BQP After 28 Years

Scott Aaronson \square ヘ
University of Texas, Austin, TX, USA

Abstract

I will discuss the now-ancient question of where BQP, Bounded-Error Quantum Polynomial-Time, fits in among classical complexity classes. After reviewing some basics from the 90s, I will discuss the Forrelation problem that I introduced in 2009 to yield an oracle separation between BQP and PH, and the dramatic completion of that program by Ran Raz and Avishay Tal in 2018. I will then discuss very recent work, with William Kretschmer and DeVon Ingram, which leverages the Raz-Tal theorem, along with a new "quantum-aware" random restriction method, to obtain results that illustrate just how differently BQP can behave from BPP. These include oracles relative to which NP ${ }^{B Q P} \not \subset B Q P^{P H}$ - solving a 2005 open problem of Lance Fortnow - and conversely, relative to which $B Q P^{N P} \not \subset \mathrm{PH}^{\mathrm{BQP}} ;$ an oracle relative to which $\mathrm{P}=\mathrm{NP}$ and yet $\mathrm{BQP} \neq \mathrm{QCMA}$; an oracle relative to which $N P \subseteq B Q P$ yet $P H$ is infinite; an oracle relative to which $P=N P \neq B Q P=P P$; and an oracle relative to which $\mathrm{PP}=\mathrm{PostBQP} \not \subset \mathrm{QMA}^{\mathrm{QMA}}{ }^{\cdots}$. By popular demand, I will also speculate about the status of BQP in the unrelativized world.

2012 ACM Subject Classification Theory of computation \rightarrow Quantum complexity theory
Keywords and phrases quantum computing, complexity theory, oracle separations, circuit lower bounds

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.1
Category Invited Talk

