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Abstract
We present a polynomial-time 3

2 -approximation algorithm for the problem of finding a maximum-
cardinality stable matching in a many-to-many matching model with ties and laminar constraints
on both sides. We formulate our problem using a bipartite multigraph whose vertices are called
workers and firms, and edges are called contracts. Our algorithm is described as the computation of
a stable matching in an auxiliary instance, in which each contract is replaced with three of its copies
and all agents have strict preferences on the copied contracts. The construction of this auxiliary
instance is symmetric for the two sides, which facilitates a simple symmetric analysis. We use the
notion of matroid-kernel for computation in the auxiliary instance and exploit the base-orderability
of laminar matroids to show the approximation ratio.

In a special case in which each worker is assigned at most one contract and each firm has a strict
preference, our algorithm defines a 3

2 -approximation mechanism that is strategy-proof for workers.
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1 Introduction

The college admission problem (ca) is a many-to-one generalization of the well-known stable
marriage problem [18,32,34], introduced by Gale and Shapley [16]. An instance of ca involves
two disjoint agent sets called students and colleges. Each agent has a strict linear order of
preference over agents on the opposite side, and each college has an upper quota for the
number of assigned students. It is known that any instance of ca has a stable matching, we
can find it efficiently, and all stable matchings have the same cardinality.

Recently, matching problems with constraints have been studied extensively [6,9,15,27,28].
Motivated by the matching scheme used in the higher education sector in Hungary, Biró et
al. [4] studied ca with common quotas. In this problem, in addition to individual colleges,
certain subsets of colleges, called bounded sets, have upper quotas. Such constraints are
also called regional caps or distributional constraints, and they have been studied in [17, 29].
Meanwhile, motivated by academic hiring, Huang [21] introduced the classified stable matching
problem. This is an extension of ca in which each individual college has quotas for subsets
of students, called classes. Its many-to-many generalizations have been studied in [14, 44].1

1 In [14,17,21,44], not only upper quotas but also lower quotas are considered. With lower quotas, the
existence of stable matching is not guaranteed. In this paper, we consider only upper quotas.
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71:2 Maximum Stable Matching with Ties and Constraints

For these models, the laminar structure of constraints is commonly found to be the key to
the existence of a stable matching. A family L of sets is called laminar if any L, L′ ∈ L
satisfy L ⊆ L′ or L ⊇ L′ or L ∩ L′ = ∅ (also called nested or hierarchical). In [4, 21], the
authors showed that a stable matching exists in their models if regions or classes form laminar
families, whereas the existence is not guaranteed in the general case. Furthermore, in the
laminar case, a stable matching can be found efficiently, and all stable matchings have the
same cardinality. Applications with laminar constraints have been discussed in [29].

The purpose of this paper is to introduce ties to a matching model with laminar constraints.
In the previous studies described above, the preferences of agents were assumed to be strictly
ordered. However, ties naturally arise in real problems. Matching models with ties have
been studied widely in the literature [18, 23,34], where the preference of an agent is said to
contain a tie if she is indifferent between two or more agents on the opposite side. When
ties are allowed, the existence of a stable matching is maintained; however, stable matchings
vary in cardinalities. As it is desirable to produce a large matching in practical applications,
we consider the problem of finding a maximum-cardinality stable matching.

Such a problem is known to be difficult even in the simple matching model without
constraints. The problem of finding a maximum stable matching in the setting of stable
marriage with ties and incomplete lists, called max-smti, is NP-hard [24, 35], as is obtaining
an approximation ratio within 33

29 [43]. For its approximability, several algorithms with
improved approximation ratios have been proposed [25,26,30,31,36,38]. The current best
ratio is 3

2 by a polynomial-time algorithm proposed by McDermid [36] as well as linear-time
algorithms proposed by Paluch [38] and Király [31]. The 3

2 -approximability extends to the
settings of ca with ties [31] and the student-project allocation problem with ties [8].

Our Contribution. We present a polynomial-time 3
2 -approximation algorithm for the prob-

lem of finding a maximum-cardinality stable matching in a many-to-many matching model
with ties and laminar constraints on both sides. We call this problem max-smti-lc and
formulate it using a bipartite multigraph, where we call the two vertex sets workers and
firms, respectively, and each edge a contract. Each agent has upper quotas on a laminar
family defined on incident contracts. Our formulation can deal with each agent’s constraints,
such as classified stable matching. Furthermore, distributional constraints such as ca with
common quotas can be handled by considering a dummy agent that represents a consortium
of the agents on one side (see the remark at the end of Section 2). Our algorithm runs in
O(k · |E|2) time, where E is the set of contracts and k is the maximum level of nesting of
laminar constraints. The level of nesting of a laminar family L is the maximum length of a
chain L1 ⊊ L2 ⊊ · · · ⊊ Lk of members of L; hence, k ≤ |E|.

Our algorithm is described as the computation of a stable matching in an auxiliary
instance. Here, we explain the ideas underlying the construction of the auxiliary instance,
which is inspired by the algorithms of Király [31] and Hamada, Miyazaki, and Yanagisawa [19].

First, we briefly explain Király’s 3
2 -approximation algorithm for max-smti [31]. In this

algorithm, each worker makes proposals from top to bottom in her list sequentially, as with
the worker-oriented Gale–Shapley algorithm. A worker rejected by all firms is given a second
chance for proposals. Each firm prioritizes a worker in the second cycle over a worker in the
first cycle if they are tied in its preference list. This idea of promotion is used to handle
ties in firms’ preference lists. To handle ties in workers’ lists, Király’s algorithm lets each
worker prioritize a currently unmatched firm over a currently matched firm if they are tied in
her preference list. This priority rule depends on the states of firms at each moment, which
makes the algorithm complicated when we introduce constraints on both sides.
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Then, we introduce the idea of the algorithm of Hamada et al. [19], who proposed a
worker-strategy-proof algorithm for max-smti that attains the 3

2 -approximation ratio when
ties appear only in workers’ lists. They modified Király’s algorithm such that each worker’s
proposal order is predetermined and is not affected by the history of the algorithm. Their
algorithm can be seen as a Gale–Shapley-type algorithm in which each worker makes proposals
twice to each firm in a tie before proceeding to the next tie, and each firm prioritizes second
proposals over first proposals regardless of its preference. By combining their algorithm with
the promotion operation of Király’s algorithm, we obtain a Gale–Shapley-type algorithm in
which each worker makes at most three proposals to each firm.

Based on these observations, we propose a method for transforming a max-smti-lc
instance I into an auxiliary instance I∗, which is also a max-smti-lc instance. Each contract
ei in I is replaced with three copies xi, yi, zi in I∗. Each agent has a strict preference
on the copied contracts, which reflects the priority rules in the algorithms of Király and
Hamada et al. The instance I∗ has an upper bound 1 for each triple {xi, yi, zi} and also
has constraints corresponding to those in I. The construction of I∗ is completely symmetric
for workers and firms. We show that, for any stable matching M∗ of I∗, its projection
M := { ei | {xi, yi, zi} ∩M∗ ̸= ∅ } is a 3

2 -approximate solution for I. Both the stability and
the approximation ratio of M are implied by the stability of M∗ in I∗, and the process of
computing M∗ is irrelevant. Thus, our method enables us to conduct a symmetric and static
analysis even with constraints.

Because the auxiliary instance I∗ has no ties, we can find a stable matching of I∗ efficiently
by using the matroid framework of Fleiner [12, 13]. In the analysis of the approximation
ratio, we exploit the fact that the family of feasible sets defined by laminar constraints forms
a matroid with a property called base-orderability.

In the last section, we show that the result of Hamada et al. [19] mentioned above is
generalized to a many-to-one matching setting with laminar constraints on the firm side.
In other words, if we restrict max-smti-lc such that each worker is assigned at most one
contract and each firm has a strict preference, then we can provide a worker-strategy-proof
mechanism that returns a 3

2 -approximate solution. We obtain this conclusion using the
strategy-proofness result of Hatfield and Milgrom [20].

Paper Organization. The remainder of this paper is organized as follows. Section 2
formulates our matching model, while Section 3 describes our algorithm. Section 4 presents
a lemma on base-orderable matroids that is the key to our proof of the approximation ratio.
Sections 5 and 6 are devoted to the proofs of correctness and time complexity, respectively.
Section 7 investigates strategy-proof approximation mechanisms for our model.

Throughout the paper, we denote the set of non-negative integers by Z+. For a subset
S ⊆ E and an element e ∈ E, we denote S + e := S ∪ {e} and S − e := S \ {e}.

2 Problem Formulation

An instance of the stable matching with ties and laminar constraints, which we call smti-lc,
is a tuple I = (W, F, E, {La, qa, Pa}a∈W ∪F ) defined as follows. Let W and F be disjoint
finite sets called workers and firms, respectively. We call a ∈W ∪ F an agent when we do
not distinguish between workers and firms. We are provided a set E of contracts. Each
contract e ∈ E is associated with one worker and one firm, denoted by ∂W (e) and ∂F (e),
respectively. Multiple contracts are allowed to exist between a worker–firm pair. Then,
(W, F ; E) is represented as a bipartite multigraph in which W and F are vertex sets, and
each e ∈ E is an edge connecting ∂W (e) and ∂F (e). For each a ∈W ∪ F , we denote the set
of associated contracts by Ea, i.e.,

ISAAC 2021



71:4 Maximum Stable Matching with Ties and Constraints

Ew := { e ∈ E | ∂W (e) = w } (w ∈W ), Ef := { e ∈ E | ∂F (e) = f } (f ∈ F ).

Then, the family {Ew | w ∈W } forms a partition of E, as does {Ef | f ∈ F }.
Each agent a ∈ W ∪ F has a laminar family La of subsets of Ea and a quota function

qa : La → Z+. For any subset M ⊆ E of contracts and an agent a ∈ W ∪ F , we denote by
Ma := M ∩Ea the set of contracts assigned to a. We say that M is feasible for a ∈W ∪ F if

∀L ∈ La : |Ma ∩ L| ≤ qa(L).

A set M ⊆ E is called a matching if it is feasible for all agents in W ∪ F .
Each agent a ∈W ∪F has a preference list Pa that consists of all elements in Ea and may

contain ties. In this paper, a preference list is written in one row, from left to right according
to preference, where two or more contracts with equal preference are included in the same
parentheses. For example, if the preference list Pa of an agent a ∈W ∪ F is represented as

Pa : e2 ( e1 e4 ) e3,

then e2 is a’s top choice, e1 and e4 are the second choices with equal preference, and e3 is
the last choice. For contracts e, e′ ∈ Ea, we write e ≻a e′ if a prefers e to e′. Furthermore,
we write e ⪰a e′ if e ≻a e′ or a is indifferent between e and e′ (including the case e = e′).

For a matching M ⊆ E, a contract e ∈ E\M , and an associated agent a ∈ {∂W (e), ∂F (e)},
we say that e is free for a in M if

Ma + e is feasible for a, or
there is e′ ∈Ma such that e ≻a e′ and Ma + e− e′ is feasible for a.

In other words, a contract e is free for an agent a if a has an incentive to add e to the current
assignment possibly at the expense of some less preferred contract e′. A contract e ∈ E \M

blocks M if e is free for both ∂W (e) and ∂F (e). A matching M is stable if there is no contract
in E \M that blocks M .

The goal of our problem max-smti-lc is to find a maximum-cardinality stable matching
for a given smti-lc instance. Because max-smti-lc is a generalization of the NP-hard
problem max-smti, we consider the approximability. Similarly to the case of max-smti,
for the problem max-smti-lc, a 2-approximate solution can be easily obtained using an
arbitrary tie-breaking method (see the full version [45] for the proof). In the next section,
we present a 3

2 -approximation algorithm.

▶ Remark. We demonstrate that smti-lc includes several models investigated in previous
works, which implies that our algorithm finds 3

2 -approximate solutions for the problems of
finding maximum-cardinality stable matchings in those models with ties.

First, smti and the stable b-matching problem are special cases such that E ⊆W × F

and La = {Ea} for every a ∈W ∪ F . Furthermore, the two-sided laminar classified stable
matching problem [14,21], if lower quotas are absent, is a special case with E ⊆W × F .

To represent ca with laminar common quotas [4], let W be the set of students and let
F := {f}, where f is regarded as a consortium of all colleges in C. The set of contracts
is defined by E := { (w, f, c) | a college c ∈ C is acceptable for a student w ∈W }, where
∂W (e)=w, ∂F (e)=f for any e = (w, f, c). Note that E = Ef . A quota for a region C ′ ⊆ C

is then represented as a quota for the set { (w, f, c) ∈ E | c ∈ C ′ } ⊆ Ef . Thus, laminar
common quotas can be represented as constraints on a laminar family on Ef .
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For the student-project allocation problem [8], let W and F be the sets of students and
lecturers, respectively, and E := {(w, f, p) | a project p acceptable for w ∈W is offered by
f ∈ F}. Let Ef,p ⊆ Ef be the set of contracts associated with a project p offered by a
lecturer f . Then, the lecturer’s upper quota and projects’ upper quotas define two-level
laminar constraints on the family Lf = {Ef} ∪ {Ef,p | p is offered by f }.

For the above-mentioned settings, we can appropriately set the preferences of agents such
that the stability in the previous works coincides with the stability in smti-lc.

3 Algorithm

Our approximation algorithm for max-smti-lc consists of three steps: (i) construction of an
auxiliary instance, (ii) computation of any stable matching of this auxiliary instance, and
(iii) mapping the obtained matching to a matching of the original instance. In what follows,
we describe how to construct an auxiliary instance I∗ from a given instance I and how to
map a matching of I∗ to that of I.

Let I = (W, F, E, {La, qa, Pa}a∈W ∪F ) be an instance of max-smti-lc, where the set
E of contracts is represented as E = { ei | i = 1, 2, . . . , n }. We construct an auxiliary
instance I∗ = (W, F, E∗, {L∗

a, q∗
a, P ∗

a }a∈W ∪F ), which is also an smti-lc instance; however,
each preference list P ∗

a does not contain ties.
The sets of workers and firms in I∗ are the same as those in I. The set E∗ of contracts in

I∗ is given as E∗ = {xi, yi, zi | i = 1, 2, . . . , n }, where xi, yi, and zi are copies of ei; hence,
∂W (xi) = ∂W (yi) = ∂W (zi) = ∂W (ei) and ∂F (xi) = ∂F (yi) = ∂F (zi) = ∂F (ei). We define a
mapping π : 2E∗ → 2E by π(S∗) = { ei | {xi, yi, zi} ∩ S∗ ̸= ∅ } for any S∗ ⊆ E∗.

For any agent a ∈ W ∪ F , the laminar family L∗
a and the quota function q∗

a : L∗
a → Z+

are defined as follows. For each ei ∈ Ea, we have {xi, yi, zi} ∈ L∗
a and q∗

a({xi, yi, zi}) = 1.
For each L ∈ La, we have L∗ := {xi, yi, zi | ei ∈ L } ∈ L∗

a and q∗
a(L∗) = qa(L). These are all

that L∗
a contains. Then, for any set M∗ ⊆ E∗ of contracts, we see that M∗ is feasible for

a in I∗ if and only if M∗ contains at most one copy of each ei ∈ Ea and the set π(M∗) is
feasible for a in I.

The preference list P ∗
w of each worker w ∈W is defined as follows. Take a tie (ei1ei2 · · · eiℓ

)
in Pw. We replace it with a strict linear order of 2ℓ contracts xi1xi2 · · ·xiℓ

yi1yi2 · · · yiℓ
. Apply

this operation to all the ties in Pw, where we regard a contract not included in any tie as
a tie of length one. Next, at the end of the resultant list, append the original list Pw with
each ei replaced with zi and all the parentheses omitted. Here is a demonstration. If the
preference list of a worker w is

Pw : ( e2 e6 ) e1 ( e3 e4 ),

then her list in I∗ is

P ∗
w : x2 x6 y2 y6 x1 y1 x3 x4 y3 y4 z2 z6 z1 z3 z4.

The preference list P ∗
f of each firm f ∈ F is defined in the same manner, where the roles of

xi and zi are interchanged. For example, if the preference list of a firm f is

Pf : e3 ( e2 e4 e7 ) e5,

then its list in I∗ is

P ∗
f : z3 y3 z2 z4 z7 y2 y4 y7 z5 y5 x3 x2 x4 x7 x5.

ISAAC 2021



71:6 Maximum Stable Matching with Ties and Constraints

Thus, we have defined the auxiliary instance I∗. As this is again an smti-lc instance,
a stable matching of I∗ is defined as before. The existence of a stable matching of I∗ is
guaranteed by the existing framework of Fleiner [12,13], as will be explained in Section 6.
Here is the main theorem of this paper, which states that any stable matching of I∗ defines
a 3

2 -approximate solution for I.

▶ Theorem 1. For a stable matching M∗ of I∗, let M := π(M∗). Then, M is a
stable matching of I with |M | ≥ 2

3 |MOPT|, where MOPT is a maximum-cardinality stable
matching of I.

We prove Theorem 1 in Section 5. This theorem guarantees the correctness of Algorithm 1.

Algorithm 1 3
2 -approximation algorithm for max-smti-lc.

Input: An instance I = (W, F, E, {La, qa, Pa}a∈W ∪F ).
Output: A stable matching M with |M | ≥ 2

3 |MOPT|, where MOPT is an optimal solution.
1: Construct an auxiliary instance I∗.
2: Find any stable matching M∗ of I∗.
3: Let M = π(M∗) and return M .

Clearly, the first and third steps of Algorithm 1 can be performed efficiently. Furthermore,
the second step can be executed in polynomial time by applying the generalized Gale–Shapley
algorithm of Fleiner [12,13]. In Section 6, we will explain this more precisely and present the
time complexity represented in the following theorem.

▶ Theorem 2. One can find a stable matching M of I with |M | ≥ 2
3 |MOPT| in O(k · |E|2)

time, where MOPT is a maximum-cardinality stable matching and k is the maximum level of
nesting of laminar families La (a ∈W ∪ F ).

4 Base-orderable Matroids

For the proofs of Theorems 1 and 2, we introduce some concepts related to matroids (see,
e.g., Oxley [37] for more information on matroids).

For a finite set E and a family I ⊆ 2E , a pair (E, I) is called a matroid if the following
three conditions hold: (I1) ∅ ∈ I, (I2) S ⊆ T ∈ I implies S ∈ I, and (I3) for any S, T ∈ I
with |S| < |T |, there exists e ∈ T \ S such that S + e ∈ I.

For a matroid (E, I), each member of I is called an independent set. An independent set
is called a base if it is inclusion-wise maximal in I. We denote the family of all bases by B.
By the matroid axiom (I3), it follows that |B1| = |B2| holds for any bases B1, B2 ∈ B.

▶ Definition 3 (Base-orderable Matroid). A matroid (E, I) is called base-orderable if for any
two bases B1, B2 ∈ B, there exists a bijection φ : B1 → B2 with the property that, for every
e ∈ B1, both B1 − e + φ(e) and B2 + e− φ(e) are bases.

A class of base-orderable matroids includes gammoids (see [7] and [42, Theorem 42.12]), and
gammoids include laminar matroids described below (see [10] and [11, Section 2.3.1]).

▶ Example 4 (Laminar Matroid). For a laminar family L on E and a function q : L → Z+,
define I = {S ⊆ E | ∀L ∈ L : |S ∩ L| ≤ q(L) }. Then, (E, I) is a base-orderable matroid.

A matroid is laminar if it can be defined in the above-mentioned manner for some L and q.
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Base-orderability is known to be closed under the following operations (see, e.g., [5, 22]).

Contraction.2 For a matroid (E, I) and any S ∈ I, define IS := {T ⊆ E \ S | S ∪ T ∈ I }.
Then, (E \ S, IS) is a matroid. If (E, I) is base-orderable, then so is (E \ S, IS).

Truncation. For a matroid (E, I) and any integer p ∈ Z+, define Ip := {S ∈ I | |S| ≤ p }.
Then, (E, Ip) is a matroid. If (E, I) is base-orderable, then so is (E, Ip).

Direct Sum. For matroids (Ej , Ij) (j = 1, 2, . . . , ℓ) such that Ej are all pairwise disjoint,
let E := E1∪E2∪· · ·∪Eℓ and I := {S1 ∪ S2 ∪ · · · ∪ Sℓ | Sj ∈ Ij (j = 1, 2, . . . , ℓ) }. Then,
(E, I) is a matroid. If all (Ej , Ij) are base-orderable, then so is (E, I).

On the intersection of two base-orderable matroids, we show the following property, which
plays a key role in proving the 3

2 -approximation ratio of our algorithm. This generalizes
the fact that, if (one-to-one) bipartite matchings M and N satisfy |M | < 2

3 |N |, then M△N

contains a connected component that forms an alternating path of length at most three.

▶ Lemma 5. For base-orderable matroids (E, I1) and (E, I2), suppose that S, T ∈ I1 ∩ I2
and |S| < 2

3 |T |. If S + e ̸∈ I1 ∩ I2 for every e ∈ T \ S, then there exist distinct elements
ei, ej , ek such that ei, ek ∈ T \ S, ej ∈ S \ T , and the following conditions hold:

S + ei ∈ I1,
both S + ei − ej and T − ei + ej belong to I2,
both S − ej + ek and T + ej − ek belong to I1,
S + ek ∈ I2.

Proof. By the matroid axiom (I3), there is a subset A1 ⊆ T \ S such that |A1| = |T | − |S|
and S1 := S ∪ A1 ∈ I1. Then, |S1| = |T |; hence, |S1 \ T | = |T \ S1|. Let (E′, I ′

1) be a
matroid obtained from (E, I1) by contracting S1 ∩ T and truncating with size |S1 \ T |, i.e.,
E′ = E \ (S1 ∩T ) and I ′

1 := {R ⊆ E′ | R ∪ (S1 ∩ T ) ∈ I1, |R| ≤ |S1 \ T | }. Then, S1 \T and
T \S1 are bases of (E′, I ′

1). As (E′, I ′
1) is base-orderable, there is a bijection φ1 : S1\T → T \S1

such that both (S1 \ T )− e + φ1(e) and (T \ S1) + e− φ1(e) are bases of (E′, I ′
1) for every

e ∈ S1 \ T . By the definition of I ′
1, this implies that both S − e + φ1(e) and T + e− φ1(e)

belong to I1 for every e ∈ S1 \ T . By the same argument, there exists A2 ⊆ T \ S such that
|A2| = |T | − |S| and S2 := S ∪A2 ∈ I2, and there exists a bijection φ2 : S2 \T → T \S2 such
that both S − e + φ2(e) and T + e− φ2(e) belong to I2 for every e ∈ S2 \ T .

We represent φ1 and φ2 using a bipartite graph as follows. Note that, for each ℓ ∈ {1, 2},
we have Sℓ\T = S\T and T \Sℓ = T \(S∪Aℓ) ⊆ T \S. Let S\T and T \S be two vertex sets
and let Mℓ := { (e, φℓ(e)) | e ∈ S \ T } for ℓ = 1, 2. Then, each Mℓ is a one-to-one matching
that covers S \ T and T \ (S ∪Aℓ). Note that the sets A1, A2 ⊆ S \ T are mutually disjoint
since, otherwise, some e ∈ A1∩A2 satisfies S +e ∈ I1∩I2, which contradicts the assumption.
Then, |T \ (S ∪A1 ∪A2)| = |T \ S| − |A1| − |A2| = |T \ S| − 2|T |+ 2|S|. Therefore, at most
2(|T \S|−2|T |+2|S|) vertices in S\T are adjacent to T \(S∪A1∪A2) via the edges in M1∪M2.
Because |S\T |−2(|T \S|−2|T |+2|S|) = −3|S|+2|T |+|S∩T | > −3· 23 |T |+2|T |+|S∩T | ≥ 0,
there exists ẽ ∈ S \ T that is not adjacent to T \ (S ∪A1 ∪A2) via M1 ∪M2. This implies
that φ2(ẽ) ∈ A1 and φ1(ẽ) ∈ A2; hence, S + φ2(ẽ) ∈ I1 and S + φ1(ẽ) ∈ I2. Let ei := φ2(ẽ),
ej := ẽ, and ek := φ1(ẽ). Then, these three elements satisfy all the required conditions. ◀

2 Contraction is defined for any subset of E [37]; however this paper uses only contraction by independent
sets.

ISAAC 2021



71:8 Maximum Stable Matching with Ties and Constraints

5 Correctness

This section is devoted to showing Theorem 1, which establishes the correctness of Algorithm 1.
As in Section 3, let I be an smti-lc instance with E = { ei | i = 1, 2, . . . , n } and let I∗

be the auxiliary instance I∗, whose contract set is E∗ = {xi, yi, zi | i = 1, 2, . . . , n }.
For any agent a ∈W ∪F , let E∗

a = {xi, yi, zi | ei ∈ Ea } and define families Ia and I∗
a by

Ia = { S ⊆ Ea | ∀L ∈ La : |S ∩ L | ≤ qa(L ) } ,

I∗
a = {S∗ ⊆ E∗

a | ∀L∗∈ L∗
a : |S∗∩ L∗| ≤ q∗

a(L∗) } ,

i.e., Ia and I∗
a are the families of feasible sets in I and I∗, respectively. Then, (Ea, Ia) and

(E∗
a , I∗

a) are laminar matroids and base-orderable. The definitions of L∗
a and q∗

a imply the
following fact. Recall that π : 2E∗ → 2E is defined by π(S∗) = { ei | {xi, yi, zi} ∩ S∗ ̸= ∅ }.

▶ Observation 6. For a set S∗ ⊆ E∗
a, we have S∗ ∈ I∗

a if and only if |{xi, yi, zi} ∩ S∗| ≤ 1
for every ei ∈ Ea and π(S∗) ∈ Ia.

Take any stable matching M∗ of I∗ and let M := π(M∗). As M∗ is feasible in I∗, it
contains at most one copy of each contract ei. For any ei ∈ M , we denote by π−1(ei) the
unique element in {xi, yi, zi} ∩M∗.

By the definitions of the preference lists {P ∗
a }a∈W ∪F in I∗, we can observe the following

properties. For any agent a ∈W ∪ F and contracts e, e′ ∈ E∗
a , we write e ≻∗

a e′ if a prefers e

to e′ with respect to P ∗
a . Recall that P ∗

a does not contain ties, while Pa may contain.

▶ Observation 7. For any ei ∈ E \M and ej ∈M , the following conditions hold.

For any agent a ∈W ∪F , if ei, ej ∈ Ea and ei ≻a ej , then yi ≻∗
a π−1(ej) holds regardless

of which of {xi, yi, zi} is π−1(ei).

For any worker w ∈W , if ei, ej ∈ Ew and π−1(ej) ≻∗
w xi, then we have either

[ π−1(ej) = xj and ej ⪰w ei ] or [ π−1(ej) = yj and ej ≻w ei ].

For any firm f ∈ F , if ei, ej ∈ Ef and π−1(ej) ≻∗
f zi, then we have either

[ π−1(ej) = zj and ej ⪰f ei ] or [ π−1(ej) = yj and ej ≻f ei ].

First, we show the stability of M in I. For each agent a ∈W ∪F , we write M∗
a = M∗∩E∗

a ,
which implies that π(M∗

a ) = Ma.

▶ Lemma 8. The set M is a stable matching of I.

Proof. Since M∗ is feasible for all agents in I∗, Observation 6 implies that M = π(M∗) is
feasible for all agents in I, i.e., M is a matching in I.

Suppose, to the contrary, that M is not stable. Then, some contract ei ∈ E \M blocks
M . Let w = ∂W (ei) and f = ∂F (ei). Then, ei is free for both w and f in M . We now show
that yi is free for both w and f in M∗, which contradicts the stability of M∗.

As ei is free for w in I, we have (i) Mw + ei ∈ Iw or (ii) there exists ej ∈Ma such that
ei ≻w ej and Ma + ei − ej ∈ Iw. Note that ei ∈ E \M implies {xi, yi, zi} ∩M∗ = ∅. In case
(i), we have π(M∗

w + yi) = Mw + ei ∈ Iw, which implies M∗
w + yi ∈ I∗

w ; hence, yi is free for
w in M∗. In case (ii), we have π(M∗

w + yi − π−1(ej)) = Mw + ei − ej ∈ Iw, which implies
M∗

w + yi − π−1(ej) ∈ I∗
w. Furthermore, as ei ≻w ej , the first statement of Observation 7

implies yi ≻∗
w π−1(ej). Thus, in each case, yi is free for w in M∗.

Similarly, we can show that yi is free for f in M∗. Thus, yi blocks M∗, a contradiction. ◀
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Next, we show the approximation ratio using Lemma 5. Note that {Ew | w ∈W } is a
partition of E, as is {Ef | f ∈ F }. Let (E, IW ) be the direct sum of base-orderable matroids
{ (Ew, Iw) | w ∈W } and (E, IF ) be the direct sum of { (Ef , If ) | f ∈ F }. Then, they are
both base-orderable matroids on E.

By the definitions of IW and IF , for any subset N ⊆ E, we have N ∈ IW ∩IF if and only
if Na := N ∩ Ea is feasible for each a ∈W ∪ F , i.e., N is a matching. Furthermore, for any
matching N ∈ IW ∪IF and contract ei ∈ E\N , which is associated with a worker w = ∂W (ei)
(and a firm f = ∂F (ei)), the condition N +ei ∈ IW is equivalent to Nw +ei ∈ Iw. In addition,
if N + ei ̸∈ IW , we have N + ei − ej ∈ IW if and only if ej ∈ Nw and Nw + ei − ej ∈ Iw.
The same statements hold when w and W are replaced with f and F , respectively.

▶ Lemma 9. The set M satisfies |M | ≥ 2
3 |MOPT|, where MOPT is a maximum-cardinality

stable matching of I.

Proof. Set N := MOPT for notational simplicity. Since M and N are stable matchings,
M, N ∈ IW ∩ IF . In addition, M + ei ̸∈ IW ∩ IF for any ei ∈ N \M since, otherwise, ei

blocks M . Suppose, to the contrary, that |M | < 2
3 |N |. Then, by Lemma 5 and the definitions

of IW and IF , there exist three contracts ei, ej , ek such that ei, ek ∈ N \M , ej ∈ M \N ,
and the following conditions hold:

Mw + ei ∈ Iw,
both Mf + ei − ej and Nf − ei + ej belong to If ,
both Mw′ − ej + ek and Nw′ + ej − ek belong to Iw′ ,
Mf ′ + ek ∈ If ′ ,

where w = ∂W (ei), f = ∂F (ei) = ∂F (ej), w′ = ∂W (ej) = ∂W (ek), f ′ = ∂F (ek).

Since ei ̸∈ M and Mw + ei ∈ Iw, we have M∗
w + zi ∈ I∗

w; hence, zi is free for the
worker w = ∂W (zi) in M∗. Then, the stability of M∗ implies that zi is not free for the firm
f = ∂F (zi). Since π(M∗

f + zi−π−1(ej)) = Mf + ei− ej ∈ If implies M∗
f + zi−π−1(ej) ∈ I∗

f ,
we should have π−1(ej) ≻∗

f zi. Then, the third statement of Observation 7 implies that we
have either [π−1(ej) = zj and ej ⪰f ei] or [π−1(ej) = yj and ej ≻f ei].

Meanwhile, since ek ̸∈M and Mf ′ +ek ∈ If ′ , we have M∗
f ′ +xk ∈ I∗

f ′ ; hence, xk is free for
the firm f ′ = ∂W (xk) in M∗. As M∗ is stable, then xk is not free for the worker w′ = ∂W (xk).
Since π(M∗

w′ + xk − π−1(ej)) = Mw′ + ek − ej ∈ Iw′ implies M∗
w′ + xk − π−1(ej) ∈ I∗

w′ , we
should have π−1(ej) ≻∗

w′ xk. Then, the second statement of Observation 7 implies that we
have either [π−1(ej) = xj and ej ⪰w′ ek] or [π−1(ej) = yj and ej ≻w′ ek].

Because we cannot have π−1(ej) = zj and π−1(ej) = xj simultaneously, we must have
π−1(ej) = yj , ej ≻f ei, and ej ≻w′ ek. As we have Nf −ei +ej ∈ If and Nw′ +ej−ek ∈ Iw′ ,
these preference relations imply that ej blocks N , which contradicts the stability of N . ◀

Proof of Theorem 1. Combining Lemmas 8 and 9, we obtain Theorem 1. ◀

6 Time Complexity

We explain how to implement the second step of Algorithm 1 and estimate its time complexity,
which establishes Theorem 2. For this purpose, we introduce the notion of a matroid-kernel,
which is a matroid generalization of a stable matching proposed by Fleiner [12, 13]. Note
that it is defined not only for base-orderable matroids but for general matroids.
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6.1 Matroid-kernels
A triple M = (E, I,≻) is called an ordered matroid if (E, I) is a matroid and ≻ is a strict
linear order on E. For an ordered matroid M = (E, I,≻) and an independent set S ∈ I, an
element e ∈ E \ S is said to be dominated by S in M if S + e ̸∈ I and there is no element
e′ ∈ S such that e ≻ e′ and S + e− e′ ∈ I.

Let M1 = (E, I1,≻1) and M2 = (E, I2,≻2) be two ordered matroids on the same ground
set E. Then, a set S ⊆ E is called an M1M2-kernel if S ∈ I1 ∩I2 and any element e ∈ E \S

is dominated by S in M1 or M2.
In [12], an algorithm for finding a matroid-kernel has been described using choice functions

defined as follows. For an ordered matroid M = (E, I,≻), give indices of elements in E

such that E = {e1, e2, . . . , en} and e1 ≻ e2 ≻ · · · ≻ en. Define a function CM : 2E → 2E by
letting CM be the output of the following greedy algorithm for every S ⊆ E. Let T 0 := ∅
and define T ℓ for ℓ = 1, 2, . . . , n by

T ℓ :=
{

T ℓ−1 + eℓ if eℓ ∈ S and T ℓ−1 + eℓ ∈ I,

T ℓ−1 otherwise;

then, let M(S) := T n.
Let CM1 , CM2 be the choice functions defined from M1 = (E, I1,≻1), M2 = (E, I2,≻2),

respectively. In [12, Theorem 2], Fleiner showed that an M1M2-kernel can be found using
the following algorithm, which can be regarded as a generalization of the Gale–Shapley
algorithm. First, set R← ∅. Then, repeat the following three steps: (1) S ← CM1(E \R),
(2) T ← CM2(S ∪R), and (3) R← (S ∪R) \ T . Stop the repetition if R is not changed at
(3) and return T at that moment. In terms of the ordinary Gale–Shapley algorithm, R, S,
and T correspond to the sets of contracts that are rejected by firms thus far, proposed by
workers, and accepted by firms, respectively.

▶ Theorem 10 (Fleiner [12, 13]). For any pair of ordered matroids M1 and M2 on the same
ground set E, there exists an M1M2-kernel. One can find an M1M2-kernel in O(|E| · EO)
time, where EO is the time required to compute CM1(S) and CM2(S) for any S ⊆ E.

6.2 Implementation of Our Algorithm
We show that the second step of Algorithm 1 is reduced to a computation of a matroid-kernel.

For an auxiliary instance I∗ defined in Section 2, note that {E∗
w | w ∈W } is a partition

of E∗ and let (E∗, I∗
W ) be the direct sum of {(E∗

w, I∗
w)}w∈W . Furthermore, let ≻W be a

strict linear order on E∗ that is consistent with the workers’ preferences {P ∗
w}w∈W in I∗.

For example, obtain ≻W by concatenating the lists P ∗
w of all workers in an arbitrary order.

Then, MW = (E∗, I∗
W ,≻W ) is an ordered matroid on the contract set E∗. As {E∗

f | f ∈ F }
is also a partition of E∗, we can define an ordered matroid MF = (E∗, I∗

F ,≻F ) in the same
manner from {(E∗

f , I∗
f )}f∈F and {P ∗

f }f∈F .
We show that MWMF -kernels are equivalent to stable matchings of I. This has already

been shown in several previous works [14,44]. We present a proof for the completeness.

▶ Lemma 11. M∗ ⊆ E∗ is a stable matching of I∗ if and only if M∗ is an MWMF -kernel.

Proof. By the definitions of (E∗, I∗
W ) and (E∗, I∗

f ), a set M∗ ⊆ E∗ is feasible for all agents
in I∗ if and only if M∗ ∈ I∗

W ∩ I∗
F . Recall that a contract e ∈ E∗ \M∗ is free for the

associated worker w := ∂W (e) if M∗
w + e ∈ I∗

w or there exists e′ ∈ M∗
w such that e ≻∗

w e′

and M∗
w + e − e′ ∈ I∗

w. By the definition of I∗
W , we have M∗

w + e ∈ I∗
w if and only if
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M∗ + e ∈ I∗
W . In addition, if M∗

w + e ̸∈ I∗
w, then M∗

w + e− e′ ∈ I∗
w holds for e′ ∈Mw if and

only if M∗ + e− e′ ∈ I∗
W . Because ≻W is consistent with ≻∗

w, these imply that e is free for
w = ∂W (e) in M∗ if and only if e is not dominated by M∗ in MW . Similarly, we can show
that e is free for the associated firm f := ∂F (e) in M∗ if and only if e is not dominated by
M∗ in MF . Thus, the equivalence holds. ◀

▶ Lemma 12. For any subset S∗ ⊆ E∗, we can compute CMW
(S∗) and CMF

(S∗) in
O(k∗·|E∗|) time, where k∗ is the maximum level of nesting of laminar families L∗

a (a ∈W∪F ).

Proof. We only explain the computation of CMW
(S∗) because that of CMF

(S∗) is similar.
Let L be the union of {L∗

w}w∈W and define q : L → Z+ by setting q(L) = q∗
w(L) for each

w ∈W and L ∈ L∗
w. Then, L is a laminar family on E∗ and the matroid (E∗, I∗

W ) is defined
by L and q. The maximum level of nesting of L is again k∗.

Referring to [4], we represent L by a forest G whose node set is { vL | L ∈ L}. Node vL

is the parent of vL′ in G if L ⊆ L′ and there is no L′′ ∈ L such that L ⊊ L′′ ⊊ L′. Note
that L contains the set {xi, yi, zi} for every ei ∈ E, which is inclusion-wise minimal in L.
Therefore, the node vi := v{xi,yi,zi} is a leaf for any ei ∈ E, and any leaf has this form.

We compute the sequence T 0, T 1, . . . , T |E∗| of sets in the definition of CMW
(S∗) as follows.

For each vL, we store a pointer to its parent, the value of q(L), and the value of |T ℓ−1 ∩ L|.
For each eℓ ∈ E∗, we have T ℓ−1 + eℓ ∈ I∗

W if and only if there is no ancestor node vL of
vi with q(L) = |T ℓ−1 ∩ L|, where vi is the leaf with eℓ ∈ {xi, yi, zi}. Then, we can check
whether T ℓ−1 + eℓ ∈ I∗

W in O(k∗) time by following the path of the parent pointers from vi.
When T ℓ = T ℓ−1 + eℓ, we update the stored values |T ℓ−1 ∩L| to |T ℓ ∩L| for each L ∈ L with
eℓ ∈ L. This is also performed in O(k∗) time by following the path of the parent pointers. ◀

Proof of Theorem 2. As we have Theorem 1, what is left is to show the time complexity.
The set E∗ of contracts in I∗ satisfies |E∗| = 3|E|. The maximum level of nesting of laminar
families L∗

a in I∗ is k + 1. By Theorem 10 and Lemmas 11 and 12, then the second step of
Algorithm 1 is computed in O((k + 1) · |E∗|2) = O(k · |E|2) time. Since the first and third
steps can be performed in O(k · |E|2) time, Algorithm 1 runs in O(k · |E|2) time. ◀

▶ Remark. Our analysis depends on the fact that the feasible set family defined by laminar
constraints forms the independent set family of a base-orderable matroid. Actually, we can
extend Theorem 1 to a setting where the family of feasible sets of each agent a ∈W ∪ F is
represented by the independent set family Ia of an arbitrary base-orderable matroid. To
construct I∗ in this case, we define E∗ and {P ∗

a }a∈W ∪F as in Section 3 and define the feasible
set family I∗

a by I∗
a = {S∗ ⊆ E∗

a | |{xi, yi, zi} ∩ S∗| ≤ 1 for any ei ∈ Ea and π(S∗) ∈ Ia }.
We can easily show that (E∗

a , I∗
a) is also a base-orderable matroid and apply the arguments

in Sections 5 and 6, except Lemma 12. Given a membership oracle for each Ia available,
Algorithm 1 runs in O(τ · |E|2) time in this case, where τ is the time for an oracle call.

7 Strategy-Proof Approximation Mechanisms

In this section, we investigate approximation ratios for max-smti-lc attained by strategy-
proof mechanisms. First, note that our setting smti-lc is a generalization of the stable
marriage model of Gale and Shapley [16]; hence, Roth’s impossibility theorem [40] implies
that there is no mechanism that returns a stable matching and is strategy-proof for agents
on both sides. As with many existing works on strategy-proofness in two-sided matching
models, we consider one-sided strategy-proofness in the setting of many-to-one matching.
Many-to-one matching models have various applications such as assignment of residents to
hospitals [39, 41] and students to high schools [1–3]. In such applications, strategy-proofness
for residents or students is a desirable property preventing their strategic behavior.
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7.1 Model and Definitions
We define a setting of smti-olc, which is a many-to-one variant of smti-lc. (Here, olc
stands for “one-sided laminar constraints”). In smti-olc, each worker is assigned at most
one contract and hence has no laminar constraints. An instance of smti-olc is described
as I = (W, F, E, {Pw}w∈W , {Lf , qf , Pf}f∈F ). To consider strategies of workers, we slightly
change the assumption on each Pw. In Section 2, it is assumed that Pw contains all contracts
in Ew. Here, we allow each worker to submit a preference list Pw that is defined on any
subset of Ew and regard contracts not appearing in Pw as unacceptable for w. Let E◦ be
the set of acceptable contracts, that is, E◦ = { e ∈ E | e appears in Pw, where w = ∂W (e) }.

A set M ⊆ E is called a matching if M ⊆ E◦, |Mw| ≤ 1 for every worker w ∈ W , and
M is feasible for every firm f ∈ F . For a matching M , a contract e ∈ E \M blocks M if
it is free for both ∂W (e) and ∂F (e), where we say that e is free for the associated worker
w := ∂W (e) if e ∈ E◦ and either w is assigned no contract in M or prefers e to the contract
assigned in M . A matching M is stable if there is no contract that blocks M . The auxiliary
instance I∗ = (W, F, E∗, {P ∗

w}w∈W , {L∗
f , q∗

f , P ∗
f }f∈F ) of I is defined similarly as in Section 3.

We remark that smti-olc can be seen as a special case of smti-lc, although the
assumption on workers’ preference lists is slightly different from that of smti-lc. From
an smti-olc instance I, define I◦ = (W, F, E◦, {L◦

a, q◦
a, P ◦

a }a∈W ∪F ) as follows. For each
worker w ∈ W , set L◦

w = {E◦
w}, q◦

w(E◦
w) = 1, and P ◦

w = Pw. For each firm f ∈ F , set
L◦

f = {L ∩ E◦ | L ∈ Lf }, q◦
f (L∩E◦) = qf (L) for each L ∈ Lf , and let P ◦

f be the restriction
of Pf on E◦

f (i.e., delete the elements in Ef \E◦
f from Pf ). Then, I◦ is an instance of smti-lc

in Section 2. By definition, we can observe that a subset M ⊆ E is a stable matching of I if
and only if it is a stable matching of I◦. Therefore, we can apply Algorithm 1 to smti-olc
instances.

For subsets M, N ⊆ E, a worker w ∈W , and a preference list Pw, we say that w weakly
prefers M to N with respect to Pw if either (i) w is assigned a contract appearing in Pw only
in M or (ii) w is assigned a contract appearing in Pw in both M and N and does not strictly
prefer the one assigned in N with respect to Pw. A stable matching M of an smti-olc
instance I is worker-optimal if, for any other stable matching N of I, every worker w weakly
prefers M to N .

A mechanism is a mapping from smti-olc instances to matchings. Here, we define the
worker-strategy-proofness of a mechanism. Let A be a mechanism. For any instance I and
any worker w, let I ′ be an instance obtained from I by replacing w’s list Pw with some other
list P ′

w. Let M and M ′ be the outputs of A for instances I and I ′, respectively. We say that
A is worker-strategy-proof if w weakly prefers M to M ′ with respect to the original list Pw

regardless of the choices of I, w, and P ′
w.

7.2 Approximation Mechanisms
Before providing our results on smti-olc, we introduce some existing results on special cases
of smti-olc. We first present a result on the setting without ties.

▶ Lemma 13. In a restriction of smti-olc in which all agents have strict preferences, a
mechanism that returns the worker-optimal stable matching is worker-strategy-proof.

Lemma 13 is a natural consequence of the results shown in previous works [17, 33]. For the
completeness, the full version [45] provides the proof, which uses the fact that smti-olc can
be reduced to the model of Hatfield and Milgrom [20] if there are no ties.

Next, we introduce the results of Hamada et al. [19] on max-smti, which is a special case
of max-smti-olc in which every agent is assigned at most one contract.
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▶ Theorem 14 (Hamada et al. [19, Theorem 2]). For max-smti, there is a worker-strategy-
proof mechanism that returns a 2-approximate solution. On the other hand, for any ϵ > 0,
there is no worker-strategy-proof mechanism that returns a (2− ϵ)-approximate solution.

▶ Theorem 15 (Hamada et al. [19, Theorem 4]). For a restriction of max-smti in which
ties appear in only workers’ preference lists, there is a worker-strategy-proof mechanism
that returns a 3

2 -approximate solution. On the other hand, for any ϵ > 0, there is no
worker-strategy-proof mechanism that returns a ( 3

2 − ϵ)-approximate solution.

The first statement of Theorem 14 is attained by a naive mechanism that first breaks ties
in an increasing order of the indices and then finds the worker-optimal stable matching of
the resultant instance. This method naturally extends to the setting of smti-olc and yields
the following theorem. See the full version [45] for the proof.

▶ Theorem 16. For smti-olc, there is a worker-strategy-proof mechanism that returns a
stable matching M with |M | ≥ 1

2 |MOPT| in O(k · |E|2) time, where MOPT is a maximum-
cardinality stable matching and k is the maximum level of nesting of Lf (f ∈ F ).

Since smti-olc is a generalization of smti, the second statement (i.e., the hardness part)
of Theorem 14 immediately extends to max-smti-olc. Therefore, for the general smti-olc,
there is no worker-strategy-proof mechanism with an approximation ratio better than 2.

However, in a special case in which firms’ lists contain no ties, Algorithm 1 in Section 3
defines a worker-strategy-proof mechanism whose approximation ratio is 3

2 . That is, we
can extend the first statement of Theorem 15 to the setting of smti-olc. According to
the second statement of Theorem 15, this is the best approximation ratio attained by a
worker-strategy-proof mechanism.

▶ Theorem 17. For a restriction of smti-olc in which ties appear in only workers’ lists, there
is a worker-strategy-proof mechanism that returns a stable matching M with |M | ≥ 2

3 |MOPT|
in O(k · |E|2) time, where MOPT is a maximum-cardinality stable matching and k is the
maximum level of nesting of laminar families Lf (f ∈ F ).

We provide a mechanism that meets the requirements in Theorem 17. Our mechanism
is regarded as a possible realization of Algorithm 1. In the second step of Algorithm 1,
we should choose the worker-optimal stable matching of the auxiliary instance I∗. Our
mechanism is described as follows.

1. Given an instance I (in which ties appear in only workers’ lists), construct I∗.
2. Find the worker-optimal stable matching M∗ of I∗.
3. Let M = π(M∗) and return M .

In the proof of Theorem 10 (Fleiner [12, p.113]), it is shown that one can find the M1-optimal
M1M2-kernel in O(|E| · EO) time. The arguments in Section 6 then imply that one can
find the worker-optimal stable matching of I∗ in O(k · |E|2) time. As we have Theorem 2,
showing the strategy-proofness of the above-mentioned mechanism completes the proof of
Theorem 17. To this end, we show the following lemma.

▶ Lemma 18. Let I be an smti-olc instance with E = { ei | i = 1, 2, . . . , n } and let I∗ be
the auxiliary instance. If ties appear in only workers’ lists in I, then the worker-optimal
stable matching M∗ of I∗ satisfies M∗ ∩ { zi | i = 1, 2, . . . , n } = ∅.
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Proof. Suppose, to the contrary, that zi ∈M∗ for some index i. Then N := M∗ − zi + yi is
a matching of I∗ and w := ∂W (zi) = ∂W (yi) prefers N to M∗. We intend to show that N is
stable in I∗. Take any e ∈ E∗ \N = (E∗ \M∗) + zi − yi. If e = zi, then it does not block N

because yi ≻∗
w zi. If e ̸= zi, then the assignment of ∂W (e) does not change in M∗ and N ,

and hence e can block N only if f := ∂F (e) = ∂F (zi) and zi ≻∗
f e ≻∗

f yi. This is impossible
because no contract lies between zi and yi in P ∗

f as the list Pf of the firm f is strict. Thus,
N is a stable matching of I∗, which contradicts the worker-optimality of M∗. ◀

Proof of Theorem 17. As we have Theorem 2, what is left is to show that our mechanism
is worker-strategy-proof. Let I = (W, F, E, {Pw}w∈W , {Lf , qf , Pf}f∈F ) be an instance of the
setting in the statement and let E = { ei | i = 1, 2, . . . , n }. Furthermore, let I ′ be obtained
from I by replacing Pw with some other list P ′

w. Let M∗ and N∗ be the worker-optimal
stable matchings of the auxiliary instances defined from I and I ′, respectively. Note that the
two auxiliary instances have no ties and they differ only in the preference list of w. Then,
Lemma 13 implies that w weakly prefers M∗ to N∗ with respect to P ∗

w. In other words, either
(i) w is assigned a contract on P ∗

w only in M∗, or (ii) w is assigned a contract on P ∗
w in both

M∗ and N∗ and does not strictly prefer the one assigned in N∗ w.r.t. P ∗
w. By Lemma 18, w

is not assigned a contract of type zi in M∗ or N∗. Then, the definition of P ∗
w implies that w

weakly prefers π(M∗) to π(N∗) w.r.t. Pw. Thus the mechanism is worker-strategy-proof. ◀

References
1 A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. The New York city high school match.

American Economic Review, 95:364–367, 2005.
2 A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. Strategy-proofness versus efficiency in

matching with indifferences: Redesigning the NYC high school match. American Economic
Review, 99(5):1954–1978, 2009.

3 A. Abdulkadiroğlu, P. A. Pathak, A. E. Roth, and T. Sönmez. The Boston public school
match. American Economic Review, 95:368–371, 2005.

4 P. Biró, T. Fleiner, R. W. Irving, and D. F. Manlove. The college admissions problem with
lower and common quotas. Theoretical Computer Science, 411(34):3136–3153, 2010.

5 J. E. Bonin and T. J. Savitsky. An infinite family of excluded minors for strong base-orderability.
Linear Algebra and its Applications, 488:396–429, 2016.

6 S. Braun, N. Dwenger, D. Kübler, and A. Westkamp. Implementing quotas in university
admissions: An experimental analysis. Games and Economic Behavior, 85:232–251, 2014.

7 R. A. Brualdi. Induced matroids. Proceedings of the American Mathematical Society, 29(2):213–
221, 1971.

8 F. Cooper and D. Manlove. A 3/2-approximation algorithm for the student-project allocation
problem. In Proc. 17th International Symposium on Experimental Algorithms (SEA 2018),
volume 103, pages 8:1–8:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

9 L. Ehlers, I. E. Hafalir, M. B. Yenmez, and M. A. Yildirim. School choice with controlled
choice constraints: Hard bounds versus soft bounds. Journal of Economic Theory, 153:648–683,
2014.

10 T. Fife and J. Oxley. Laminar matroids. European Journal of Combinatorics, 62:206–216,
2017.

11 L. Finkelstein. Two algorithms for the matroid secretary problem. Master’s thesis, Technion-
Israel Institute of Technology, Faculty of Industrial and Management Engineering, 2011.

12 T. Fleiner. A matroid generalization of the stable matching polytope. In Proc. Eighth
International Conference on Integer Programming and Combinatorial Optimization (IPCO
2001), volume 2081 of LNCS, pages 105–114. Springer-Verlag, Berlin & Heidelberg, 2001.

13 T. Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics
of Operations Research, 28(1):103–126, 2003.



Y. Yokoi 71:15

14 T. Fleiner and N. Kamiyama. A matroid approach to stable matchings with lower quotas.
Mathematics of Operations Research, 41(2):734–744, 2016.

15 D. Fragiadakis and P. Troyan. Improving matching under hard distributional constraints.
Theoretical Economics, 12(2):863–908, 2017.

16 D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

17 M. Goto, A. Iwasaki, Y. Kawasaki, R. Kurata, Y. Yasuda, and M. Yokoo. Strategyproof
matching with regional minimum and maximum quotas. Artificial Intelligence, 235:40–57,
2016.

18 D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT
Press, Cambridge, MA, 1989.

19 K. Hamada, S. Miyazaki, and H Yanagisawa. Strategy-proof approximation algorithms for the
stable marriage problem with ties and incomplete lists. In Proc. 30th International Symposium
on Algorithms and Computation (ISAAC 2019), volume 149 of LIPIcs, pages 9:1–9:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

20 J. W. Hatfield and P. R. Milgrom. Matching with contracts. American Economic Review,
95(4):913–935, 2005.

21 C. C. Huang. Classified stable matching. In Proc. 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA2010), pages 1235–1253. SIAM, Philadelphia, 2010.

22 A. W. Ingleton. Transversal matroids and related structures. In Higher Combinatorics (M.
Aigner eds.), pages 117–131. Reidel, Dordrecht, 1977.

23 R. W. Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48(3):261–272,
1994.

24 K. Iwama, D. F. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incomplete lists
and ties. In Proc. 26th International Colloquium on Automata, Languages, and Programming
(ICALP1999), pages 443–452. Springer, 1999.

25 K. Iwama, S. Miyazaki, and N. Yamauchi. A 1.875-approximation algorithm for the stable
marriage problem. In Proc. 18th annual ACM-SIAM symposium on Discrete algorithms
(SODA2007), pages 288–297. SIAM, Philadelphia, 2007.

26 K. Iwama, S. Miyazaki, and N. Yamauchi. A (2 − c 1√
n

)-approximation algorithm for the stable
marriage problem. Algorithmica, 51(3):342–356, 2008.

27 Y. Kamada and F. Kojima. Efficient matching under distributional constraints: Theory and
applications. American Economic Review, 105(1):67–99, 2015.

28 Y. Kamada and F. Kojima. Stability concepts in matching under distributional constraints.
Journal of Economic Theory, 168:107–142, 2017.

29 Y. Kamada and F. Kojima. Stability and strategy-proofness for matching with constraints: A
necessary and sufficient condition. Theoretical Economics, 13(2):761–793, 2018.

30 Z. Király. Better and simpler approximation algorithms for the stable marriage problem.
Algorithmica, 60(1):3–20, 2011.

31 Z. Király. Linear time local approximation algorithm for maximum stable marriage. Algorithms,
6(3):471–484, 2013.

32 D. E. Knuth. Stable Marriage and Its Relation to Other Combinatorial Problems. American
Mathematical Society, Providence, 1996.

33 F. Kojima, A. Tamura, and M. Yokoo. Designing matching mechanisms under constraints:
An approach from discrete convex analysis. Journal of Economic Theory, 176:803–833, 2018.

34 D. F. Manlove. Algorithmics of Matching under Preferences. World Scientific Publishing,
Singapore, 2013.

35 D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of stable
marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.

36 E. Mcdermid. A 3/2-approximation algorithm for general stable marriage. In Proc. 36th
International Colloquium on Automata, Languages, and Programming (ICALP2009), pages
689–700. Springer, 2009.

ISAAC 2021



71:16 Maximum Stable Matching with Ties and Constraints

37 J. G. Oxley. Matroid Theory (2nd ed.). Oxford University Press, Oxford, 2011.
38 K. Paluch. Faster and simpler approximation of stable matchings. Algorithms, 7(2):189–202,

2014.
39 A. E. Roth. The evolution of the labor market for medical interns and residents: A case study

in game theory. The Journal of Political Economy, 92(6):991–1016, 1984.
40 A. E. Roth. On the allocation of residents to rural hospitals: A general property of two-sided

matching markets. Econometrica, 54(2):425–427, 1986.
41 A. E. Roth and E. Peranson. The redesign of the matching market for american physicians:

Some engineering aspects of economic design. American economic review, 89(4):748–780, 1999.
42 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, Heidel-

berg, 2003.
43 H. Yanagisawa. Approximation algorithms for stable marriage problems. Ph.D. Thesis, Kyoto

University, 2007.
44 Y. Yokoi. A generalized polymatroid approach to stable matchings with lower quotas. Math-

ematics of Operations Research, 42(1):238–255, 2017.
45 Y. Yokoi. An approximation algorithm for maximum stable matching with ties and constraints.

arXiv preprint, 2021. arXiv:2107.03076.

http://arxiv.org/abs/2107.03076

	1 Introduction
	2 Problem Formulation
	3 Algorithm
	4 Base-orderable Matroids
	5 Correctness
	6 Time Complexity
	6.1 Matroid-kernels
	6.2 Implementation of Our Algorithm

	7 Strategy-Proof Approximation Mechanisms
	7.1 Model and Definitions
	7.2 Approximation Mechanisms


