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Abstract
Knapsack problems are among the most fundamental problems in optimization. In the Multiple
Knapsack problem, we are given multiple knapsacks with different capacities and items with values
and sizes. The task is to find a subset of items of maximum total value that can be packed into
the knapsacks without exceeding the capacities. We investigate this problem and special cases
thereof in the context of dynamic algorithms and design data structures that efficiently maintain
near-optimal knapsack solutions for dynamically changing input. More precisely, we handle the
arrival and departure of individual items or knapsacks during the execution of the algorithm with
worst-case update time polylogarithmic in the number of items. As the optimal and any approximate
solution may change drastically, we maintain implicit solutions and support polylogarithmic time
query operations that can return the computed solution value and the packing of any given item.

While dynamic algorithms are well-studied in the context of graph problems, there is hardly
any work on packing problems (and generally much less on non-graph problems). Motivated by the
theoretical interest in knapsack problems and their practical relevance, our work bridges this gap.
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1 Introduction

Knapsack problems are among the most fundamental optimization problems. In their most
basic form, we are given a knapsack capacity S ∈ N and a set of n items, where each item
j ∈ [n] := {1, 2, . . . , n} has a size sj ∈ N and a value vj ∈ N. The Knapsack problem asks
for a subset of items, P ⊆ [n], with maximal total value v(P ) :=

∑
j∈P vj and with a total

size s(P ) :=
∑

j∈P sj that does not exceed the knapsack capacity S. In the more general
Multiple Knapsack problem, we are given m knapsacks with capacities Si for i ∈ [m].
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18:2 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

Here, the task is to select m disjoint subsets P1, P2, . . . , Pm ⊆ [n] such that subset Pi

satisfies the capacity constraint s(Pi) ≤ Si and the total value of all subsets
∑

i∈[m] v(Pi) is
maximized.

Multiple Knapsack is strongly NP-hard, even for identical knapsack capacities, as
it is a special case of bin packing. Knapsack, on the other hand, is only weakly NP-hard
and admits pseudo-polynomial time algorithms, the first one being already published in the
1950s [5].

As a consequence of these hardness results, each of the knapsack variants has been
studied extensively through the lens of approximation algorithms. Of particular interest are
approximation schemes, families of polynomial-time algorithms that compute for each ε > 0
a (1 − ε)-approximate solution, i.e., a feasible solution with value within a factor of (1 − ε)
of the optimal solution value. Based on the dependency on ε of the respective running
time, we distinguish Polynomial Time Approximation Schemes (PTAS) with arbitrary
dependency on ε, Efficient PTAS (EPTAS) where arbitrary functions f(ε) may only appear
as a multiplicative factor, and Fully Polynomial Time Approximation Schemes (FPTAS)
with polynomial dependency on 1

ε .
The first approximation scheme for Knapsack was an FPTAS by Ibarra and Kim [43]

and initiated a long sequence of follow-up work, which is still active [17, 52]. Multiple
Knapsack is substantially harder and does not admit an FPTAS, unless P = NP, even
with two identical knapsacks [19]. However, approximation schemes with running times
of the form nf(ε) (PTASs) are known [19, 54] as well as improvements to only f(ε)nO(1)

(EPTASs) [48, 50]. All these algorithms are static in the sense that the full instance is given
to an algorithm and is then solved.

Given the ubiquitous dynamics of real-world instances, it is natural to ask for dynamic
algorithms that adapt to small changes in the packing instance while spending only little
computation time. More precisely, during the execution of the algorithm, items and knapsacks
arrive and depart and the algorithm needs to maintain an approximate knapsack solution with
an update time polylogarithmic in the number of items in each step. A dynamic algorithm is
then a data structure that implements these updates efficiently and supports relevant query
operations.

A practical application is the dynamic estimation of the profit for scheduling jobs in
computing clusters in which virtual machines can be moved among physical machines [6].
This allows the service provider to adapt the provided capacity, i.e., the currently running
servers, to the current demand, see, e.g., [13,23,59]. An efficient framework for Multiple
Knapsack can be viewed as a first-stage decision tool: In real-time, it determines whether
the customer in question should be allowed into the system based on the cost of possibly
powering and using additional servers. As the service provider has to decide immediately
which request she wants to accept, she needs to obtain the information fast, i.e., sublinear in
the number of requests already in the system.

Generally, dynamic algorithms constitute a vibrant research field in the context of graph
problems. We refer to surveys [15, 26, 38] for an overview on dynamic graph algorithms.
Interestingly, only for a small number of graph problems there are dynamic algorithms
known with polylogarithmic update time, among them connectivity problems [40, 42], the
minimum spanning tree [42], and vertex cover [9, 11]. Recently, this was complemented by
conditional lower bounds that are typically linear in the number of nodes or edges; see,
e.g., [2]. Over the last few years, the generalization of dynamic vertex cover to dynamic set
cover gained interest leading to near-optimal approximation algorithms with polylogarithmic
update times [1, 8, 10, 34]. Also, recently, algorithms have been developed for maintaining
maximal independent sets, e.g., [4, 18,64], and approximate maximum independent sets in
special graph classes [12,20,39].
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For packing problems, there are hardly any dynamic algorithms with small update time
known. A notable exception is a result for bin packing that maintains a 5

4 -approximative
solution with O(log n) update time [45]. This lack of efficient dynamic algorithms is in stark
contrast to the aforementioned intensive research on computationally efficient algorithms for
packing problems. Our work bridges this gap initiating the design of data structures and
algorithms that efficiently maintain near-optimal solutions.

Our Contribution. In this paper, we present dynamic algorithms for maintaining approxim-
ate solutions for three problems of increasing complexity: Knapsack, Multiple Knapsack
with identical knapsack sizes, and general Multiple Knapsack. Our algorithms are fully
dynamic which means that in an update operation they can handle the arrival or departure
of an item and of a knapsack. Further, we consider the implicit solution or query model,
in which an algorithm is not required to store the solution explicitly in memory such that
the solution can be read in linear time at any given point of the execution. Instead, the
algorithm may maintain the solution implicitly with the guarantee that a query about the
packing can be answered in polylogarithmic time.

We give worst-case guarantees for update and query times that are polylogarithmic in n,
the number of items currently in the input, and bounded by a function of ε > 0, the desired
approximation accuracy. For some special cases, we can even ensure a polynomial dependency
on 1

ε . In others, we justify the exponential dependency with corresponding lower bounds.
Denote by vmax the currently largest item value and by v an upper bound on vmax that is
known in advance.

1. For Multiple Knapsack, we design a dynamic algorithm maintaining a (1 − ε)-
approximate solution with update time 2f(1/ε)( 1

ε log n log v
)O(1/ε)(log Smax)O(1), where f

is quasi-linear, and query time
( 1

ε log n
)O(1).

2. The exponential dependency on 1
ε in the update time for Multiple Knapsack is indeed

necessary, even for two identical knapsacks. We show that there is no (1 − ε)-approximate
dynamic algorithm with update time

( 1
ε log n

)O(1), unless P = NP.
3. For Knapsack, we give a dynamic (1 − ε)-approximation algorithm with update time( 1

ε log(nvmax)
)O(1) + O

( 1
ε log n log v

)
and constant query times.

4. For Multiple Knapsack with identical knapsacks with capacity S each, we im-
prove the update time to

( 1
ε log n log vmax log S

)O(1) if m ≥ 16
ε7 log2 n with query

time
( 1

ε log n
)O(1).

In each update step, we compute only implicit solutions and provide query operations for
the solution value, the knapsack of a queried item, and the complete solution. These queries
are consistent between two update steps and run efficiently, i.e., run in time polynomial
in log n and log v and linear in the output size. We remark that it is not possible to maintain
a solution with a non-trivial approximation guarantee explicitly with only polylogarithmic
update time (even amortized) since it might be necessary to change Ω(n) items per iteration,
e.g., if a very large and very profitable item is inserted and removed in each iteration.

We remark that our result yields a static algorithm with a near-linear running time in n.

Our Techniques. Maybe surprisingly, we recompute a (1 − ε)-approximate solution from
scratch in polylogarithmic time after each update. More precisely, we compute a (1 − ε)-
estimate of the value of Opt and additionally store all information that is needed in
order to answer any query in polylogarithmic time. Interestingly, this shows that for such
computations, we do not need exact knowledge about the whole input, but only a small

FSTTCS 2021



18:4 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

amount of information of polylogarithmic size. We show that this information can be
extracted efficiently from suitable data structures in which we store the input items and
knapsacks. Even more, we show that we can maintain these data structures in polylogarithmic
time per update.

On a high level, we reduce the overall problem to two subproblems solved independently.
In the first one, we are given only few knapsacks, m =

( 1
ε log n

)O(1) many, which are the
largest knapsacks in the original input. Here, we observe that if we select the m

ε most
valuable items in the optimal solution correctly, we can afford to fill the remaining space
in the knapsacks greedily, i.e., highest density (value divided by size) first, and charge the
resulting loss to the valuable items. We cannot guess these most valuable items explicitly,
but we show that we can select a small set of candidates for these items and guess a few
placeholder items for the remaining ones. This yields an instance with only

( 1
ε log n

)O(1)

items on which we run a known EPTAS for Multiple Knapsack [50] yielding a running
time of

( 1
ε log n

)O(1). For the special case of a single knapsack, we show that we can invoke
an FPTAS instead, which improves the running time.

In the second subproblem, we are given a potentially large set of knapsacks, and we are
allowed to use an additional set of

( 1
ε log n

)Θ(1) knapsacks that the optimal solution does not
use (resource augmentation). We introduce a technique that we call oblivious linear grouping.
Linear grouping is a standard technique used in order to round a set of one-dimensional
items that need to be packed into a given set of containers (e.g., in bin packing), such that
they have at most 1

ε different sizes after the rounding (at the expense of leaving an ε-fraction
of the items out). However, in our setting we do not know a priori which input items need to
be packed, and therefore we cannot apply this technique directly. Instead, we show that we
can round the input items to ( 1

ε log n)O(1) different sizes such that we lose at most a factor of
(1 − ε) independently of what the optimal solution looks like. In fact, our rounding method
is even oblivious to the input knapsacks. Therefore, we believe that it might be useful also
for other dynamic packing problems or for speeding up static algorithms. After rounding the
items to

( 1
ε log n

)O(1) different sizes, we set up a configuration-LP that has a configuration
for each possible set of relatively large items that together fit inside a knapsack. Thanks to
our rounding, there are only polylogarithmically many configurations and we can solve this
LP in time

( 1
ε log n

)O(1/ε). We use the additional knapsacks in order to compensate errors
when rounding the LP, i.e., due to rounding up the fractional variables and adding small
items greedily into the remaining space of the knapsacks. Special care is necessary since
the sizes of the knapsacks can differ and hence some item might be relatively large in some
knapsack, but relatively small in another knapsack.

Further Related Work. Since the first approximation scheme for Knapsack [43] running
times have been improved steadily [17,30,31,52,55,58,67] with O(n log 1

ε +( 1
ε )9/4) by Jin [52]

being the currently fastest. Recent work on conditional lower bounds [22,57] implies that
Knapsack does not admit an FPTAS with running time of O((n + 1

ε )2−δ), for any δ > 0,
unless (min, +)-convolution has a subquadratic algorithm [17,65].

A PTAS for Multiple Knapsack was first presented by Chekuri and Khanna [19]
and EPTASs due to Jansen [48, 50] are also known. The fastest of these algorithms [50]
has a running time of 2O(log4(1/ε)/ε) + nO(1). The mentioned algorithms are all static and
assume full knowledge about the instance for which a complete solution has to be found.
In particular, their solutions might change completely when a single item is added to the
input which makes a full recomputation necessary. The algorithm in [19] invokes a guessing
step with nf(1/ε) many options which are too many for a polylogarithmic update time. The
EPTASs in [48,50] use a configuration linear program of size Ω(n) which is also prohibitively
large for such an update time.
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The dynamic arrival and removal of items exhibits some similarity to knapsack models
with incomplete information. For example, in the online knapsack problem [61] items arrive
online one by one. When an item arrives, an algorithm must irrevocably accept or reject
it before the next item arrives. Various problem variants have been studied, e.g., with
resource augmentation [47], the removable online knapsack problem [21,35–37,46], and with
advice [14]. Other models with uncertainty in the item set or the knapsack capacity include
the stochastic knapsack problem [7, 25, 60] and robust knapsack problems [16, 27, 62, 70].
Related to our setting are also online models with a softened irrevocability requirement,
e.g., online optimization with recourse [29, 33, 44, 63] or migration [51, 68, 69] allows to adapt
previously taken decisions in a limited way. We are not aware of work on knapsack problems
in these settings and, again, the goal is to bound the amount of change needed to maintain
good online solutions regardless of the computational effort.

2 Roadmap and Preliminaries

First, in this section, we formalize the operations that our data structures support, describe
auxiliary data structures that we need, and define how we round the item values. Then,
in Section 3, we describe algorithms for one knapsack and for a polylogarithmic number
of knapsacks. In Section 4, we present an algorithm for (many) identical knapsacks and
an algorithm under resource augmentation (in the form of a polylogarithmic number of
additional knapsacks) in the setting of (many) knapsacks with possibly different capacities.
Finally, we present in Section 5 an algorithm for the general case that uses the previously
mentioned algorithms as subroutines. Additionally, in the full version of this paper [28], we
show that our update time cannot be improved to (log n/ε)O(1), unless P=NP.

From the perspective of a data structure that implicitly maintains near-optimal solutions
for Multiple Knapsack, our algorithms support several update and query operations
which are listed below. They allow for the output of (parts of) the current solution, or for
specific changes to the input of Multiple Knapsack, causing the computation of a new
solution.

Insert (Remove) Item: Inserts (removes) an item into (from) the input.
Insert (Remove) Knapsack: Inserts (removes) a knapsack into (from) the input.

A new solution can be output, entirely or in parts, using the following query operations.
Query Item j: Returns whether item j is packed in the current solution and if this is
the case, additionally returns the knapsack containing it.
Query Solution Value: Returns the value of the current solution.
Query Entire Solution: Returns all items in the current solution, together with the
information in which knapsack each such item is packed.

Importantly, queries are consistent in-between two update operations. However, their answers
are not independent of each other but depend on the queries as well as their order.

For simplicity, we assume that elementary operations (e.g., additions) can be handled
in constant time. Additionally, we assume without loss of generality that 1

ε ∈ N. We also
assume that at the very beginning we start with no items and no knapsacks, and initialize all
needed auxiliary data structures accordingly. If one wants to start with a specific set of items
and/or knapsacks, one can insert them with our insertion routines, using polylogarithmic
time per insertion.

Auxiliary Data Structures. We employ auxiliary data structures in which we store (subsets
of) input items and input knapsacks, sorted according to some specific values, e.g., size
or capacity. We need to be able to quickly access elements, compute the largest prefix of

FSTTCS 2021
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elements such that the sum according to some property, e.g., the total size, is below a given
threshold, and compute in such a prefix the sum according to some element property, e.g.,
the total value. Note that these prefixes are w.r.t. the fixed ordering of the elements, while
the element property for the threshold or computing the sum might be different. To this
end, we employ as an auxiliary data structure a variation of balanced search trees that store
elements according to some given ordering. For computing the mentioned prefix sums, we
store in each internal node v the sums of the elements in the subtree rooted at v according
to each property, e.g., size, value, or capacity. When we need to compute some largest prefix,
we simply output the index of its last element.

▶ Lemma 1. There is a data structure maintaining a sorting of n′ elements w.r.t. some key
value such that (i) insertion, deletion, or search by key value of an element takes O(log n′)
time, and (ii) prefixes and prefix sums w.r.t. any element property can be computed in time
O(log n′).

Rounding Values. A crucial ingredient of our algorithms is the partitioning of items into
only few value classes Vℓ, where for each ℓ the class Vℓ consists of each input item j with
(1 + ε)ℓ ≤ vj < (1 + ε)ℓ+1. Upon arrival of some item j, we calculate the index ℓj such that
j ∈ Vℓj and store the tuple (j, vj , sj , ℓj) representing j in the auxiliary data structures of
the respective algorithm. In the following, we pretend for each ℓ that each item in Vℓ has
value (1 + ε)ℓ, which loses only a factor of 1

1+ε in the total profit of any solution.

▶ Lemma 2. (i) There are at most O
( log vmax

ε

)
many value classes. (ii) For optimal

solutions Opt and Opt′ for the original and rounded instance, v(Opt′) ≥ (1 − ε) · v(Opt).

3 A Single Knapsack

In this section, we first present a dynamic algorithm for the case of one single knapsack,
summarized in the following theorem. Afterwards, we will argue how to extend our techniques
to the setting of a polylogarithmic number of knapsacks.

▶ Theorem 3. For ε > 0, there is a fully dynamic algorithm for Knapsack that maintains
(1−ε)-approximate solutions with update time O

( log4(nvmax)
ε9

)
+O

( 1
ε log n log v

)
. Furthermore,

queries of single items and the solution value can be answered in time O(1).

We partition the items in the optimal solution Opt into high- and low-value items,
respectively. The high-value items are the 1

ε most valuable items of Opt, and the low-value
items are the remaining items of Opt. We compute a small set of candidate items H 1

ε
that

intuitively contains all relevant high-value items in Opt. Also, we guess a placeholder item
for the low-value items, that is large enough to accomodate low-value items of enough profit
fractionally. We can assume that in an optimal fractional solution (of low-value items) at
most one item is selected non-integrally. Hence, we can drop this item and charge it to the 1

ε

high-value items. This results in a knapsack instance with only O
( 1

ε3

)
items which we solve

with an FPTAS.
Formally, denote by Opt 1

ε
a set of 1

ε most valuable items of Opt. We break ties by
picking smaller items. Denote by Vℓmax and Vℓmin the highest resp. lowest value class of an
element in Opt 1

ε
and let nmin := |Opt 1

ε
∩ Vℓmin | ≤ 1

ε . Furthermore, denote by VL the value
of the items in Opt \ Opt 1

ε
, rounded down to the next power of (1 + ε). To efficiently

implement our algorithm, we maintain several data structures, using Lemma 1. We store
items of each non-empty value class Vℓ (at most log1+ε vmax) in a data structure ordered
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non-decreasingly by size. Second, for each possible value class Vℓ (at most log1+ε v), we
maintain a data structure that contains each input item j with j ∈ Vℓ′ for some ℓ′ ≤ ℓ,
ordered non-increasingly by density vj

sj
. In particular, we maintain such a data structure

even if Vℓ itself is empty (since the data structure might still contain items from classes Vℓ′

with ℓ′ < ℓ). This leads to the additive term in the update time of O(log n log1+ε v). We use
additional auxiliary data structures to store our solution and support queries.

Algorithm. The algorithm computes an implicit solution as follows.
1) Compute a set H 1

ε
of high-value candidates: Guess the values ℓmax, ℓmin, and nmin.

If (1 + ε)ℓmin ≥ ε2 · (1 + ε)ℓmax , define H 1
ε

to be the set containing the 1
ε smallest items

of each of the value classes Vℓmin+1, . . . , Vℓmax , plus the nmin smallest items from Vℓmin .
Otherwise, set H 1

ε
to be the union of the 1

ε smallest items of each of the value classes
with values in [ε2 · (1 + ε)ℓmax , (1 + ε)ℓmax ].

2) Create a placeholder item B: Guess VL and consider items with value at
most (1 + ε)ℓmin sorted by density. Remove the nmin smallest items of Vℓmin until the next
iteration. For the remaining items, compute the minimal size of fractional items necessary
to reach a value VL. We do this via prefix sum computations on the data structure that
contains all items in Vℓ′ for each ℓ′ ≤ ℓmin, ordered non-increasingly by density. Then B

is given by vB = VL and with sB equal to the size of those low-value items.
3) Use an FPTAS: On the instance I, consisting of H 1

ε
and the placeholder item B, run

an FPTAS parameterized by ε (we use the one by Jin [52]) to obtain a packing P .
4) Implicit solution: Among all guesses, keep the solution P with the highest value. Pack

items from H 1
ε

as in P and, if B ∈ P , also pack the low-value items completely contained
in B (note that at most one item is packed fractionally in B). While used candidate items
from H 1

ε
can be stored explicitly, low-value items are given only implicitly by saving the

correct guesses and computing membership in B on a query.

Analysis. We show that the above algorithm attains an approximation ratio of (1 − ε). A
factor of (1 − ε) is lost due to the approximation ratio of the FPTAS. An additional factor
of (1 − ε) is lost in each of the following steps. To obtain a candidate set H 1

ε
of constant

cardinality, we restrict the item values to [ε2 · (1 + ε)ℓmax , (1 + ε)ℓmax ]. Since |Opt 1
ε
| = 1

ε , this
excludes items from Opt with a total value of at most 1

ε ·ε2 (1 + ε)ℓmax ≤ ε·Opt. Furthermore,
due to guessing VL up to a power of (1 + ε), we get vB = VL ≥ 1

1+ε · v(Opt \ Opt 1
ε
). Finally,

in Step 2, at most one item was cut fractionally. It is charged to the 1
ε items of Opt 1

ε
, using

that each of them has a larger value.
The running time can be verified easily by multiplying the numbers of guesses for each

value as well as the running time of the FTPAS. The latter is O
( 1

ε4

)
, since we designed H 1

ε

to contain only a constant number of items, namely O
( 1

ε3

)
many.

Queries. We show how to efficiently handle the different types of queries.
Single Item Query: If the queried item is contained in H 1

ε
, its packing was saved

explicitly. Otherwise, if B is packed, we save the last, i.e., least dense, item contained
entirely in B. By comparing with this item, membership in B can be decided in constant
time on a query.
Solution Value Query: While the algorithm works with rounded values, we use the
data structures of Lemma 1 to retrieve the actual item values. We store the actual
solution value in the update step by adding the actual values of the packed items from
H 1

ε
and determining the actual value of items in B with a prefix computation. On query,

we return the stored value.
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Query Entire Solution: Output the stored packing of candidates. If B was packed,
iterate over items in B in the respective density-sorted data structure and output them.

Polylogarithmically many knapsacks. One can show that the queries can be performed
in the claimed running times which completes the proof of Theorem 3, see the full version
of this paper [28]. We can extend the above technique to the setting of m knapsacks, at
the expense of increasing the update time and query time by a factor mO(1), and using an
EPTAS for Multiple Knapsack [50] instead of an FPTAS (see [28]).

▶ Theorem 4. For ε > 0, there is a dynamic algorithm for Multiple Knapsack that
achieves an approximation factor of (1 − ε) with update time 2f(1/ε)( m

ε log(nvmax)
)O(1) +

O
( 1

ε log v log n
)
, with f quasi-linear. Item queries are answered in time O

(
log m2

ε6

)
, solution

value queries in time O(1), and queries of one knapsack or the entire solution in time linear
in the output.

4 Identical Knapsacks

In this section, we present our algorithm for an arbitrary (large) number of identical knapsacks.
Also, we describe an extension to the case where the knapsacks have different sizes and we
can use some additional knapsacks as resource augmentation.

4.1 Oblivious Linear Grouping
We start with our oblivious linear grouping routine that we use in order to round the item
sizes, aiming at only few different types of items. We say that two items j, j′ are of the
same type if {j, j′} ⊆ Vℓ for some ℓ and if sj = sj′ . We round the items implicitly, i.e., we
compute thresholds {s̄1, ..., s̄k} and we round up the size sj of each item j to the next larger
value in this set.

▶ Lemma 5. Given a set J ′ with |Opt ∩ J ′| ≤ n′ for all optimal solutions Opt, there
is an algorithm with running time O

( log5 n′

ε5

)
that rounds the items in J ′ to item types T

with |T | ≤ O
( log2 n′

ε4

)
and ensures v(OptT ) ≥ (1−ε)(1−2ε)

(1+ε)2 v(Opt). Here, OptT is the optimal
solution attainable by packing item types T instead of the items in J ′ and using J \ J ′ as is.

Algorithm. In the following, we use the notation X ′ for a set X to refer to X ∩ J ′ while X ′′

refers to X \ J ′. Recall that item values of items in J are rounded to powers of 1 + ε to create
the value classes Vℓ where each item j ∈ Vℓ has value (1+ε)ℓ. We guess ℓmax which is defined
to be the guess for the highest value ℓ with V ′

ℓ ∩ Opt ̸= ∅ and let ℓ̄ := ℓmax −
⌈
log1+ε(n′/ε)

⌉
.

1) For each ℓ with ℓ̄ ≤ ℓ ≤ ℓmax and each nℓ = (1 + ε)k with 0 ≤ k ≤ log1+ε n′ do: Consider
the nℓ smallest elements of V ′

ℓ (sorted by increasing size) and determine the 1
ε many

(almost) equal-sized groups G1(nℓ), . . . , G1/ε(nℓ) of ⌈εnℓ⌉ or ⌊εnℓ⌋ elements. If εnℓ /∈ N,
ensure that |Gk(nℓ)| ≤ |Gk′(nℓ)| ≤ |Gk(nℓ)| + 1 for k ≤ k′. If 1

ε is not a natural
power of (1 + ε), create G1( 1

ε ), . . . , G1/ε( 1
ε ) where Gk( 1

ε ) is the kth smallest item in V ′
ℓ .

Let G1(nℓ), . . . , G1/ε(nℓ) be the corresponding groups sorted increasingly by the size
of the items. Let jk(nℓ) = max{j : j ∈ Gk(nℓ)} be the last index belonging to
group Gk(nℓ). After having determined jk(nℓ) for each possible value nℓ (including 1

ε )
and for each 1 ≤ k ≤ 1

ε , the size of each item j is rounded up to the size of the next larger
item j′ such that there exists k and ℓ satisfying j′ = jk(nℓ).

2) Discard each item j with j ∈ V ′
ℓ for ℓ < ℓ̄.
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Analysis. Despite the new approach to apply linear grouping simultaneously to many
possible values of nℓ, the analysis builds on standard techniques. The loss in the objective
function due to rounding item values is bounded by a factor of 1

1+ε by Lemma 2. As ℓ̄ is
chosen such that n′ items of value at most (1 + ε)ℓ̄ contribute less than an ε-fraction of Opt′,
the loss in the objective function by discarding items in value classes V ′

ℓ with ℓ < ℓ̄ is bounded
by a factor (1 − ε). By taking only (1 + ε)⌊log1+ε nℓ⌋ items of V ′

ℓ instead of nℓ, we lose at
most a factor 1

1+ε . The groups created by oblivious linear grouping are an actual refinement
of the groups created by classical linear grouping. Thus, we pack our items similarly: not
packing the group with the largest items (at the loss of a factor of (1 − 2ε)) allows us to
“move” all rounded items of group Gk(nℓ) to the positions of the (not rounded) items in
group Gk+1(nℓ). Combining, we obtain v(OptT ) ≥ (1−ε)(1−2ε)

(1+ε)2 v(Opt).
Since T contains at most 1

ε

(⌈ log n′/ε
log(1+ε)

⌉
+ 1

)
different value classes, and as it suffices to

use
⌈ log n′

log(1+ε)
⌉

+ 1 many different values for nℓ = |Opt ∩ V ′
ℓ |, we have |T | ≤ O( log2 n′

ε4 ). Using
the access times given in Lemma 1 bounds the running time. For details, see the full version
of this paper [28].

4.2 A Dynamic Algorithm for Many Identical Knapsacks
We give a dynamic algorithm with approximation ratio (1 − ε) for Multiple Knapsack,
assuming that all knapsacks have the same size S. We assume m ≤ n as otherwise, the problem
is trivial. We focus on instances where m is large, i.e., m ≥ 16

ε7 log2 n. If m ≤ 16
ε7 log2 n, we

use the algorithm due to Theorem 4. In the following, we prove Theorem 6.

▶ Theorem 6. If m ≥ 16
ε7 log2 n, there is a dynamic algorithm for Multiple Knapsack

with identical knapsacks with approximation factor (1 − ε) and update time
( log U

ε

)O(1), where
U = max{Sm, nvmax}. Queries for single items and the solution value can be answered in time
O

( log n
ε

)O(1) and O(1), respectively. The solution P can be returned in time |P |
( log n

ε

)O(1).

Our strategy is the following: we partition the input items into large and small items,
which are defined w.r.t. the size S of each knapsack. To the large items, we apply oblivious
linear grouping, obtaining a polylogarithmic number of item types. We guess the total size of
the small items in the optimal solution. Then, we formulate the problem as a configuration
linear program (LP) which has a variable for each feasible configuration for a knapsack. A
configuration describes how many large items of each type are packed in a knapsack. Also,
we ensure that there will be enough space for the small items left. This is similar in spirit to
the LPs used in [48,50]; however, we use variables only for the configurations of the big items
and we have only a polylogarithmic number of item types, which yields a smaller LP which
we can solve faster. We round the obtained fractional solution, using that m > 16

ε7 log2 n and
that basic feasible solutions to the LP are sparse.

Definitions and Data Structures. We partition the items into two sets, JB , the big items,
and JS , the small items, with sizes sj ≥ εS and sj < εS, respectively. For an optimal
solution Opt, define OptB := Opt ∩ JB and OptS := Opt ∩ JS .

We maintain three types of auxiliary data structures from Lemma 1: we maintain one
such data structure in which we store all items in the order of their arrivals and store the
size sj , the value vj , and the value class ℓj of each item j. For each value class Vℓ, we
maintain a data structure which contains all big items of Vℓ, ordered non-decreasingly by
size. Finally, for the small items (of all value classes together), we maintain a data structure
in which they are sorted non-increasingly by density. Upon arrival of a new item j, we insert
j into each corresponding data structure.

FSTTCS 2021
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Algorithm.
1) Linear grouping of big items: Guess ℓmax, which we define to be the largest index ℓ

with Vℓ ∩ OptB ̸= ∅. Via oblivious linear grouping with J ′ = JB and n′ = min{ m
ε , nB}

we obtain T ; for each item type t, denote by nt the number of items of this type (the
multiplicity of t).

2) Configurations: Let C denote the set of all configurations, i.e., of all multisets of item
types whose total size is at most S. For each c ∈ C, denote by vc and sc the total value
and size of the item types in c.

3) Small items: We guess vS which we define to be the largest power of 1 + ε that is at
most v(OptS). Let P be the maximal prefix of small items (sorted by non-increasing
density) with v(P ) < vS . Set sS := s(P ).

4) Configuration ILP: We compute an extreme point solution of the LP relaxation of
the following configuration ILP with variables yc for c ∈ C for the current guesses ℓmax
and vS (implying sS). Here, yc counts how often a certain configuration c is used and ntc

denotes the number of items of type t in configuration c.

max
∑
c∈C

ycvc

subject to
∑
c∈C

ycsc ≤ ⌊(1 − 3ε)m⌋S − sS∑
c∈C

yc ≤ ⌊(1 − 3ε)m⌋∑
c∈C

ycntc ≤ nt for all t ∈ T

yc ∈ Z≥0 for all c ∈ C

(P)

By the first inequality, the configurations fit into ⌊(1 − 3ε)m⌋ knapsacks while reserving
sufficient space for the small items. The second constraint limits the total number of
configurations that are packed. The third inequality ensures that only available items are
used.

5) Obtaining an integral solution: We round up each variable of the obtained fractional
solution, yielding an integral solution ȳ. As m ≥ 16

ε7 log2 n and extreme point solutions
have only |T | + 2 non-zero variables, one can show that ȳ still satisfies the relaxed
constraints

∑
c∈C ȳcsc ≤ ⌊(1 − 2ε)m⌋S − sS and

∑
c∈C ȳc ≤ ⌊(1 − 2ε)m⌋. In case that

a constraint
∑

c∈C ȳcntc ≤ nt is violated for some type t, we intuitively drop items of
type t from some knapsacks until the constraint is satisfied. Let PB denote the resulting
packing.

6) Packing small items: Consider the maximal prefix P of small items with v(P ) < vS

and let j⋆ be the densest small item not in P . Pack j⋆ into one of the knapsacks kept
empty by PB . Then, fractionally fill up the ⌊(1 − 2ε)m⌋ knapsacks used by PB and place
any “cut” item into the ⌈εm⌉ additional knapsacks that are still empty.

Analysis. The loss in the objective function value due to linear grouping of big items is
bounded by (1−ε)(1−2ε)

(1+ε)2 by Lemma 5. Restricting a solution to its ⌊(1 − 3ε)m⌋ most valuable
knapsacks and guessing the value of small items in these knapsacks only up to a factor
of (1 + ε) as done by (P) costs at most a factor of 1−4ε

1+ε in the objective function value.
For solving the LP-relaxation of the configuration ILP (P), we apply the Ellipsoid

method [32] on its dual, using an FPTAS for Knapsack as a separation oracle. For this, we
need to handle some technical complications due to the first two constraints of (P), which
yield additional variables in the dual, and due to the fact that we can solve the separation



F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:11

problem only up to a factor of (1 + ε) (see [28] for details). Via Gaussian elimination,
we transform the obtained fractional solution into a basic feasible solution with the same
objective function value. As argued above, since any basic feasible solution has at most
|T | + 2 non-zero variables, our integral solution ȳ uses at most ⌊(1 − 2ε)m⌋ knapsacks and it
has at least the profit of the fractional solution. Given the packing of big items, we pack the
small items in a First Fit manner as described in the algorithm.

To bound the running time of our algorithm, we use Lemma 5, show that the relaxation
of the configuration ILP can be solved in time

( log U
ε

)O(1) with the Ellipsoid method, and
use the fact that the algorithm needs at most O

( log(nvmax) log vmax
ε2

)
many guesses, see [28] for

details.

Queries. In contrast to the previous section, for transforming an implicit solution into an
explicit packing, the query operation has to compute the knapsack where a queried item j

is packed. We do not explicitly store the packing of any item, but instead we define and
update pointers for small items and for each item type, that indicate the knapsacks where the
corresponding items are packed. To stay consistent with the precise packing of a particular
item between two update operations, we additionally cache query answers.

Single Item Query: For small items, only the prefix of densest items is part of our
solution. For big items of a certain type, only the smallest items are packed by the implicit
solution. In both cases, we use the corresponding pointer to determine the knapsack.
Solution Value Query: As the algorithm works with rounded values, we use prefix
computations on the small items and on any value class of big items to calculate and
store the current solution value. Given a query, we return the stored solution value.
Query Entire Solution: We use prefix computations on the small items as well as on
the value classes of the big items to determine the packed items. Then, we use the Single
Item Query to determine their respective knapsacks.

▶ Lemma 7. The solution determined by the query algorithms is feasible and achieves the
claimed total value. The query times of our algorithm are as follows: Single item queries can
be answered in time O

(
log n + max

{
log log n

ε , 1
ε

})
, solution value queries can be answered in

time O(1), and queries of the entire solution P can be answered in time O
(
|P | log4 n

ε4 log log n
ε

)
.

We extend our techniques above to an algorithm for knapsacks of arbitrary sizes, assuming
that we have

( log n
ε

)Θ(1/ε) additional knapsacks (of capacity at least as large as the largest
original knapsack) as resource augmentation available. The intuition is that these additional
knapsacks are sufficient to compensate errors when rounding the LP-relaxation of (P).
However, additional care is needed since whether an item is big or small now depends on the
knapsack.

▶ Theorem 8. For ε > 0, there is a dynamic algorithm for Multiple Knapsack that,
given

( log n
ε

)Θ(1/ε) additional knapsacks as resource augmentation, achieves an approximation
factor of (1+ε) with update time

( 1
ε log n

)O(1/ε)(log m log Smax log vmax)O(1). Item queries are
answered in time O

(
log m + log n

ε2

)
, and the solution P is output in time O

(
|P | log3 n

ε4

(
log m +

log n
ε2

))
.

5 Solving Multiple Knapsack

Having laid the groundwork with the previous two sections, we finally show how to maintain
solutions for arbitrary instances of the Multiple Knapsack problem, and give the main
result of this paper, summarized in the following theorem. Note that we assume n ≥ m as
otherwise only the n largest knapsacks are used.
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virtual ordinary knapsack of size SO

special knapsacks extra knapsacks ordinary knapsacks

special items
bundles of ordinary items

ordinary items

input to the special subproblem input to the ordinary subproblem

Figure 1 Input of the special and the ordinary subproblems: Based on the current guess for
the extra knapsacks, the knapsacks are partitioned into three groups (special, extra, and ordinary).
When an item fits into at least one ordinary knapsack, it is ordinary and special otherwise. The
total size of ordinary items placed by Opt in special knapsacks gives the size of the virtual ordinary
knapsack. The ordinary items packed into this virtual knapsack are further assigned to bundles of
equal size, which are then part of the input to the special subproblem.

▶ Theorem 9. For ε > 0, there is a dynamic, (1 − ε)-approximate algorithm for Multiple
Knapsack with update time 2f(1/ε)( 1

ε log n log vmax
)O(1/ε)(log Smax)O(1) + O

( 1
ε log v log n

)
,

where f is quasi-linear. Item queries are served in time O
( log n

ε2

)
and the solution P can be

output in time O
( log4 n

ε6 |P |
)
.

We obtain this result by partitioning the knapsacks into three sets, special, extra and ordinary
knapsacks, and solving the respective subproblems. This has similarities to the approach
in [48]; however, there it was sufficient to have only two groups of knapsacks. On a high level,
the special knapsacks are the (log n)O(1/ε) largest input knapsacks and, intuitively, we apply
the algorithm due to Theorem 4 to them (for a suitably defined set of input items). The extra
knapsacks are (log n)O(1/ε) knapsacks that are smaller than the special knapsacks, but larger
than the ordinary knapsacks. We ensure that there is a (global) (1 − ε)-approximate solution
in which they are all empty; see Figure 1. We apply the algorithm due to Theorem 8 to
the ordinary and extra knapsacks, where the extra knapsacks form the additional knapsacks
used as resource augmentation.

Definitions and Data Structures. Let L =
( log n

ε

)Θ(1/ε). We assume that m >
( 1

ε

)4/ε · L,
since otherwise we simply apply Theorem 8. Consider 1

ε groups of knapsacks with sizes L
ε3i ,

for i = 0, 1, . . . , 1
ε −1, such that the first group, i.e., i = 0, consists of the L largest knapsacks,

the second, i.e., i = 1, of the L
ε3 next largest, and so on. In Opt, one of these contains items

with total value at most ε · Opt. Let k ∈ {0, 1, . . . , 1
ε − 1} be the index of such a group and

let LS :=
∑k−1

i=0
L

ε3i . We define the LS largest input knapsacks to be the special knapsacks.
The extra knapsacks are the L

ε3k > LS

ε2 + L next largest, and the ordinary knapsacks the
remaining ones.

Call an item ordinary if it fits into the largest ordinary knapsack and special otherwise.
Denote by JO and JS the set of ordinary and special items, respectively, and by SO the total
size of ordinary items that Opt places in special knapsacks, rounded down to the next power
of (1 + ε). Since we use the algorithms from Theorems 4 and 8 as subroutines, we require
the maintenance of the corresponding data structures.
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Algorithm.
1) Oblivious linear grouping: Compute O

( log2 n
ε4

)
item types as described in Section 4.1.

Guess k and determine whether items of a certain type are ordinary or special.
2) High-value ordinary items: Place each of the LS

ε2 most valuable ordinary items in an
empty extra knapsack. On a tie choose the larger item. Denote this set of items by JE .

3) Virtual ordinary knapsack: Guess SO and add a virtual knapsack with capacity SO to
the ordinary subproblem. In the LP used in the proof of Theorem 8, treat every ordinary
item as small item in this knapsack and do not use configurations.

4) Solve ordinary instance: Remove temporarily the set JE from the data structures of
the ordinary subproblem. Solve the subproblem with the virtual knapsack as in Theorem 8
and use extra knapsacks for resource augmentation. When rounding up variables, fill
the O

( log2 n
ε4

)
rounded items from the virtual knapsack into extra knapsacks.

5) Create bundles Consider the items that remain in the virtual ordinary knapsack after
rounding. Sort them by type (first value, then size) and cut them to form LS

ε bundles BO

of equal size. For each bundle, remember how many items of each type are placed entirely
inside it. Place cut items into extra knapsacks. Consider each B ∈ BO as an item of size
and value equal to the fractional size respectively value of items placed entirely in B.

6) Solve special instance: Temporarily insert the bundles in BO into the data structures
used in the special subproblem. Solve this subproblem with the algorithm due to
Theorem 4.

7) Implicit solution: Among all guesses, keep the solution PF with the highest value. Store
items in JE and their placement explicitly. Revert the removal of JE from the ordinary
data structures after the next update. For the remaining items, the solutions are given as
in the respective subproblem, with the exception of items packed in the virtual ordinary
knapsack. The solution of these items is stored implicitly by deciding membership in a
bundle on a query.

Queries. We essentially use the same approach as in Theorems 4 and 8 for the ordinary
and special subproblem, respectively. However, special care has to be taken with items in the
virtual knapsack. In the ordinary subproblem, we assume that items of a certain type which
are packed in the virtual knapsack are the first, i.e., smallest, of that type. We can therefore
decide in constant time whether or not an item is contained in the virtual knapsack and,
if this is the case, fill it into the free space in special knapsacks reserved by bundles. We
do this efficiently by using a first fit algorithm on the knapsacks with reserved space. Since
items in extra knapsacks are stored explicitly, they can be accessed in constant time. See [28]
for details.

Hardness of approximation. It is a natural question whether the update time of our
algorithms for Multiple Knapsack can be improved to

( 1
ε log n

)O(1). We show that this is
impossible, unless P=NP.

▶ Theorem 10. Unless P = NP, there is no fully dynamic algorithm for Multiple Knap-
sack that maintains a (1 − ε)-approximate solution in update time polynomial in log n and
1
ε , for m < 1

3ε .

We give a proof in the full version [28]. We remark that this result can be extended to a
larger number of knapsacks by adding an appropriate number of sufficiently small knapsacks,
i.e., polynomially many in n.
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6 Conclusion

Any dynamic algorithm can be turned into a non-dynamic one by having n items arrive one
by one, incurring an additional linear factor in the running time. Hence, lower bounds for
the running times of static approximation schemes yield lower bounds for update times of
dynamic algorithms. Our running times for the problems with identical capacities are tight
in the sense that the algorithms yield a static FPTAS (resp. EPTAS) matching known lower
bounds.

Clearly, it would be interesting to generalize our results beyond Multiple Knapsack.
A natural generalization is d-dimensional Knapsack, where the items and knapsacks have a
size in each of the d dimensions, and a feasible packing of a subset of items must meet the
capacity constraint in each dimension. A reduction to one dimension by [24] immediately
yields a dynamic 1−ε

d -approximation, but designing a dynamic framework with a better
guarantee than this remains open. Note that unless W[1] = FPT, 2-dimensional knapsack
does not admit a dynamic algorithm maintaining a (1 − ε)-approximation in worst-case
update time f(ε)nO(1) [56].

A recent line of research exploits fast techniques for solving convolution problems to
speed up knapsack algorithms (exact and approximate); see, e.g., [3, 17, 52, 55, 66]. In fact, it
has been shown that Knapsack is computationally equivalent to the (min, +)-convolution
problem [22]. It seems worth exploring whether such techniques are useful in the dynamic
setting. Here, it is unclear whether the re-computation of a solution in a new iteration can
be done in polylogarithmic time. It is also open whether such techniques can be applied for
solving Multiple Knapsack, even in the static setting.

We hope to foster further research for other packing, scheduling and, generally, non-
graph problems. For bin packing and for makespan minimization on uniformly related
machines, we notice that existing PTAS techniques from [53] and [41, 49] combined with
rather straightforward data structures can be lifted to a fully dynamic algorithm framework
for the respective problems.
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