
Matchings, Critical Nodes, and Popular Solutions
Telikepalli Kavitha #Ñ

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We consider a matching problem in a marriage instance G. Every node has a strict preference order
ranking its neighbors. There is a set C of prioritized or critical nodes and we are interested in
only those matchings that match as many critical nodes as possible. Such matchings are useful in
several applications and we call them critical matchings. A stable matching need not be critical. We
consider a well-studied relaxation of stability called popularity. Our goal is to find a popular critical
matching, i.e., a weak Condorcet winner within the set of critical matchings where nodes are voters.
We show that popular critical matchings always exist in G and min-size/max-size such matchings
can be efficiently computed.
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1 Introduction

We consider a matching problem in a bipartite graph G = (A ∪ B, E) on n nodes and m

edges where every node ranks its neighbors in a strict order of preference. Such a graph is
also called a marriage instance. We seek an optimal matching in G and the classical notion of
optimality for matchings in such an instance is stability introduced by Gale and Shapley [9]
in 1962. A matching M is stable if there is no edge that blocks M where an edge (a, b) is
said to block M if a and b prefer each other to their respective assignments in M .

Stable matchings always exist in a marriage instance and the Gale-Shapley algorithm
finds one in linear time. The Gale-Shapley algorithm and its many-to-one generalization
have been used to match students to schools and colleges [1, 2, 17] and graduating medical
students to hospitals [4, 21]. All stable matchings in G match the same set of nodes [10]. As
discussed in [3], in the medical matching scheme in Scotland, a stable matching left several
students unmatched. There was a matching that matched all the students, however this
matching admitted some blocking edges. Thus there are real-world applications where the
size of the matching is more important than the absence of blocking edges.

More generally, there are applications where certain nodes are prioritized or critical and
the number of critical nodes that get matched is of primary importance. One such application
is the assignment of sailors to billets in the US Navy [22, 26]. Here every sailor has to be
matched to a billet and some critical billets cannot be left vacant. So such billets and all
the sailors are the critical nodes here. Allocation problems in humanitarian organizations
constitute more such applications, see e.g., [24, 25].

Motivated by such applications, we consider the following model where we are given
a marriage instance G = (A ∪ B, E) along with a set C ⊆ A ∪ B of critical nodes. The
number of critical nodes that get matched is the most important attribute of a matching.
An admissible or critical matching is one that matches as many critical nodes as possible.

▶ Definition 1. A matching M in G is critical if there is no matching in G that matches
more critical nodes than M .

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kavitha.telikepalli@gmail.com
http://www.tcs.tifr.res.in/~kavitha/
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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A stable matching need not be critical. When stable matchings are not critical, a natural
alternative is to seek a critical matching that admits the least number of blocking edges.
However this is an NP-hard problem [3]. It was shown there that finding a maximum
matching (so every node is critical here) that admits the minimum number of blocking
edges is NP-hard; moreover, this is NP-hard to approximate within n1−ε, for any ε > 0.
This motivates relaxing the problem of finding a critical matching with the least number of
blocking edges to finding one that satisfies a more relaxed variant of stability. Popularity is a
natural relaxation of stability that captures welfare in a collective sense.

We say node v prefers matching M to matching N if v prefers its partner in M to its
partner in N and being left unmatched is the worst choice for any node. We can compare
any pair of matchings M and N by holding an election between them where every node
casts a vote for the matching in {M, N} that it prefers and it abstains from voting if it is
indifferent between M and N . Let ϕ(M, N) (resp., ϕ(N, M)) be the number of votes for M

(resp., N) in the M versus N election. Matching N is more popular than matching M if
ϕ(N, M) > ϕ(M, N).

▶ Definition 2. A matching M is popular if ∆(N, M) ≤ 0 for all matchings N in G, where
∆(N, M) = ϕ(N, M) − ϕ(M, N).

Thus a matching M is popular if there is no matching that is more popular than M .
The notion of popularity was introduced in 1975 by Gärdenfors [11] where he observed that
every stable matching is popular. It is easy to decide if there is a popular matching that
is also critical – it is known that any node that is matched in some popular matching has
to be matched in any max-size popular matching [12]. A max-size popular matching can
be computed in linear time [14]. However as was the case with stable matchings, it can
be the case that no popular matching is critical. Consider the following example where
A = {a0, a1, a2} and B = {b0, b1, b2}. Node preferences are described below.

a0 : b1 a1 : b1 ≻ b2 ≻ b0 a2 : b1 ≻ b2

b0 : a1 b1 : a1 ≻ a2 ≻ a0 b2 : a1 ≻ a2

The node a0 has only one neighbor b1. The node a1 regards b1 as its top choice, b2 as its
second choice, and b0 as its third choice. The node a2 regards b1 as its top choice and b2 as
its second choice. The preferences of nodes in B are symmetric to those in A.

The above instance has only one stable matching S = {(a1, b1), (a2, b2)}. This instance
has one more popular matching P = {(a1, b2), (a2, b1)}. Suppose C = {a0, a1} is the set
of critical nodes. Then neither S nor P is critical. Here M0 = {(a0, b1), (a1, b2)}, M1 =
{(a0, b1), (a1, b0)}, and M2 = {(a0, b1), (a1, b0), (a2, b2)} are the critical matchings. Thus
there need not exist any popular matching that is critical.

A natural alternative is to ask for a critical matching M such that there is no critical
matching more popular than M . Given that the number of critical nodes that get matched
is more important than node preferences, elections that involve non-critical matchings are
not relevant since by the definition of our setting, any critical matching is better than any
non-critical matching. So the desired matchings are the critical ones and any pair of critical
matchings can be compared by holding an election between them. Thus we are only interested
in elections between pairs of critical matchings.

▶ Definition 3. A critical matching M is a popular critical matching in G if ∆(N, M) ≤ 0
for any critical matching N .
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A popular critical matching is a weak Condorcet winner [5, 18] in the voting instance
where every critical matching is a candidate and nodes are voters. The relation “more
popular than” is not transitive, i.e., there may be cycles with respect to this relation, so
weak Condorcet winners need not exist in every voting instance. It might be the case that
for any critical matching, there is a “more popular” critical matching. Interestingly, it was
shown in [14] that popular maximum matchings (i.e., C = A ∪ B) always exist in G. Does
this positive result hold for every C ⊂ A ∪ B? So the following questions are relevant:

For any C ⊂ A ∪ B, does a popular critical matching always exist in G?
Is it easy to find one?
Is it easy to find a max-size popular critical matching?

In this paper we show positive answers to all the above questions. Recall that |E| = m.

▶ Theorem 4. For any C ⊂ A∪B, popular critical matchings always exist in G = (A∪B, E)
and a max-size such matching can be computed in O(|C|m + m) time.

We first show the following result. Then we extend this algorithm to show Theorem 4.

▶ Theorem 5. Given a marriage instance G = (A ∪ B, E) along with a subset C of critical
nodes, a min-size popular critical matching in G can be computed in O(|C|m + m) time.

1.1 Background and related results
Algorithmic questions in popular matchings have been well-studied during the last decade
and we refer to [6] for a survey. Popular matchings always exist in a marriage instance and
efficient algorithms are known to find min-size/max-size popular matchings in a marriage
instance [9, 13, 14]. A size-popularity trade-off was shown in [14] to efficiently find matchings
whose unpopularity is bounded from above and size is bounded from below. As shown there,
this implies that a maximum matching that is popular within the set of maximum matchings
always exists and can be efficiently computed. So C = A ∪ B in [14] while C = ∅ in the
Gale-Shapley algorithm. Thus for the two extreme cases of C, it was known that popular
critical matchings always exist and can be efficiently computed.

A related problem is the hospital-residents problem with lower quotas. This is a many-to-
one matching problem where every node has a strict preference order over its neighbors and
every hospital has a capacity; moreover certain hospitals have lower quotas which denotes
the minimum number of residents that have to be matched to this hospital in any feasible
matching. It was shown in [19] that whenever feasible matchings exist, a matching that
is popular among feasible matchings always exists and a max-size such matching can be
computed in polynomial time. Very recently and independent of our work, the above result
was generalized in [20] to the setting where certain residents are marked and every marked
resident has to be matched in any feasible matching.

Hardness results for “almost stable” critical matchings. Several hardness results for
finding almost stable maximum matchings (so every vertex is critical) in a marriage instance
were shown in [3]. It was shown there that even if all preference lists were restricted to be of
length at most 3, finding a maximum matching that admits the minimum number of blocking
edges is NP-hard. An alternative approach is to count the number of nodes that are involved
in blocking edges [8, 23]. The problem of finding a maximum matching that minimizes this
number is also NP-hard to compute/approximate, as shown in [3].

FSTTCS 2021
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1.2 Techniques
We use the machinery of stable matchings and LP-duality to show our results. We construct
a new marriage instance G′ = (A′ ∪ B′, E′) on O(|C|n + n) nodes and O(|C|m + m) edges
such that any stable matching in G′ corresponds to a popular critical matching in G. The
instance G′ resembles instances used in [7, 14, 16] to compute max-size popular matchings
and popular maximum matchings.

We now give a quick overview of the popular maximum matching algorithm from [14].
This algorithm partitions the node set A ∪ B into levels so that any stable matching in this
“graph with levels” corresponds to a popular maximum matching in G. To begin with, all
nodes are in some level ℓ and the Gale-Shapley algorithm is run on this instance. If the stable
matching leaves some nodes in A unmatched then all unmatched nodes in A are promoted to
level ℓ + 1. Once promoted to level ℓ + 1, each such node starts proposing all over again – it
will be the case that every node in B prefers higher level neighbors to lower level neighbors.
So some of these promoted nodes may find partners.

This may “un-match” some nodes in A initially matched in level ℓ. These nodes continue
proposing as per the Gale-Shapley algorithm and any node in A that is unsuccessful in
finding a partner in level ℓ gets promoted to level ℓ + 1. Any node in A that does not find
a partner even as a level ℓ + 1 node gets promoted to level ℓ + 2 and so on. It was shown
in [14] that |A| levels suffice to construct a maximum matching that is popular within the
set of maximum matchings.

Our algorithms. If all the critical nodes are in A then the above algorithm easily generalizes
to solving the popular critical matching problem by promoting only critical nodes in A to
higher levels and non-critical nodes in A will always remain in level ℓ. However we need to
deal with critical nodes in the set B as well. For this, our new idea is the following: critical
nodes in B that are left unmatched in the Gale-Shapley algorithm in level ℓ get demoted to
level ℓ − 1. It will be the case that every node in A prefers lower level neighbors to higher
level neighbors. So in fact, the Gale-Shapley algorithm should begin by nodes in A proposing
to lower level neighbors first (before the ones in level ℓ).

Thus the main difference between our instance G′ and the earlier instance from [14]
(explicitly described in [16]) is that there is non-uniformity among the nodes now. All the
nodes in A∪B are permitted in only one intermediate level, i.e., level ℓ. Non-critical nodes in
A are excluded from levels higher than ℓ and non-critical nodes in B are excluded from levels
lower than ℓ. We show that any stable matching in G′ corresponds to a min-size popular
critical matching in G. We construct another instance G′′ such that the entire node set
A ∪ B is permitted in two levels: level ℓ and level ℓ + 1. We show that any stable matching in
G′′ corresponds to a max-size popular critical matching in G. When C = ∅, the instance G′′

is the same as the instance from [7] whose stable matchings correspond to max-size popular
matchings in G.

Our proofs of correctness. We prove the correctness of our algorithms via the LP method
by constructing witnesses that certify “popularity within the set of critical matchings” for
our matchings. These witnesses are solutions to certain linear programs. Such witnesses are
known for popular matchings [15] and popular maximum matchings [16]. Our witnesses are
a little more complicated since our primal LP involves more constraints (due to criticality)
and so the dual LP has more variables.

The dual LP solutions that we show (see Lemma 11 and Lemma 16) allow us to give
simple proofs of correctness and enable us to show (using complementary slackness) that our
two algorithms respectively compute min-size and max-size popular critical matchings in G.
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By contrast, the proof of correctness of the popular maximum matching algorithm in [14]
was combinatorial; popular maximum matchings were characterized in terms of forbidden
alternating paths and cycles and it was shown that there was no forbidden alternating path
or cycle with respect to the matching returned.

Organization of the paper. Section 2 describes our witness for a popular critical matching.
The min-size and max-size popular critical matching algorithms are given in Section 3 and
Section 4, respectively.

2 A witness for a popular critical matching

Our input consists of a marriage instance G = (A ∪ B, E) with strict preferences and a set
C ⊆ A ∪ B of critical nodes. We first characterize critical matchings.

▶ Lemma 6. A matching M in G is critical if and only if there is no alternating path p with
respect to M that satisfies either of the conditions given below:
1. p is an augmenting path with respect to M and at least one endpoint of p is in C.
2. p has even length with exactly one endpoint in C and this node is left unmatched in M .

Proof. Let M be a matching with an alternating path p such that either (i) p is an augmenting
path wrt M and at least one endpoint of p is in C or (ii) p has even length with exactly one
endpoint in C and this node is left unmatched in M . Then M ⊕ p matches at least one more
critical node than M . Thus M cannot be a critical matching.

Conversely, suppose M is not a critical matching. Let N be a critical matching. Consider
M ⊕ N . Since N matches more critical nodes than M , there has to be an alternating path p

in M ⊕ N where N matches more critical nodes than M . So p has an endpoint in C that
is matched in N and not in M . If the other endpoint of p is unmatched in M then p is an
augmenting path wrt M ; else the other endpoint is matched in M and this endpoint is not
in C since N matches more critical nodes than M in the alternating path p.

So either (i) p is an augmenting path wrt M and at least one endpoint of p is in C or
(ii) p has even length with exactly one endpoint in C, which is left unmatched in M . ◀

Let M be any critical matching in G. Let kA (resp., kB) denote the number of nodes in
CA = C ∩ A (resp., CB = C ∩ B) that are matched in M . The following lemma will be very
useful to us.

▶ Lemma 7. Every matching in G matches at most kA nodes in CA and at most kB nodes
in CB.

Proof. Suppose not. Let N be a matching in G that matches more than kA nodes in CA.
Then there is an alternating path p in M ⊕ N where N matches more nodes of CA than the
critical matching M . If the length of p is odd then p is an augmenting path wrt M whose at
least one endpoint is in C. But this is a forbidden structure for any critical matching (by
Lemma 6).

So the length of p is even. Then the other endpoint of p (the one matched in M and
unmatched in N) is in A, call this node v. Since N matches more nodes of CA than M in
the path p, the node v cannot be in CA. Hence p is an even length alternating path with
exactly one endpoint in C and this node is left unmatched in M . This is again a forbidden
structure for any critical matching (by Lemma 6). Thus we get a contradiction. The proof
when N matches more than kB nodes in CB is analogous. ◀

FSTTCS 2021
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A linear program for popular critical matchings. It will be convenient to assume that
each node considers itself as its last choice neighbor. Let G̃ denote the graph G augmented
with self-loops. Any matching M in G can be regarded as a perfect matching M̃ in G̃ by
augmenting M with appropriate self-loops. Corresponding to M , an edge weight function
wtM in the graph G̃ can be defined. Let wtM (u, u) = 0 if u is left unmatched in M , i.e., if
(u, u) is in M̃ ; else wtM (u, u) = −1. For any edge (a, b) ∈ E:

let wtM (a, b) =


2 if (a, b) blocks M ;
−2 if both a and b prefer their respective partners in M to each other;
0 otherwise.

For any e ∈ E, note that wtM (e) is the sum of votes of the endpoints of e for each other
versus their respective partners in M̃ ; each vote is in {±1, 0} where 1 is “more preferred to”
and so on. For any node u, let δ(u) be the set of edges incident to u in G.

Consider the following linear program (LP1). Note that Lemma 7 implies that all critical
matchings in G match kA nodes in CA and kB nodes in CB . This is used in constraint (2).

maximize
∑
e∈Ẽ

wtM (e) · xe (LP1)

subject to∑
e∈δ(u)∪{u,u}

xe = 1 ∀ u ∈ A ∪ B (1)

∑
a∈CA

∑
e∈δ(a)

xe = kA and
∑

b∈CB

∑
e∈δ(b)

xe = kB (2)

xe ≥ 0 ∀ e ∈ E ∪ {(u, u) : u ∈ A ∪ B}. (3)

We know from Lemma 7 that
∑

a∈CA

∑
e∈δ(a) xe ≤ kA and

∑
b∈CB

∑
e∈δ(b) xe ≤ kB are

valid inequalities for the matching polytope of G̃. So the feasible region of (LP1) defines a
face of the perfect matching polytope of G̃ and hence it is integral. Every integral point in
this face corresponds to a critical matching and every critical matching (augmented with
self-loops at unmatched nodes) belongs to this face. Thus (LP1) computes a max-weight
matching Ñ , where N is a critical matching in G.

Consider the dual LP. This is (LP2) given below. The dual variables are yu for u ∈ A ∪ B

along with zA and zB .

minimize
∑

u∈A∪B

yu + (kA · zA) + (kB · zB) (LP2)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E where a /∈ CA, b /∈ CB (4)
ya + yb + zA ≥ wtM (a, b) ∀ (a, b) ∈ E where a ∈ CA, b /∈ CB (5)
ya + yb + zB ≥ wtM (a, b) ∀ (a, b) ∈ E where a /∈ CA, b ∈ CB (6)

ya + yb + zA + zB ≥ wtM (a, b) ∀ (a, b) ∈ E where a ∈ CA, b ∈ CB (7)
yu ≥ wtM (u, u) ∀ u ∈ A ∪ B. (8)

▶ Proposition 8. Let M be a critical matching such that the optimal value of (LP2) is at
most 0. Then M is a popular critical matching.
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Proof. The optimal value of (LP1) is maxN wtM (Ñ), where N is a critical matching in G.
It follows from the definition of the function wtM that wtM (Ñ) = ϕ(N, M) − ϕ(M, N) =
∆(N, M) for any matching N in G. Thus the optimal value of (LP1) is maxN ∆(N, M),
where N is a critical matching. If the optimal value of (LP2) is at most 0 then the optimal
value of (LP1) is also at most 0 (by weak duality). This means ∆(N, M) ≤ 0 for every
critical matching N . ◀

We will use Proposition 8 to prove the correctness of our algorithms in Section 3 and
Section 4. That is, we will construct matchings M such that there exist feasible solutions
(y⃗, z⃗) to (LP2) with

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0.

3 An algorithm for a popular critical matching

Let G = (A ∪ B, E) be the given marriage instance and let C ⊆ A ∪ B be the set of critical
nodes. Recall the overview of our algorithm given in Section 1.2. We want to partition the
node set A ∪ B into levels so that any stable matching in this new graph corresponds to a
popular critical matching in G.

Recall that we use CA = C ∩ A (resp., CB = C ∩ B) to denote the set of critical nodes in
A (resp., B). Let |CA| = α and |CB | = β. There will be α + β + 1 levels indexed 0, . . . , α + β.

A new instance G′ = (A′ ∪ B′, E′). We now describe a new instance G′ whose stable
matchings will map to popular critical matchings in G. The set A′ is described below.

For every a ∈ CA, the set A′ has α + β + 1 copies of a: call these nodes a0, a1, . . . , aα+β .
For every a ∈ A \ CA, the set A′ has β + 1 copies of a: call these nodes a0, a1, . . . , aβ .

Thus A′ = ∪a∈CA
{a0, a1, . . . , aα+β}∪a∈A\CA

{a0, a1, . . . , aβ}. Define the set B′ as follows.
B′ = {b′ : b ∈ B} ∪a∈CA

{d1(a), . . . , dα+β(a)} ∪a∈A\CA
{d1(a), . . . , dβ(a)}.

The set {b′ : b ∈ B} is a copy of the set B. Along with nodes in {b′ : b ∈ B}, the set B′

contains dummy nodes (the d-nodes). Such dummy nodes were first used in [7] and they
make it easy for us to describe “promotions” from one level to another.

When a ∈ CA, there are α + β + 1 copies of a in A′ and the set B′ has d1(a), . . . , dα+β(a).
We will set preferences such that in any stable matching in G′, α + β copies of a have to
be matched to these dummy nodes. Similarly, when a ∈ A \ CA, there are β + 1 copies of a

in A′ and the set B′ has d1(a), . . . , dβ(a). We will set preferences such that in any stable
matching in G′, β copies of a have to be matched to these dummy nodes. Thus in any stable
matching in G′, for each a ∈ A, at most one node among all ai’s is “free” to be matched to a
neighbor in {b′ : b ∈ B}.

The edge set. Corresponding to each (a, b) ∈ E, we will have the following edges in E′.
There are four cases here depending on whether a is in CA or not and b is in CB or not.
1. a /∈ CA and b /∈ CB : there is exactly one edge (aβ , b′) in E′ that corresponds to (a, b).
2. a /∈ CA and b ∈ CB : there are β + 1 edges (ai, b′) in E′ where 0 ≤ i ≤ β.
3. a ∈ CA and b /∈ CB : there are α + 1 edges (ai, b′) in E′ where β ≤ i ≤ α + β.
4. a ∈ CA and b ∈ CB : there are α + β + 1 edges (ai, b′) in E′ where 0 ≤ i ≤ α + β.

For each a ∈ A, the set E′ also has the following edges:
if a ∈ CA then (ai−1, di(a)) and (ai, di(a)) for 1 ≤ i ≤ α + β;
if a ∈ A \ CA then (ai−1, di(a)) and (ai, di(a)) for 1 ≤ i ≤ β.

For any i, the preference order of di(a) is ai−1 ≻ ai.

FSTTCS 2021
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Preference orders. Consider a ∈ A. Let a’s preference order in G be b1 ≻ · · · ≻ bk.
Suppose {c1, . . . , cr} = {b1, . . . , bk} ∩ C. That is, c1, . . . , cr are a’s critical neighbors. Let a’s
preference order among these nodes be c1 ≻ · · · ≻ cr.

a0’s preference order in G′ is c′
1 ≻ · · · ≻ c′

r ≻ d1(a).
For 1 ≤ i ≤ β − 1, ai’s preference order is di(a) ≻ c′

1 ≻ · · · ≻ c′
r ≻ di+1(a).

For a /∈ CA: the preference order of aβ is dβ(a) ≻ b′
1 ≻ · · · ≻ b′

k.
For a ∈ CA:

for β ≤ i ≤ α + β − 1, the preference order of ai is di(a) ≻ b′
1 ≻ · · · ≻ b′

k ≻ di+1(a).
the preference order of aα+β is dα+β(a) ≻ b′

1 ≻ · · · ≻ b′
k.

For a ∈ A, other than the dummy nodes, observe that it is only copies of critical neighbors
that are present in the preference list of ai for 0 ≤ i ≤ β − 1.

For a /∈ CA, observe that copies of all neighbors of a, i.e., b′
1, . . . , b′

k, are present only
in the preference list of aβ . For a ∈ CA, copies of all neighbors of ai are present in the
preference list of ai for β ≤ i ≤ α + β.

Consider any b ∈ B. Let b’s preference order in G be a ≻ · · · ≻ z. Let {a′, . . . , z′} =
{a, . . . , z}∩C. Let b’s preference order among its critical neighbors be a′ ≻ · · · ≻ z′. Suppose
b /∈ CB . Then the preference order of b′ in G′ is:

a′
α+β ≻ · · · ≻ z′

α+β︸ ︷︷ ︸
level α + β neighbors

≻ · · · ≻ a′
β+1 ≻ · · · ≻ z′

β+1︸ ︷︷ ︸
level β + 1 neighbors

≻ aβ ≻ · · · ≻ zβ︸ ︷︷ ︸
level β neighbors

So b′ prefers any subscript or level i neighbor to any level j neighbor for i > j. Note that
copies of only critical neighbors are present in level i for β + 1 ≤ i ≤ α + β and copies of all
neighbors of b, i.e., a, . . . , z, are present only in level β.

Suppose b ∈ CB . Then the preference order of b′ in G′ is:

a′
α+β ≻ · · · ≻ z′

α+β︸ ︷︷ ︸
level α + β neighbors

≻ · · · ≻ a′
β+1 ≻ · · · ≻ z′

β+1︸ ︷︷ ︸
level β + 1 neighbors

≻ aβ ≻ · · · ≻ zβ︸ ︷︷ ︸
level β neighbors

≻ · · · ≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors

Note that copies of only critical neighbors are present in level i for β + 1 ≤ i ≤ α + β and
copies of all neighbors of b are present in level i for 0 ≤ i ≤ β.

The matching M . For any stable matching M ′ in G′, define M ⊆ E to be the set of edges
obtained by deleting edges in M ′ that are incident to dummy nodes and replacing any edge
(ai, b′) ∈ M ′ with the original edge (a, b) ∈ E.

For any a ∈ A and all i ≥ 1, the dummy node di(a) is the top choice neighbor for ai,
hence the stable matching M ′ has to match all dummy nodes. Thus at most one node among
all the ai’s can be matched in M ′ to a neighbor in {b′ : b ∈ B}. So M is a matching in G.
Theorem 9 (proved below) is our main theorem in this section.

▶ Theorem 9. For any stable matching M ′ in G′, the corresponding matching M is a
min-size popular critical matching in G.

Since a stable matching always exists in G′, popular critical matchings always exist in G.
Thus the first part of Theorem 4 follows. The time taken to construct G′ and to compute a
stable matching in G′ is O(|C|m + m). Thus Theorem 5 follows from Theorem 9.

We will prove Theorem 9 now. As done in [14], it will be useful to partition the set A ∪ B

into subsets as described below (see Fig. 1). We will partition the set of all nodes in A that
are matched in M into A0 ∪ · · · ∪ Aα+β where for 0 ≤ i ≤ α + β: Ai = {a ∈ A : (ai, b′) ∈ M ′
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for some b ∈ B}, i.e., Ai is the collection of those a’s such that ai is matched in M ′ to a
neighbor in {b′ : b ∈ B}. Add unmatched nodes in CA to Aα+β and add unmatched nodes
in A \ CA to Aβ .

Similarly, partition the set of all nodes in B that are matched in M into B0 ∪ · · · ∪ Bα+β

where for 0 ≤ i ≤ α + β: Bi = {b : (ai, b′) ∈ M ′ for some a ∈ Ai}, i.e., Bi is the collection of
those b’s such that the partner of b′ in M ′ is a subscript i node. Add unmatched nodes in
CB to B0 and add unmatched nodes in B \ CB to Bβ .
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Aα+β Bα+β

Aβ+1 Bβ+1

Aβ

Aβ−1

A0 B0

Bβ−1

Bβ

Figure 1 A = A0 ∪ · · · ∪ Aα+β and B = B0 ∪ · · · ∪ Bα+β and M ⊆ ∪α+β
i=0 (Ai × Bi). Red nodes

are outside C and green nodes are in C. All red (i.e., non-critical) nodes are in ∪i≤βAi ∪i≥β Bi and
unmatched red nodes are in Aβ ∪ Bβ .

▶ Lemma 10. M is a critical matching in G.

The proof of Lemma 10 (given in the appendix) uses Lemma 6 and is similar to the
proof that the popular maximum matching algorithm in [14] finds a maximum matching.
Lemma 11 is the main technical result here.

▶ Lemma 11. M is a popular critical matching in G.

Proof. We will use Proposition 8. Let (y⃗, z⃗) be defined as follows.
1. Set zA = −2α and zB = −2β.
2. Set yu = 0 for all unmatched nodes u. For matched nodes u, we will set y-values as

follows. For 0 ≤ i ≤ α + β do:
for a ∈ Ai: if a ∈ CA then set ya = 2α + 2β − 2i; else set ya = 2β − 2i.
for b ∈ Bi: if b ∈ CB then set yb = 2i; else set yb = 2i − 2β.

▶ Lemma 12. ⟨y⃗, z⃗⟩ defined above is a feasible solution to (LP2).
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The proof of Lemma 12 is given below (after the proof of Lemma 11). We will now show
that

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0. Consider any edge (a, b) ∈ M . So there is some

i ∈ {0, . . . , α + β} such that a ∈ Ai and b ∈ Bi.

1. If a /∈ CA and b /∈ CB then ya + yb = (2β − 2i) + (2i − 2β) = 0.
2. If a ∈ CA and b /∈ CB then ya + yb + zA = (2α + 2β − 2i) + (2i − 2β) − 2α = 0.
3. If a /∈ CA and b ∈ CB then ya + yb + zB = (2β − 2i) + 2i − 2β = 0.
4. If a ∈ CA and b ∈ CB then ya + yb + zA + zB = (2α + 2β − 2i) + 2i − 2α − 2β = 0.

Recall that kA (resp., kB) is the number of nodes from CA (resp., CB) that get matched
in any critical matching. Since M is a critical matching (by Lemma 10), it matches kA nodes
from CA and kB nodes from CB . So added up over all edges (a, b) in M , the left hand sides
of the four equations above sum to

∑
u∈V yu + (kA · zA) + (kB · zB), where V ⊆ A ∪ B is

the set of nodes matched in M . Since all the right hand sides are 0, this sum is 0. For any
unmatched node u, we set yu = 0. So

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0. Hence M is a

popular critical matching in G (by Proposition 8). ◀

Proof of Lemma 12. For any node u, we claim that yu ≥ 0. Recall that ya = 2α + 2β − 2i

for a matched critical node a ∈ Ai and yb = 2i for a matched critical node b ∈ Bi. Since
0 ≤ i ≤ α + β, we have 2α + 2β − 2i ≥ 0 and 2i ≥ 0. Thus for any matched node u ∈ C,
yu ≥ 0.

For any matched node a ∈ A \ CA, observe that a ∈ Ai for some i ≤ β, so 2β − 2i ≥ 0.
For any matched node b ∈ B \ CB , observe that b ∈ Bi for some i ≥ β, so 2i − 2β ≥ 0. We
set yu = 0 for any unmatched node u. Hence yu ≥ 0 ≥ wtM (u, u) for all u ∈ A ∪ B. Thus
constraint (8) holds.

We will now show that ⟨y⃗, z⃗⟩ satisfies constraints (4)-(7). For any a ∈ CA, let y′
a = ya +zA.

For any b ∈ CB , let y′
b = yb + zB . For any node u /∈ C, let y′

u = yu.

We have y′
a = 2β − 2i for any matched a ∈ Ai and y′

b = 2i − 2β for any matched b ∈ Bi.
For any unmatched a ∈ A: y′

a = −2α if a ∈ CA and y′
a = 0 otherwise.

For any unmatched b ∈ B: y′
b = −2β if b ∈ CB and y′

b = 0 otherwise.

We will now show that y′
a + y′

b ≥ wtM (a, b) for all (a, b) ∈ E. Let a ∈ Ai and b ∈ Bj .
This proof is split into 4 parts: (1) i ≤ j − 1, (2) i = j, (3) i = j + 1, and (4) i ≥ j + 2.

1. Consider any edge (a, b) where a ∈ Ai, b ∈ Bj and i ≤ j − 1.
If a and b are matched nodes then y′

a + y′
b = (2β − 2i) + (2j − 2β) = 2(j − i) ≥ 2 ≥

wtM (a, b) since wtM (e) ∈ {±2, 0} for all e ∈ E.
Suppose a is unmatched. Then a /∈ CA; otherwise i = α + β and so j ≥ α + β + 1
which is not possible. So a /∈ CA and we have y′

a = 0 and i = β. Since j ≥ β + 1, we
have y′

b = 2j − 2β ≥ 2. Thus y′
a + y′

b ≥ 2 ≥ wtM (a, b).
Suppose b is unmatched. Then b /∈ CB; otherwise j = 0 and so i ≤ −1 which is
not possible. So b /∈ CB and we have y′

b = 0 and j = β. Since i ≤ β − 1, we have
y′

a = 2β − 2i ≥ 2. Thus y′
a + y′

b ≥ 2 ≥ wtM (a, b).
2. Let a ∈ Ai, b ∈ Bj where i = j. For any b ∈ B, within subscript i neighbors, the

preference order of b′ in G′ is the same as b’s preference order among these neighbors in
G. Thus M restricted to Ai ∪ Bi is stable and so wtM (a, b) ∈ {−2, 0}.

If a and b are matched nodes then y′
a + y′

b = (2β − 2i) + (2i − 2β) = 0.
Suppose a is unmatched.

If a ∈ CA then y′
a = −2α and i = α + β. So y′

b = 2(α + β) − 2β = 2α. Thus
y′

a + y′
b = −2α + 2α = 0.



T. Kavitha 25:11

If a /∈ CA then y′
a = 0 and i = β. The node b has to be matched since M ′ is stable

(and thus maximal) in G′. So y′
b = 2i − 2β = 0. Thus y′

a + y′
b = 0.

Suppose b is unmatched.
If b ∈ CB then y′

b = −2β and i = 0. So y′
a = 2β − 2i = 2β. Thus y′

a + y′
b =

2β − 2β = 0.
If b /∈ CB then y′

b = 0 and i = β. The node a has to be matched since M ′ is stable
(and thus maximal) in G′. So y′

a = 2β − 2i = 0. Thus y′
a + y′

b = 0.
Thus we have y′

a + y′
b = 0 ≥ wtM (a, b) in all the cases.

3. Let a ∈ Ai, b ∈ Bj where i = j + 1. Observe that (aj , dj+1(a)) ∈ M ′, i.e., aj is matched
to its least preferred neighbor dj+1(a). The stability of M ′ implies that (uj , b′) ∈ M ′ for
some neighbor uj that b′ prefers to aj . Also b′ prefers aj+1 to uj , so aj+1 has to prefer
M ′(aj+1) to b′. Hence both a and b are matched in M to neighbors that they prefer to each
other. So wtM (a, b) = −2. Thus y′

a + y′
b = (2β − 2(j + 1)) + (2j − 2β) = −2 = wtM (a, b).

4. If a ∈ Ai, b ∈ Bj where i ≥ j + 2 then (aj+1, dj+2(a)) ∈ M ′, i.e., aj+1 is matched to
its least preferred neighbor dj+2(a). This means the edge (aj+1, b′) blocks M ′ – this is
because b′ prefers aj+1 to its assignment in M ′: this is either a subscript j neighbor or
b′ is left unmatched in M ′. Since the blocking edge (aj+1, b′) contradicts M ′’s stability,
there is no (a, b) ∈ E where a ∈ Ai, b ∈ Bj and i ≥ j + 2.

Thus we have y′
a+y′

b ≥ wtM (a, b) for all (a, b) ∈ E. This completes the proof of Lemma 12. ◀

Min-size popular critical matching. Lemma 12 showed that (y⃗, z⃗) is a feasible solution to
(LP2). In fact, (y⃗, z⃗) is an optimal solution to (LP2) since M̃ is a feasible solution to (LP1)
and wtM (M̃) = 0 =

∑
u∈A∪B yu + (kA · zA) + (kB · zB). This will be useful in Lemma 13.

▶ Lemma 13. M is a min-size popular critical matching in G.

Proof. Let N be a critical matching of size smaller than |M |. Then there is some node u that
is matched in M but unmatched in N . So the self-loop (u, u) is in the perfect matching Ñ .
For any node u matched in M , we have yu > wtM (u, u). This is because yu ≥ 0 while
wtM (u, u) = −1. So the self-loop (u, u) is slack with respect to the dual optimal solution
(y⃗, z⃗). Then complementary slackness implies that Ñ cannot be a primal optimal solution.
The optimal value of (LP1) is 0, so this means wtM (Ñ) < 0, i.e., ∆(N, M) < 0. Hence the
critical matching M is more popular than N . Thus N cannot be a popular critical matching.
So M is a min-size popular critical matching in G. ◀

4 Finding a max-size popular critical matching

In this section we consider the problem of finding a max-size popular critical matching in
G = (A ∪ B, E) where C ⊆ A ∪ B is the given critical set. We will construct a new instance
G′′ = (A′′ ∪ B′′, E′′) which will be a minor variant of the instance G′ seen in Section 3. The
instance G′ was motivated by considering that we ran the Gale-Shapley algorithm with all
nodes in level ℓ (note that ℓ = β) and promoted unmatched critical nodes in A to higher
levels and demoted unmatched critical nodes in B to lower levels.

The instance G′′ can be motivated by considering that we will run the max-size popular
matching algorithm [14] (also called the 2-level Gale-Shapley algorithm) with all the nodes
in level β. This promotes certain nodes to level β + 1; all unmatched nodes in A are in
level β + 1 and all unmatched nodes in B are in level β. Now let us promote unmatched
critical nodes in A to higher levels and demote unmatched critical nodes in B downwards.
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The instance G′′. The instance G′′ = (A′′ ∪ B′′, E′′) has one extra level compared to G′.
For every a ∈ CA, the set A′′ has α + β + 2 copies of a: call them a0, a1, . . . , aα+β+1.
For every a ∈ A \ CA, the set A′′ has β + 2 copies of a: call them a0, a1, . . . , aβ+1.

So A′′ = ∪a∈CA
{a0, a1, . . . , aα+β+1} ∪a∈A\CA

{a0, a1, . . . , aβ+1}. The set B′′ is defined
as follows. B′′ = {b′ : b ∈ B} ∪a∈CA

{d1(a), . . . , dα+β+1(a)} ∪a∈A\CA
{d1(a), . . . , dβ+1(a)}.

As before, {b′ : b ∈ B} is a copy of the set B; along with nodes in {b′ : b ∈ B}, the set
B′′ contains α + β + 1 dummy nodes d1(a), . . . , dα+β+1(a) for a ∈ CA and β + 1 dummy
nodes d1(a), . . . , dβ+1(a) for a ∈ A \ CA.

The edge set. Corresponding to each (a, b) ∈ E, we have the following edges in E′′. As
before, there are four cases depending on whether a (similarly, b) is critical or not.
1. a /∈ CA and b /∈ CB : there are two edges (aβ , b′) and (aβ+1, b′) that correspond to (a, b).
2. a /∈ CA and b ∈ CB : there are β + 2 edges (ai, b′) where 0 ≤ i ≤ β + 1.
3. a ∈ CA and b /∈ CB : there are α + 2 edges (ai, b′) where β ≤ i ≤ α + β + 1.
4. a ∈ CA and b ∈ CB : there are α + β + 2 edges (ai, b′) where 0 ≤ i ≤ α + β + 1.

For a ∈ A \ CA, the set E′′ has the edges (ai−1, di(a)) and (ai, di(a)) where 1 ≤ i ≤ β + 1.
For a ∈ CA, the set E′′ has the edges (ai−1, di(a)) and (ai, di(a)) where 1 ≤ i ≤ α + β + 1.
For any i ≥ 1, the preference order of di(a) is ai−1 ≻ ai.

Preference orders. Let a’s preference order in G be b1 ≻ · · · ≻ bk. Let {c1, . . . , cr} =
{b1, . . . , bk} ∩ C. That is, c1, . . . , cr are a’s critical neighbors. It will be the case that only
these nodes can be neighbors of a0, . . . , aβ−1. Let a’s preference order among these nodes be
c1 ≻ · · · ≻ cr.

a0’s preference order is c′
1 ≻ · · · ≻ c′

r ≻ d1(a).
For 1 ≤ i ≤ β − 1, the preference order of ai is di(a) ≻ c′

1 ≻ · · · ≻ c′
r ≻ di+1(a).

For a /∈ CA:
the preference order of aβ is dβ(a) ≻ b′

1 ≻ · · · ≻ b′
k ≻ dβ+1(a);

the preference order of aβ+1 is dβ+1(a) ≻ b′
1 ≻ · · · ≻ b′

k.
For a ∈ CA:

for β ≤ i ≤ α + β, the preference order of ai is di(a) ≻ b′
1 ≻ · · · ≻ b′

k ≻ di+1(a);
the preference order of aα+β+1 is dα+β+1(a) ≻ b′

1 ≻ · · · ≻ b′
k.

Consider any b ∈ B. Let its preference order in G be a ≻ · · · ≻ z. Let b’s critical
neighbors be a′, . . . , z′ and let b’s preference order among them be a′ ≻ · · · ≻ z′.

Suppose b /∈ CB . Then the preference order of b′ is

a′
α+β+1 ≻ · · · ≻ z′

α+β+1︸ ︷︷ ︸
level α + β + 1 neighbors

≻ · · · ≻ a′
β+2 ≻ · · · ≻ z′

β+2︸ ︷︷ ︸
level β + 2 neighbors

≻ aβ+1 ≻ · · · ≻ zβ+1︸ ︷︷ ︸
level β + 1 neighbors

≻ aβ ≻ · · · ≻ zβ︸ ︷︷ ︸
level β neighbors

Note that copies of only critical neighbors are present in level i for β + 2 ≤ i ≤ α + β + 1
and copies of all neighbors of b, i.e., a, . . . , z, are present only in levels β and β + 1.

Suppose b ∈ CB . Then the preference order of b′ is

a′
α+β+1 ≻ · · · ≻ z′

α+β+1︸ ︷︷ ︸
level α + β + 1 neighbors

≻ · · · ≻ a′
β+2 ≻ · · · ≻ z′

β+2︸ ︷︷ ︸
level β + 2 neighbors

≻ aβ+1 ≻ · · · ≻ zβ+1︸ ︷︷ ︸
level β + 1 neighbors

≻ · · · ≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors

Note that copies of only critical neighbors are present in level i for β + 2 ≤ i ≤ α + β + 1
and copies of all neighbors of b are present in level i for 0 ≤ i ≤ β + 1.
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Aα+β+1

Aβ+2

Aβ+1

Aβ

A0 B0

Bβ

Bβ+1

Bβ+2

Bα+β+1

Figure 2 A = A0∪· · ·∪Aα+β+1 and B = B0∪· · ·∪Bα+β+1 and M ⊆ ∪α+β+1
i=0 (Ai×Bi). Red nodes

are outside C and green nodes are in C. All red (i.e., non-critical) nodes are in ∪i≤β+1Ai ∪i≥β Bi;
unmatched red nodes are in Aβ+1 ∪ Bβ .

The matching M . For any stable matching M ′′ in G′′, define M ⊆ E to be the set of
edges obtained by deleting edges in M ′′ that are incident to dummy nodes and replacing any
edge (ai, b′) ∈ M ′′ with the original edge (a, b) ∈ E. For each a ∈ A, the stable matching
M ′′ matches at most one node among all ai’s to a neighbor in {b′ : b ∈ B} (the other ai’s
have to be matched to dummy nodes). So M is a matching in G.

▶ Theorem 14. For any stable matching M ′′ in G′′, the corresponding matching M is a
max-size popular critical matching in G.

We will prove Theorem 14 by first showing that M is a critical matching (see Lemma 15),
then that M is a popular critical matching (see Lemma 16), and finally that M is a max-size
popular critical matching (see Lemma 19). The proof of Lemma 15 is similar to the proof of
Lemma 10 and is given in the appendix.

▶ Lemma 15. M is a critical matching in G.

We will now prove that M is a popular critical matching. In order to show this, our
analysis is totally analogous to our analysis in Section 3. As done there, we partition the set
of all nodes in A that are matched in M into A0 ∪ · · · ∪ Aα+β+1 where for 0 ≤ i ≤ α + β + 1:
Ai = {a ∈ A : (ai, b′) ∈ M ′′ for some b ∈ B}, i.e., Ai is the set of all a’s in A such that ai

is matched in M ′′ to a neighbor in {b′ : b ∈ B}. Add unmatched nodes in CA to the set
Aα+β+1 and unmatched nodes in A \ CA to the set Aβ+1 (see Fig. 2).
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Partition the set of all nodes in B that are matched in M into B0 ∪ · · · ∪ Bα+β+1 where
for 0 ≤ i ≤ α + β + 1: Bi = {b : (ai, b′) ∈ M ′′ for some a ∈ Ai}, i.e., b′’s partner in M ′′ is
a subscript i node. Add unmatched nodes in CB to the set B0 and unmatched nodes in
B \ CB to the set Bβ .

▶ Lemma 16. M is a popular critical matching in G.

Proof. We will use Proposition 8 here. Let (y⃗, z⃗) be defined as follows.
1. Set zA = −2α and zB = −2β. Set yu = 0 for all unmatched nodes u.
2. For matched nodes u, we will set y-values as follows.

For a ∈ Ai: if a ∈ CA then set ya = 2α + 2β − 2i + 1; else set ya = 2β − 2i + 1.
For b ∈ Bi: if b ∈ CB then set yb = 2i − 1; else set yb = 2i − 2β − 1.

▶ Lemma 17. ⟨y⃗, z⃗⟩ defined above is a feasible solution to (LP2).

The proof of Lemma 17 is given below. We will now show that
∑

u∈A∪B yu + (kA · zA) +
(kB · zB) = 0. Consider any edge (a, b) ∈ M . There is some i ∈ {0, . . . , α + β + 1} such that
a ∈ Ai and b ∈ Bi.

1. If a /∈ CA and b /∈ CB then ya + yb = (2β − 2i + 1) + (2i − 2β − 1) = 0.
2. If a ∈ CA and b /∈ CB then ya + yb + zA = (2α + 2β − 2i + 1) + (2i − 2β − 1) − 2α = 0.
3. If a /∈ CA and b ∈ CB then ya + yb + zB = (2β − 2i + 1) + (2i − 1) − 2β = 0.
4. If a ∈ CA and b ∈ CB then ya + yb + zA + zB = (2α + 2β − 2i + 1) + (2i − 1) − 2α − 2β = 0.

Recall that kA (resp., kB) is the number of nodes from CA (resp., CB) that get matched in
any critical matching. Since M is a critical matching (by Lemma 15), added up over all edges
(a, b) in M , the left hand sides of the four equations above sum to

∑
u∈V yu+(kA·zA)+(kB ·zB),

where V ⊆ A∪B is the set of nodes matched in M . Since all the right hand sides are 0, this sum
is 0. For any unmatched node u, we set yu = 0. Hence

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0.

Thus M is a popular critical matching in G (by Proposition 8). ◀

Proof of Lemma 17. For any unmatched node u, we have wtM (u, u) = 0 and we set yu = 0.
For any matched node u, we have wtM (u, u) = −1 and we will now show that yu ≥ −1.
Since 0 ≤ i ≤ α + β + 1, we have 2α + 2β − 2i + 1 ≥ −1 and 2i − 1 ≥ −1. Thus for any
matched critical node u, we have yu ≥ −1.

For any matched a ∈ A \ CA, observe that a ∈ Ai for some 0 ≤ i ≤ β + 1, so ya =
2β − 2i + 1 ≥ −1. For any matched b ∈ B \ CB , observe that b ∈ Bi for some β ≤ i ≤ α + β,
so ya = 2i − 2β − 1 ≥ −1. Hence yu ≥ wtM (u, u) for all u ∈ A ∪ B. Thus constraint (8)
holds.

We will now show that ⟨y⃗, z⃗⟩ satisfies constraints (4)-(7). For any a ∈ CA, let y′
a = ya +zA

and for any b ∈ CB , let y′
b = yb + zB . For any node u /∈ C, let y′

u = yu.
We have y′

a = 2β − 2i + 1 for any matched a ∈ A and y′
b = 2i − 2β − 1 for any matched

b ∈ B.
For any unmatched a ∈ A: y′

a = −2α if a ∈ CA and y′
a = 0 otherwise.

For any unmatched b ∈ B: y′
b = −2β if b ∈ CB and y′

b = 0 otherwise.

We are now ready to show that y′
a + y′

b ≥ wtM (a, b) for all (a, b) ∈ E. Let a ∈ Ai and
b ∈ Bj . As done in the proof of Lemma 12, this proof is split into 4 parts: (1) i ≤ j − 1,
(2) i = j, (3) i = j + 1, and (4) i ≥ j + 2.

1. Consider any edge (a, b) where a ∈ Ai, b ∈ Bj , and i ≤ j − 1.
If a and b are matched nodes then y′

a + y′
b = (2β − 2i + 1) + (2j − 2β − 1) = 2(j − i) ≥

2 ≥ wtM (a, b).
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Suppose a is unmatched. Observe that a ∈ A \ CA; otherwise i = α + β + 1 and so
j ≥ α + β + 2 which is not possible. Since a ∈ A \ CA, we have y′

a = 0 and i = β + 1.
Since j ≥ β + 2, we have y′

b = 2j − 2β − 1 ≥ 3. Thus y′
a + y′

b ≥ 3 > wtM (a, b).
Suppose b is unmatched. Observe that b ∈ B \ CB; otherwise j = 0 and so i ≤ −1
which is not possible. Since b ∈ B \ CB, we have y′

b = 0 and j = β. Since i ≤ β − 1,
we have y′

a = 2β − 2i + 1 ≥ 3. Thus y′
a + y′

b ≥ 3 > wtM (a, b).
2. Consider any (a, b) ∈ E where a ∈ Ai and b ∈ Bi. For any b ∈ B, within subscript i

neighbors, the preference order of b′ in G′′ is the same as b’s preference order among
these neighbors in G. Thus M restricted to Ai ∪ Bi is stable and so wtM (a, b) ≤ 0.

If a and b are matched nodes then y′
a + y′

b = (2β − 2i + 1) + (2i − 2β − 1) = 0.
Suppose a is unmatched.

If a ∈ CA then y′
a = −2α and i = α + β + 1. So y′

b = 2(α + β + 1) − 2β − 1 = 2α + 1.
Thus y′

a + y′
b = −2α + 2α + 1 = 1.

If a /∈ CA then y′
a = 0 and i = β + 1. So y′

b = 2(β + 1) − 2β − 1 = 1. Thus
y′

a + y′
b = 1.

Suppose b is unmatched.
If b ∈ CB then y′

b = −2β and i = 0. So y′
a = 2β + 1. Thus y′

a + y′
b = 2β + 1 − 2β = 1.

If b /∈ CB then y′
b = 0 and i = β. So y′

a = 2β − 2β + 1 = 1. Thus y′
a + y′

b = 1.
Thus we have y′

a + y′
b ≥ 0 ≥ wtM (a, b) in all the cases.

3. Let b ∈ Bj where i = j +1. As argued in the proof of Lemma 12, case 3, for any edge (a, b)
where a ∈ Aj+1 and b ∈ Bj , we have wtM (a, b) = −2. So both a and b are matched in M

to neighbors they prefer to each other. So y′
a + y′

b = (2β − 2i + 1) + (2(i − 1) − 2β − 1) =
−2 = wtM (a, b).

4. There is no edge (a, b) where b ∈ Bj and i ≥ j + 2; otherwise (aj+1, b′) would block M ′′

as shown in the proof of Lemma 12, case 4.

Thus we have shown that y′
a + y′

b ≥ wtM (a, b) for all (a, b) ∈ E. This completes the proof
of Lemma 17. ◀

Max-size popular critical matching. Observe that (y⃗, z⃗) is an optimal solution to (LP2)
since M̃ is a feasible solution to (LP1) and wtM (M̃) = 0 =

∑
u∈A∪B yu +(kA ·zA)+(kB ·zB).

We will use the notation y′
v for v ∈ A ∪ B used in the proof of Lemma 17. Recall that for

any a ∈ CA, y′
a = ya + zA and for any b ∈ CB, y′

b = yb + zB. For any node u /∈ C, y′
u = yu.

We will show the following claim below.

▷ Claim 18. For any edge (a, b) where a or b is unmatched, y′
a + y′

b > wtM (a, b).

Proof. Consider any unmatched a ∈ A and let (a, b) ∈ E. We already know from the proof
of Lemma 17 that y′

a + y′
b ≥ wtM (a, b). Our goal now is to show that y′

a + y′
b > wtM (a, b).

If a ∈ CA then a ∈ Aα+β+1. Observe that b ∈ Bα+β+1, otherwise the edge (aα+β+1, b′)
would block M ′. So y′

a + y′
b = −2α + 2α + 1 = 1. Since wtM (a, b) ∈ {0, ±2}, this means

y′
a + y′

b > wtM (a, b).
If a /∈ CA then a ∈ Aβ+1. Observe that b ∈ ∪i≥β+1Bi, otherwise the edge (aβ+1, b′) would

block M ′. If b ∈ Bβ+1 then y′
a + y′

b = 0 + 2(β + 1) − 2β − 1 = 1 and so y′
a + y′

b > wtM (a, b).
If b ∈ ∪i≥β+2Bi then y′

a + y′
b ≥ 0 + 2(β + 2) − 2β − 1 = 3 > wtM (a, b).

Consider any unmatched b ∈ B and let (a, b) ∈ E. If b ∈ CB then b ∈ B0. Observe that
a ∈ A0, otherwise the edge (a0, b′) would block M ′. So y′

a + y′
b = 2β + 1 − 2β = 1. Since

wtM (a, b) ∈ {0, ±2}, it follows that y′
a + y′

b > wtM (a, b).
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If b /∈ CB then b ∈ Bβ . Observe that a ∈ ∪i≤βAi, otherwise the edge (aβ , b′) would block
M ′. If a ∈ Aβ then y′

a + y′
b = 2β − 2β + 1 = 1 and so y′

a + y′
b > wtM (a, b). If a ∈ ∪i≤β−1Ai

then y′
a + y′

b ≥ 2β − 2(β − 1) + 1 = 3 > wtM (a, b).
Thus every edge incident to a node left unmatched in M is slack. ◁

Lemma 19 follows easily from Claim 18.

▶ Lemma 19. M is a max-size popular critical matching in G.

Proof. Consider any critical matching N in G such that |N | > |M |. So N has to match a
node that is unmatched in M , i.e., N has to use a slack edge (by Claim 18). Since (y⃗, z⃗)
is an optimal solution to (LP2), it follows from complementary slackness that the perfect
matching Ñ , which is a feasible solution to (LP1), cannot be an optimal solution.

The optimal value of (LP1) is 0, so this means wtM (Ñ) < 0. In other words, ∆(N, M) < 0,
i.e., the critical matching M is more popular than N . Thus no critical matching larger than
M can be a popular critical matching. Hence M is a max-size popular critical matching. ◀

The time taken to compute M is O(|C|m + m), so the second part of Theorem 4 follows
from Theorem 14. Recall that the first part of Theorem 4 was already shown in Section 3.
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A Appendix: Missing Proofs

Before we prove Lemma 10, it will be useful to prove the following simple observation.

▶ Observation 20. For any critical node left unmatched in M , all its neighbors are in
A0 ∪ Bα+β.

Proof. If a ∈ CA is unmatched in M then aα+β has to be unmatched in M ′. This is because
for 0 ≤ i ≤ α + β − 1, the node ai is di+1(a)’s top choice neighbor, hence the stable matching
M ′ has to match ai. If a has a neighbor b in Bi for i ≤ α + β − 1 then the edge (aα+β , b′)
blocks M ′, a contradiction to its stability in G′. Thus b ∈ Bα+β .

Suppose b ∈ CB is unmatched in M and b has a neighbor a in Ai for i ≥ 1. This means
(a0, d1(a)) is in M ′. Recall that d1(a) is a0’s least preferred neighbor. So the edge (a0, b′)
blocks M ′, a contradiction to its stability in G′. Thus a ∈ A0. ◁

Proof of Lemma 10. We will show there is no alternating path p with respect to M such
that (i) p is an augmenting path wrt M and at least one endpoint of p is in C or (ii) p has
even length with exactly one endpoint in C and this node is left unmatched in M . Then it
follows from Lemma 6 that M is a critical matching in G.

We will first show there is no augmenting path p wrt M with an endpoint in CB . It follows
from the definition of sets Ai and Bi that M ⊆ ∪α+β

i=0 (Ai × Bi). An important property here
is that there is no edge in Ai × Bj where i ≥ j + 2. See the proof of Lemma 12, case 4 which
shows that such an edge contradicts the stability of M ′ in G′.
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The path p starts in B0 at an unmatched node b ∈ CB and all of b’s neighbors are in A0
(by Observation 20). The matched partners of b’s neighbors are in B0. The node after this
can be in A1 and its partner is in B1 and so on. So the shortest alternating path from an
unmatched b ∈ B0 to an unmatched a ∈ A (such a node is in Aβ ∪ Aα+β) moves across sets
as follows: [here (Ai − Bi) refers to a matching edge in Ai × Bi]

B0 − (A0 − B0) − (A1 − B1) − (A2 − B2) − · · · − (Aβ−1 − Bβ−1) − · · ·

Since all nodes in sets Bi for 0 ≤ i ≤ β − 1 are in CB, this implies there are at least β + 1
nodes of CB in p. However |CB | = β. So there is no such augmenting path p with respect
to M .

The same argument shows that the shortest even length alternating path p with an
unmatched node in CB as one endpoint and any node in B \ CB (such a node is in ∪i≥βBi)
as another endpoint needs to have at least β + 1 nodes of CB in it. However |CB | = β. So
there is no such alternating path p with respect to M .

We will now show there is no augmenting path p wrt M with an endpoint in CA. An
argument analogous to the one given above shows that the shortest alternating path from an
unmatched a ∈ Aα+β to an unmatched node b ∈ B (such a node is in Bβ ∪ B0) moves across
sets as follows: [here (Bi − Ai) refers to a matching edge in Bi × Ai]

Aα+β − (Bα+β − Aα+β) − (Bα+β−1 − Aα+β−1) − · · · − (Bβ+1 − Aβ+1) − · · ·

Since all nodes in levels Ai for β + 1 ≤ i ≤ α + β are in CA, this implies there are at least
α + 1 nodes of CA in p. However |CA| = α. So there is no such augmenting path p with
respect to M .

The same argument shows that the shortest even length alternating path p with an
unmatched node in CA as one endpoint and any node in A \ CA (such a node is in ∪i≤βAi)
as another endpoint needs to have at least α + 1 nodes of CA in it. However |CA| = α. So
there is no such alternating path p with respect to M .

Thus there is no forbidden alternating path p (as given in Lemma 6) with respect to M .
Hence M is a critical matching. ◀

Proof of Lemma 15. We will use Lemma 6 to show that M is a critical matching. We will
show there is no alternating path p with respect to M such that: (i) p is an augmenting
path wrt M and at least one endpoint of p is in C or (ii) p has even length with exactly one
endpoint in C and this node is left unmatched in M .

We will first show there is no augmenting path p wrt M with an endpoint in CB . Every
unmatched node in CB is in B0 and its neighbors are in A0 (analogous to Observation 20).

It follows from the definitions of Ai and Bi that M ⊆ ∪α+β+1
i=0 (Ai × Bi). Moreover there

is no edge in Ai × Bj where i ≥ j + 2; otherwise the edge (aj+1, b′) would block M ′′.
Thus the path p starts in B0 at an unmatched node b ∈ CB and the next node is in A0.

The matched partners of b’s neighbors are in B0. The node after this can be in A1 and its
partner is in B1 and so on. So the shortest alternating path between an unmatched node
b ∈ B0 and an unmatched node a ∈ A (such a node is in Aβ+1 ∪ Aα+β+1) moves across sets
as follows (see Fig. 2):

B0 − (A0 − B0) − (A1 − B1) − (A2 − B2) − · · · − (Aβ−1 − Bβ−1) − · · ·

Since all nodes in levels Bi for 0 ≤ i ≤ β − 1 are in CB , this implies there are at least β + 1
nodes of CB in p. However |CB | = β. So there is no such augmenting path p with respect
to M .
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The same argument shows that the shortest even length alternating path p with an
unmatched node in CB (such a node is in B0) as one endpoint and any node in B \ CB (such
a node is in ∪i≥βBi) as another endpoint needs to have at least β + 1 nodes of CB in it.
However |CB | = β. So there is no such alternating path p with respect to M .

We will now show there is no augmenting path p wrt M with an endpoint in CA. An
argument analogous to the one given above shows that the shortest alternating path from an
unmatched a ∈ CA (note that a ∈ Aα+β+1) to an unmatched node in B (such a node is in
Bβ ∪ B0) moves across sets as follows (see Fig. 2):

Aα+β+1 − (Bα+β+1 −Aα+β+1)− (Bα+β −Aα+β)− (Bα+β−1 −Aα+β−1)−· · ·− (Bβ+2 −Aβ+2)−· · ·

Since all nodes in levels Ai for β + 2 ≤ i ≤ α + β + 1 are in CA, this implies there are at
least α + 1 nodes of CA in p. However |CA| = α. So there is no such augmenting path p with
respect to M .

The same argument shows that the shortest even length alternating path p with an
unmatched node in CA (such a node is in Aα+β+1) as one endpoint and any node in A \ CA

(such a node is in ∪i≤β+1Ai) as another endpoint needs to have at least α + 1 nodes of CA

in it. However |CA| = α. So there is no such alternating path p with respect to M .
Thus there is no forbidden alternating path p (as given in Lemma 6) with respect to M .

Hence M is a critical matching in G. ◀
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