Lemma 26 (*). Let (G, γ) be a Γ -labelled graph, and $\eta : V(G) \to \mathbb{Z}_2$ such that $\eta(v) = 0$ if and only if $\gamma(v) = 0$ for each $v \in V(G)$. If $\mathcal{G}(G, \gamma)$ is even, then, for each connected subgraph H of G, $\sum_{u \in V(H)} \eta(u) = 0$ if and only if $\sum_{u \in V(H)} \gamma(u) = 0$.

▶ **Proposition 27.** Let (G, γ) be a Γ -labelled graph. If $\mathcal{G}(G, \gamma)$ is even, then there is a map $\eta : V(G) \to \mathbb{Z}_2$ such that $\mathcal{G}(G, \gamma) = \mathcal{G}(G, \eta)$.

Proof. Let $\eta : V(G) \to \mathbb{Z}_2$ is a map such that, for every $u \in V(G)$, $\eta(u) = 0$ if and only if $\gamma(u) = 0$. Let F be a set of edges of G. Then, for each component C of (V(G), F), $\gamma|_{V(C)} \equiv 0$ if and only if $\eta|_{V(C)} \equiv 0$ and, by Lemma 26, $\sum_{u \in V(C)} \gamma(u) \neq 0$ if and only if $\sum_{u \in V(C)} \eta(u) \neq 0$. Therefore, F is acyclic γ -nonzero in G if and only if it is acyclic η -nonzero in G.

We are ready to prove Theorem 5.

► Theorem 5. Let Γ be an abelian group. Then a Γ -graphic delta-matroid is even if and only if it is graphic.

Proof of Theorem 5. Let M be an even Γ -graphic delta-matroid. By twisting, we may assume that $M = \mathcal{G}(G, \gamma)$ for a Γ -labelled graph (G, γ) . By Proposition 27, M is \mathbb{Z}_2 -graphic. Conversely, Oum [8, Theorem 5] proved that every graphic delta-matroid is even.

7 Representations of Γ -graphic delta-matroids

We aim to study the condition on an abelian group Γ and a field \mathbb{F} such that every Γ graphic delta-matroid is representable over \mathbb{F} . Recall that a delta-matroid $M = (E, \mathcal{F})$ is representable over \mathbb{F} if there is an $E \times E$ symmetric or skew-symmetric A over \mathbb{F} such that $\mathcal{F} = \{F \subseteq E : A[X] \text{ is nonsingular}\} \Delta X$ for some $X \subseteq E$. If every Γ -graphic delta-matroid is representable over \mathbb{F} , then to prove this, we will construct symmetric matrices over \mathbb{F} representing Γ -graphic delta-matroids.

For a graph G = (V, E), let \hat{G} be an orientation obtained from G by arbitrarily assigning a direction to each edge. Let $I_{\vec{G}} = (a_{ve})_{v \in V, e \in E}$ be a $V \times E$ matrix over \mathbb{F} such that, for a vertex $v \in V$ and an edge $e \in E$,

 $a_{ve} = \begin{cases} 1 & \text{if } v \text{ is the head of a non-loop edge } e \text{ in } \vec{G}, \\ -1 & \text{if } v \text{ is the tail of a non-loop edge } e \text{ in } \vec{G}, \\ 0 & \text{otherwise.} \end{cases}$

▶ Lemma 28. Let G = (V, E) be a graph and \vec{G}_1 , \vec{G}_2 be orientations of G. If $W \subseteq V$, $F \subseteq E$, and |W| = |F|, then $\det(I_{\vec{G}_1}[W, F]) = \pm \det(I_{\vec{G}_2}[W, F])$.

70:12 Γ-Graphic Delta-Matroids and Their Applications

Proof. The matrix $I_{\vec{G}_1}$ can be obtained from $I_{\vec{G}_2}$ by multiplying -1 to some columns.

By slightly abusing the notation, we simply write I_G to denote $I_{\vec{G}}$ for some orientation \vec{G} of G. The following two lemmas are easy exercises.

▶ Lemma 29 (see Oxley [9, Lemma 5.1.3]). Let G be a graph and F be an edge set of G. Then F is acyclic if and only if column vectors of I_G indexed by the elements of F are linearly independent.

▶ Lemma 30 (see Matoušek and Nešetřil [6, Lemma 8.5.3]). Let G = (V, E) be a tree. Then $det(I_G[V - \{v\}, E]) = \pm 1$ for any vertex $v \in V$.

▶ Lemma 31 (*). Let Γ be an abelian group with at least one nonzero element, and (G, γ) be a Γ -labelled graph. Then there is a Γ -labelled graph (H, η) such that

- (i) $\eta(v) \neq 0$ for each vertex $v \in V(H)$ and
- (ii) (G, γ) is a minor of (H, η) .

▶ **Theorem 32** (Binet-Cauchy theorem). Let X and Y be finite sets. Let M be an $X \times Y$ matrix and N be a $Y \times X$ matrix with $|Y| \ge |X| = s$. Then

$$\det(MN) = \sum_{S \in \binom{Y}{s}} \det(M[X,S]) \cdot \det(N[S,X]).$$

It is straightforward to prove the following lemma from the Binet-Cauchy theorem.

▶ Corollary 33. Let X, Y, Z be finite sets. Let L, M, N be $X \times Y$, $Y \times Z$, $Z \times X$ matrices, respectively, with $|Y|, |Z| \ge |X| = s$. Then

$$\det(LMN) = \sum_{S \in \binom{Y}{s}, \ T \in \binom{Z}{s}} \det(L[X,S]) \cdot \det(M[S,T]) \cdot \det(N[T,X]).$$

▶ **Theorem 6** (*). Let p be a prime, k be a positive integer, and \mathbb{F} be a field of characteristic p. If $[\mathbb{F}: \mathrm{GF}(p)] \geq k$, then every \mathbb{Z}_p^k -graphic delta-matroid is representable over \mathbb{F} .

Now we show that for some pairs of an abelian group Γ and a finite field \mathbb{F} , not every Γ -graphic delta-matroid is representable over \mathbb{F} . Let R(n; m) be the Ramsey number that is the minimum integer t such that any coloring of edges of K_t into m colors induces a monochromatic copy of K_n .

Theorem 34 (Ramsey [10]). For positive integers m and n, R(n;m) is finite.

▶ Corollary 35. Let k be a positive integer and \mathbb{F} be a finite field of order m. If $N \ge R(k;m)$, then each $N \times N$ symmetric matrix A over \mathbb{F} has a $k \times k$ principal submatrix A' such that all non-diagonal entries are equal.

▶ Lemma 36 (*). Let \mathbb{F} be a field. If every \mathbb{Z}_2 -graphic delta-matroid is representable over \mathbb{F} , then the characteristic of \mathbb{F} is 2.

Theorem 7 (*). Let \mathbb{F} be a finite field of characteristic p, and Γ be an abelian group. If every Γ -graphic delta-matroid is representable over \mathbb{F} , then Γ is an elementary abelian p-group.

— References

- André Bouchet. Greedy algorithm and symmetric matroids. Mathematical Programming, 38(2):147–159, 1987. doi:10.1007/BF02604639.
- 2 André Bouchet. Representability of △-matroids. In Combinatorics (Eger, 1987), volume 52 of Colloq. Math. Soc. János Bolyai, pages 167–182. North-Holland, Amsterdam, 1988.
- 3 André Bouchet. Maps and △-matroids. Discrete Mathematics, 78(1-2):59-71, 1989. doi: 10.1016/0012-365X(89)90161-1.
- 4 André Bouchet and Alain Duchamp. Representability of △-matroids over GF(2). Linear Algebra Appl., 146:67–78, 1991. doi:10.1016/0024-3795(91)90020-W.
- 5 James Ferdinand Geelen. Matchings, matroids and unimodular matrices. ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–University of Waterloo (Canada).
- 6 Jiří Matoušek and Jaroslav Nešetřil. Invitation to discrete mathematics. Oxford University Press, Oxford, second edition, 2009.
- 7 Iain Moffatt. Delta-matroids for graph theorists. In Surveys in combinatorics 2019, volume 456 of London Math. Soc. Lecture Note Ser., pages 167–220. Cambridge Univ. Press, Cambridge, 2019.
- 8 Sang-il Oum. Excluding a bipartite circle graph from line graphs. Journal of Graph Theory, 60(3):183-203, 2009. doi:10.1002/jgt.20353.
- James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, second edition, 2011. doi:10.1093/acprof:oso/9780198566946. 001.0001.
- 10 Frank P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30(s2):264–286, 1930. doi:10.1112/plms/s2-30.1.264.
- 11 Alan W. Tucker. A combinatorial equivalence of matrices. In Proc. Sympos. Appl. Math., Vol. 10, pages 129–140. American Mathematical Society, Providence, R.I., 1960.