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—— Abstract

The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of
correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite
words, for a classical Turing computability notion over infinite inputs. We consider specifications
which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity
transducers. We prove that the synthesis problem of computable functions from rational specifications
is undecidable. We provide an incomplete but sound reduction to some parity game, such that if
Eve wins the game, then the rational specification is realizable by a computable function. We prove
that this function is even computable by a deterministic two-way transducer.

We provide a sufficient condition under which the latter game reduction is complete. This
entails the decidability of the synthesis problem of computable functions, which we proved to be
ExpPTIME-complete, for a large subclass of rational specifications, namely deterministic rational
specifications. This subclass contains the class of automatic relations over infinite words, a yardstick
in reactive synthesis.
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1 Introduction

Program synthesis aims at automatically generating programs from specifications. This
problem can be formalized as follows. There are four parameters: two sets of input and
output domains I, 0, a set S of relations (called specifications) from I to O, and a set Z of
(partial) functions (called implementations) from I to O. Then, given a specification S € S
defining the correct input/output relationships, the synthesis problem asks to check whether
there exists a function f € 7 satisfying S in the following sense: its graph is included in S
and it has the same domain as S (i.e., f is defined on z € I iff (x,y) € S for some y € O).
Using a set-theoretic terminology, f is said to uniformize S. Moreover in synthesis, if such
an f exists, then the synthesis algorithm should return (a finite presentation of) it.
? Emmanuel Filiot a.nd Sarah Winte.r;
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Program synthesis quickly turns to be undecidable depending on the four parameters
mentioned before. Therefore, research on synthesis either turn to developing efficient sound
but incomplete methods, see for example the syntax-guided synthesis approach [2] or bounded
synthesis [14, 15], or restrict the class of specifications S and/or the class of implementations
Z. A well-known example of the latter approach is reactive synthesis, where S are automatic
relations! over infinite words, and Z are Mealy machines [6, 23, 10]. Infinite words (over a
finite alphabet) are used to model infinite executions of reactive systems, and Mealy machines
are used as a model of reactive systems processing bit streams.

In this paper, our goal is to synthesize, from specifications which are semantically binary
relations of infinite words, stream-processing programs, which are semantically streaming
computable functions of infinite words (just called computable functions in the sequel). Let us
now make the computability notion we use more precise. Let 3 and I' be to finite alphabets.
A partial function f: 3% — I', whose domain is denoted dom(f), is said to be computable,
if there exists a deterministic (Turing) machine M with three tapes, a read-only one-way
input tape, a two-way working tape, and a write-only output tape that works as follows:
if the input tape holds an input sequence o € dom(f), then M outputs longer and longer
prefixes of f(a) when reading longer and longer prefixes of a. A definition of this machine
model can be found, for instance, in [25].

» Example 1. Over the alphabet ¥ =T = {a,b, A, B}, consider the specification given by
the relation Ry = {(uza, zuf) | ua,uf € {a,b}*,z € {A, B}}. The relation R; is automatic:
an automaton needs to check that the input prefix u occurs shifted by one position on the
output, which is doable using only finite memory. Checking that the first output letter x
also appears after u on the input can also be done by storing x in the state. Note that
some acceptance condition (e.g., parity) is needed to make sure that x is met again on the
input. There is no Mealy machine which can realize Ry, because Mealy machines operate in
a synchronous manner: they read one input symbol and must deterministically produce one
output symbol. Here, the first output symbol which has to be produced depends on the letter
x which might appear arbitrarily far in the input sequence. However, R; can be uniformized
by a computable function: there is an algorithm reading the input from left to right and
which simply waits till the special symbol z € {A, B} is met on the input. Meanwhile, it
stores longer and longer prefixes of u in memory (so it needs unbounded memory) and once
x is met, it outputs zu. Then, whatever it reads on the input, it just copies it on the output
(realizing the identity function over the remaining infinite suffix ). Note that this algorithm
produces a correct output under the assumption that x is eventually read.

Contributions. We first investigate the synthesis of computable functions from rational
specifications, which are those relations recognizable by non-deterministic finite state trans-
ducers, i.e., parity automata over a product of two free monoids. We however show this
problem is undecidable (Proposition 4). We then give an incomplete but sound algorithm
in Section 3, based on a reduction to w-regular two-player games. Given a transducer 7T
defining a specification R, we show how to effectively construct a two-player game Gr,
proven to be solvable in EXPTIME, such that if Eve wins Gy, then there exists a computable
function which uniformizes the relation recognized by 7, which can even be computed by
some input-deterministic two-way finite state transducer (a transducer which whenever
it reads an input symbol, it deterministically produces none or several output symbols
and either moves forward or backward on the input). It is easily seen that two-wayness is

L relations recognized by two-tape parity automata alternatively reading one input and one output symbol.
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necessary: the relation R; cannot be uniformized by any deterministic device which moves
only forward over the input and only uses finitely many states, as the whole prefix u has to
be remembered before reaching x. However, a two-way finite-state device can do it: first, it
scans the prefix up to x, comes back to the beginning of the input, knowing whether x = A
or x = B, and then can produce the output.

Intuitively, in the two-player game we construct, called unbounded delay game, Adam
picks the input symbols while Eve picks the output symbols. Eve is allowed to delay her

moves an arbitrarily number of steps, gaining some lookahead information on Adam’s input.

We use a finite abstraction to store the lookahead gained on Adam’s moves. We show that any
finite-memory winning strategy in this game can be translated into a function uniformizing
the specification such that it is computable by an input-deterministic two-way transducer.
In Section 4, we provide a sufficient condition P on relations for which the game reduction
is complete. In particular, we show that if a relation R satisfies P, then Eve wins the game
iff R can be uniformized by a computable function. A large subclass of rational relations

satisfying this sufficient condition is the class of deterministic rational relations (DRAT, [24]).

Deterministic rational relations are those relations recognizable by deterministic two-tape
automata, one tape holding the input word while the other holds the output word. It strictly
subsumes the class of automatic relations, and, unlike for automatic relations, the two heads
are not required to move at the same speed. Furthermore, when the domain of the relation
is topologically closed for the Cantor distance?, we show that strategies in which Eve delays
her moves at most a bounded number of steps are sufficient for Eve to win. Such a strategy
can in turn be converted into an input-deterministic one-way transducer. This entails
that for DRAT-specifications with a closed domain (such as for instance specifications with
domain X%, i.e., total domains), if it is uniformizable by a computable function, then it is
uniformizable by a function computable by an input-deterministic one-way transducer.

Based on the completeness result, we prove our main result, that the synthesis problem of
computable functions from deterministic rational relations is EXPTIME-complete. Hardness
also holds in the particular case of automatic relations of total domain.

Total versus partial domains. We would like to emphasize here on a subtle difference
between our formulation of synthesis problems and the classical formulation in reactive
synthesis. Classically in reactive synthesis, it is required that a controller produces for
every input sequence an output sequence correct w.r.t. the specification. Consequently,
specifications with partial domain are by default unrealizable. So, in this setting, the
specification R; of the latter example is not realizable, simply because its domain is not
total (words with none or at least two occurrences of a symbol in {A, B} are not in its
domain). In our definition, specifications with partial domain can still be realizable, because
the synthesized function, if it exists, can be partial and must be defined only on inputs for
which there exists at least one matching output in the specification. A well-known notion
corresponding to this weaker definition is that of uniformization [21, 9, 7, 13], this is why
we often use the terminology “uniformizes” instead of the more widely used terminology
“realizes”. The problem of synthesizing functions which uniformize quantitative specifications
has been recently investigated in [1]. In [1], it was called the good-enough synthesis problem,
a controller being good-enough if it is able to compute outputs for all inputs for which there

2 A set X C ¥ is closed if the limit, if it exists, of any sequence (4); of infinite words in X is in X. The
limit here is defined based on the Cantor distance, which, for any two infinite words u, v, is 0 if u = v
and otherwise 27 where £ is the length of their longest common prefix.
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exists a least one matching output by the specification. The uniformization setting can be
seen as an assumption that the input the program receives is not any input, but belongs
to some given language. Related to that, there is a number of works on reactive synthesis
under assumptions on the behavior of the environment [8, 4, 22, 11, 5.

Related work. To the best of our knowledge, this work is the first contribution which
addresses the synthesis of algorithms from specifications which are relations over infinite
inputs, and such that these algorithms may need unbounded memory, as illustrated by the
specification R; for which any infinite-input Turing-machine realizing the specification needs
unbounded memory. There are however two related works, in some particular or different
settings.

First, in [12], the synthesis of computable functions has been shown to be decidable in the
particular case of functional relations, i.e., graphs of functions. The main contribution of [12]
is to prove that checking whether a function represented by a non-deterministic two-way
transducer is computable is decidable, and that computability coincides with continuity (for
the Cantor distance) for this large class of functions. The techniques of [12] are different to
ours, e.g., games are not needed because output symbols functionally depends on input ones,
even in the specification, so, there is not choice to be made by Eve.

Second, Hosch and Landweber [19] proved decidability of the synthesis problem of
Lipschitz-continuous functions from automatic relations with fotal domain, Holtmann, Kaiser
and Thomas [17] proved decidability of the synthesis of continuous functions from automatic
relations with total domain, and Klein and Zimmermann [20] proved ExPTIME-completeness
for the former problem. So, we inherit the lower bound because automatic relations are
particular DRAT relations, and as we show in the last section of the paper, the synthesis
problem of computable functions is the same as the synthesis problem of continuous functions.
We obtain the same upper bound as [20] for a more general class of specifications, namely
DRAT, and in the more general setting of specifications with partial domain. As we show,
total vs. partial domains make an important difference: two-way transducers may be necessary
in the former case, while one-way transducers are sufficient in the latter. [17, 20] also rely
on a reduction to two-player games called delay games, but for which bounded delay are
sufficient. However, our game is built such that it accounts for the fact that unbounded delays
can be necessary and it also monitors the domain, which is not necessary in [17, 20] because
specifications have total domain. Accordingly, the main differences between [20] and our delay
games are their respective winning objectives and correctness proofs. Another difference
is that our game applies to the general class of rational relations, which are asynchronous
(several symbols, or none, can correspond to a single input symbol) in contrast to automatic
relations which are synchronous by definition.

Omitted and sketched proofs can be found in full in the full version.

2 Preliminaries

Words, languages, and relations. Let N denote the set of non-negative integers. Let %
and I' denote alphabets of elements called letters or symbols. A word resp. w-word over 3
is an empty or non-empty finite resp. infinite sequence of letters over 3. The empty word
is denoted by ¢, the length of a word by | - |. Usually, we denote finite words by u, v, w,
etc., and infinite words by «, 8,7, etc. Given an (in)finite word o = agay - - over X with
ap, a1, -+ € 3, let a(i) denote the letter a;, a(i: j) denote the infix a;a;41---a;, a(:4) the
prefix aga; - - - a;, and «(i:) the suffix a;a;,11--- for i < j € N. For two (in)finite words
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o, B3, let a A B denote their longest common prefix. Let ¥*, ¥, and X“ denote the set of
finite, non-empty finite, and infinite words over X, respectively. Let ¥°° denote ¥* U X“.
A language resp. w-language L is a subset of X* resp. X¢, its set of prefixes is denoted by
Prefs(L). A (binary) relation resp. w-relation R is a subset of ¥* x I'™* resp. % x I'“. An
w-relation is just called a relation when infiniteness is clear from the context. The domain
dom(R) of a (w)-relation R is the set {« | 38 (o, 8) € R}. Tt is total if dom(R) = X* resp.
Y¢. Likewise, we define img(R) the image of R, as the domain of its inverse. A relation R is
functional if for each u € dom(R) there is at most one v such that (u,v) € R. By default in
this paper, relations and functions are partial, i.e., are not necessarily total.

Automata. A parity automaton is a tuple A = (Q, X, qo, A, ¢), where Q is a finite set of
states, ¥ a finite alphabet, gy € @ an initial state, A C Q X ¥ x ) a transition relation, and
¢: @ — N is a function that maps states to priorities, also called colors. A parity automaton
is deterministic if its transition relation A is given as a transition function §. We denote by §*
the usual extension of § from letters to finite words. A run of A on a word w € ¥°° is a word
p € Q¥ such that (p(i),w(i), p(i +1)) € A for all 0 < i < |w|. A run on ¢ is a single state.
We say that p begins in p(0) and ends in p(Jw]|) if w is finite. We define Occ(p) as the set of
states that occur in p, Inf(p) as the set of states that occur infinitely often in p, and c(p) as
c(p(0))e(p(1))---. A run p is accepting if p € Q*, p(0) = go and max Inf(c(p)) is even. The
language recognized by A is the set L(A) = {« € X¢ | there is an accepting run p of A on a}.
A language L C ¢ is called regular if L is recognizable by a parity automaton.

One-way transducers. A transducer (INFT) is a tuple 7 = (Q, 3, T, qo, A, ¢), where Q is
finite state set, ¥ and I" are finite alphabets, gy € ) is an initial state, A C Q x ¥* x I'* x )
is a finite set of transitions, and c¢: @ — N is a parity function. It is input-deterministic
(1DFT) (also called sequential in the literature) if A is expressed as a function Q X ¥ —
™ x Q. A finite non-empty run p is a non-empty sequence of transitions of the form
(po, uo, vo, p1)(P1, U1, v1,P2) - - - (Pn—1,Un—1,Vn—1,Pn) € A*. The input (resp. output) of p is

a =g -Up_1 (resp. B =vg---v,_1). As shorthand, we write T : pg % Pn- An empty

run is denoted as 7T : p i p for all p € Q. Similarly, we define an infinite run. A run is
accepting if it is infinite, begins in the initial state and satisfies the parity condition. In this
paper, we also assume that for any accepting run p, its input and output are both infinite.
This can be syntactically ensured with the parity condition. The relation recognized by T
is R(T) = {(a, B) | there is an accepting run of 7 with input o and output 8}. Note that
with the former assumption, we have R(7) C ¥ x I'“. A relation is called rational if it is
recognizable by a transducer, we denote by RAT the class of rational relations. A sequential
function is a function whose graph is R(7) for an input-deterministic transducer 7.

Two-way transducers. Given X, let ¥ denote X W {F}, | is a new left-delimiter symbol.
An input-deterministic two-way transducer (2DFT) is a tuple T = (Q, %, T, qo, J, ¢), where
Q) is a finite state set, X and I' are finite alphabets, qo € Q is an initial state, §: Q X
¥ — xI'™ x {1,—1} x Q is a transition function, and ¢: @ — N is a function that maps
states to colors. A two-way transducer has a two-way read-only input tape and a one-
way write-only output tape. Given an input sequence a € ¥¢, let a(—1) = +, the input
tape holds F a. We denote a transition 6(p,a) = (v,d,q) as a tuple (p,a,7,d,q), and A
denotes the tuple representation of §. A run of 7 on o € ¥ is a sequence of transitions
(qo,a(io),%,do,ql)(ql,a(il),”yl,dl,qQ) <.« € A% such that ig = 0, and lh+1 = g + dy, for
all k € N. The input of p is a and the output of p is 8 = ~oy1---. We define ¢(p) as
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the sequence of colors ¢(qo)c(q1) -« -, p is accepting if max Inf(c(p)) is even. The functional
w-relation recognized by the deterministic-two way transducer is defined as R(T) = {(«a, ) |
there is an accepting run of 7 with input « and output 5}.

Games. A game arena is a tuple G = (Vy, V1,v9, A, E), where V = V& V] is a set of
vertices, Vj belongs to Eve and V; to Adam, v is an initial vertex, A is a finite set of actions,
and E C V x AxV is a set of labeled edges such that (v,a,v’) € E and (v,a,v”) € E implies
that v =v” for all v € V and a € A. We assume that the arena is deadlock-free. We use
letters on edges as it is more convenient to have them at hand for the proofs, it is however not
necessary. A play in G is an infinite sequence vgagviay - - - such that (v;,a;,v,11) € E for all
1 € N. Note that a play is uniquely determined by its action sequence. A game is of the form
G = (G, Win), where G is a game arena and Win C V¥ is a winning condition. Eve wins a
play a = vgagviay - - - if vgvy - - - € Win, otherwise Adam wins. For ease of presentation, we
also write v € Win.

A strategy for Eve resp. Adam is a function (VA)*Vy — A resp. (VA)*V; — A such
that o(zv) = a with z € (VA)*, v € V, and a € A implies that there is v' € V such that
(v,a,v") € E. A play vgagvia -+ is consistent with a strategy o for Eve resp. Adam if
o(vgag -+ v;) = a; for all i € N with v; € Vj resp. v; € V4. A strategy o for Eve is a winning
strategy if a € Win for all plays « consistent with o. A strategy automaton for Eve is a tuple
S =(M,V,mg,d, ), where M is a finite set of (memory) states, V is the alphabet, my is an
initial state, : M x V' — M is the memory update function, and p: M x Vy — A is the next
action function such that for all v € Vo and m € M, there is v/ € V' with (v, u(m,v),v’) € E.

Problem statement. In this section, we introduce the problem we want to solve. Let 3, T°
be two finite alphabets. Given a relation R C ¢ x I' and a (partial) function f : X¢ — I'¥|
f is said to uniformize R if dom(f) = dom(R) and (a, f(«)) € R for all & € dom(R). We
also say that R is uniformizable by f or that f is a uniformizer of R. We are interested in
computable uniformizers, which we now introduce.

» Definition 2 ([25] computable functions). A function f: X — T'¥ is called computable if
there exists a deterministic multi-tape machine M that computes f in the following sense,
M has a read-only one-way input tape, a two-way working tape, and a write-only one-way
output tape. All tapes are infinite to the right, finite to the left. For any finite word w € X*,
let M (w) denote the output® of M on w. The function f is said to be computable if for all
a € dom(f) and i € N there exists j € N such that f(a)(:1) is prefix of M (a(:7)).

Note that in the above definition, checking whether the infinite input belongs to the
domain is not a requirement and should not be, because in general, it is impossible to do it
reading only a finite prefix of the input. That is why in this definition, we assume that the
input belongs to the domain of the function. It is a reasonable assumption. For instance, the
inputs may have been produced by another program (e.g., a transducer) for which one has
guarantees that they belong to some well-behaved (e.g., regular) language.

» Example 3. To begin with, consider the function fi: {a,b,c}* — {b,c}* defined by
fi(a"ba®) = b and fi(a"ca®”) = ¢ for all n € N>q. It is computable by a TM which
on inputs of the form a"za® for x € {b,c}, outputs nothing up to reading z, and then,
depending on z, either outputs ¢ or b whenever it reads an a in the remaining suffix a“.

3 The finite word written on the output tape the first time M reaches the |w|th cell of the input tape
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Consider the function f3 : {a,b}* — {a,b}* defined by fa(a) = a* if a contains infinitely
many a and f(a) = b otherwise for all « € {a,b}*. It is rational but not computable,
because to determine even the first output letter, an infinite lookahead is needed.

Let S be a class of relations. The S-synthesis problem asks, given a relation S € §
(finitely represented), whether there exists a computable function which uniformizes S. If
such a function exists, then the procedure must return a TM computing it. Our first
result, proved using an easy adaptation of the proof of [7, Theorem 17|, showing that it is
undecidable whether a given rational relation of finite words has a sequential uniformizer, is
an undecidability result.

» Proposition 4. The RAT -synthesis problem is undecidable, even if restricted to the subclass
of rational relations with total domain.

Proof sketch. We sketch a reduction from Post’s correspondence problem. Let uq,...,u,
and vy,...,v, be a PCP instance. We construct the w-rational relation R that contains
pairs (a, ) of the form « = iy---ixa’ with iy---i; € {1,...,n}* and a € {a,b}* and
B = uy, - -u;a if o contains infinitely many a and 8 # v, ---v;, 8" otherwise. If the
PCP has no solution, then the function f: iy ---iga’ — wu;, -+ - u;, a® uniformizes R, because
Uiy - - Ui, 7 V4, - -V, . The function f is clearly computable. If the PCP has a solution, no
computable function uniformizes R. If the integer sequence i; - - - i is the solution, then
Uy -+ Ui, = V4, -+ V4, . Intuitively, for an input sequence starting with the solution, no prefix
of the input sequence allows to determine whether the output must begin with u;, - - - u;, or
is not allowed to begin with u;, - - - u;, .

The relation R can be made complete by also allowing all “invalid” inputs together with
any output, i.e., by adding all pairs (o, 8) € {1,...,n,a,b}¥ x {1,...,n,a,b}* where the

input sequence « is not of the form iy - -iga’ with i1 ---i € {1,...,n}* and « € {a,b}¥,
and any output sequence 5. Any Turing machine that computes f can easily be adapted to
verify whether the input valid. <

Next, we give a semi-decision procedure for solving the RAT-synthesis problem which is
sound but not complete. In Section 4, we introduce a sufficient condition for completeness
which yields a (sound and complete) decision procedure for large classes of rational relations.

3 Unbounded Delay Game

In this section, given a rational relation (as a transducer), we show how to construct a
finite-state w-regular two-player game called (unbounded) delay game. We prove that if

Eve wins this game then there exists a computable function which uniformizes the relation.

Moreover, this function is computable by an input-deterministic two-way transducer. We
analyze the complexity of solving the game, which turns out to be in EXPTIME. Solving these
games yields an incomplete, but sound, decision procedure for the RAT-synthesis problem.
In the game, Adam provides inputs and Eve must produce outputs such that combination
of inputs and outputs is in the relation. However, as seen in Example 1, Eve might need
to wait arbitrarily long before she can safely produce output. Hence, as the game is finite,
it can not store arbitrary long input words, and Eve’s actions cannot produce arbitrarily
long words neither. Instead, we finitely abstract input and output words using a notion we
call profiles. Informally, a profile of an input word stores the effects of the word (together
with some output word) on the states of the transducer (that specifies the relation) as well
as the maximal priority seen along the induced state transformation. Such profiles contain
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sufficient information to express a winning condition which makes sure that given the word of
input symbols provided by Adam, if Eve would output concrete output words instead of their
abstraction, she would produce infinitely often non-empty output words whose concatenation,
together with the input word, belongs to the relation.

State transformation profiles. Let R C > x I'“ be a rational relation given by a trans-
ducer T = (Qr,%,T,q],Ar,c7), and Cr = img(cr) its set of used priorities. Let
D = (Qp,%,q5,0p,cp) be a deterministic parity automaton that recognizes dom(R), and
Cp = img(cp) its set of used priorities; D can always be constructed from T by projecting
away its outputs and by determinizing the resulting automaton.

Given u € X*, its profile P, are all the possible state transformations it induces
for any output. Formally, P, € Q7 X Q7 x Cy is defined as {(p,q,c) | thereisv €

I'* and there is a run p of the form 7: p AN ¢ with max Occ(p) = ¢}. Profiles can be mul-
tiplied as P1 ® P» = {(p, r, max{m,n}) | 3¢: (p,q,m) € P1,(q,r,n) € Py}. Given uj,us € X*,
it is easy to verify that P, ., = P, ® P,,, and P- is neutral for ®.

Finite-state unbounded delay game. We now present a two-player w-regular game Gy =
(G, Win) such that if Eve has a winning strategy, then R has a computable uniformizer. In this
game, Adam’s actions are to provide input letters, letter-by-letter. Eve’s goal is to construct
a sequence of state transformations (qo, q1,m1)(q1, g2, m2) ... such that if the infinite input
«a € 3¢ provided by Adam is in dom(R), then (7) the maximal priority seen infinitely often
in (m;); is even and (i) o = uguy - - - for some u; € ¥* such that (¢;, ¢i+1, mi+1) € P, for
all i > 0. As a consequence, all these finite runs can be concatenated to form an accepting
run on «/vgvs ..., entailing (o, vpvy ...) € R. One can then show that if Eve has a strategy
to pick the state transformations while ensuring the latter property, then this strategy can be
turned into a computable function, and conversely. Picking a state transformation is what we
call a producing action for Eve. Since a state transformation picked by Eve may correspond
to an arbitrarily long word u;, she also has an action skip which allows her to wait before
making such a producing action. Now, the difficulty for Eve is to decide when she makes
producing actions, in other words, how to decompose the input «, only based on prefixes of
a. To that end, before picking a state transformation, she may need to gather lookahead
information from Adam. Consequently, the vertices of the game manipulates two consecutive
profiles P; and P,, with the invariant that P; is the profile of u; while P is the profile of
Uu;+1, when the input played so far by Adam is wug...u;41. When Eve knows enough, she
picks a state transformation (g;, g;+1,m;) in Py, then P; becomes P, and P; is reset to P..
The inputs of Adam up to the next producing action of Eve form the word u; s, and so on.
The vertices of the game also store information to decide whether the input belongs to the
domain of R (states of D), the parities m;, as well as the states qo,q1,.... Formally, the
game graph G = (V, E) is composed of vertices of the form (q,c, Py, Py, 7) x {V,3}, where

q € Qr, State reached on the combination of input and output sequence.

c€{=1}UCy, Priorities of the state transformations, -1 is used to indicate that no

state transformation was chosen (skip action below).

Py, Py, Profiles obtained from the given lookahead of the input word.

r € Qp. State reached on the given lookahead of the input word.
From a vertex of the form (q, c, P, P, V), Adam has the following actions:

% (q, —1,P1, P, ® P,,dp(r, a),ﬂ), for all a € X.
Adam provides the next lookahead letter and Py is updated accordingly.
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From a vertex of the form (q7 c, P, Py, 3), Eve has the following actions:

ﬂ (Q7_1aP17P27T7V)7 and

FEve makes a non-producing action, i.e., she waits for further lookahead on the input.
(a,q',m)

(q’,m,P27PE,r, V), where (¢q,¢',m) € P.
Eve makes a producing action: a state transformation from the first lookahead profile
is chosen, the state transformation is applied, and the first profile is consumed.
The initial vertex of the game is (q(;r, -1, P, P, qOD,V).

Let us now define Win C V¥. The condition makes sure that if the input sequence
provided by Adam is in the domain of R, then the sequence of state transformations can
be used to build on accepting run of 7 on that input. Win C V¢ is the set of all plays v
satisfying the property

max Inf(colp (7)) is even — max Inf(coly (7)) is even,

where colp(y) = ep(7°(7)), colr(y) = 72(7), and 7¢(7) is the projection of v onto the ith
component of each vertex. It is not difficult to see that Win is w-regular, e.g., one can design
a parity automaton for it.

We explain the intuition behind Win. Our goal is to extract a computable function that
uniformizes the relation from a winning strategy. Intuitively, there is a computable function
that uniformizes R, if every input word a € dom(R) can be read letter-by-letter, and from
time to time, a segment of output letters is produced, continuously building an infinite
output word g such that («, 8) € R. We relate this to Win. Recall that R is defined by T,
and dom(R) by D. Given a play v, there is a unique input word « € ¢ that corresponds
to 7. Since we are looking to build a computable function f with dom(f) = dom(R), we
care whether a € dom(R). The w-word colp(7) is equal to ¢(pp), where pp is the run of
D on «. If max Inf(colp(7)) is even, a € L(D), i.e., « € dom(R). An output word g € I'*®
that corresponds to v is only indirectly defined, instead the play defines a (possibly finite)

sequence of state transformations that an output word 8 should induce together with a.

How to extract a concrete 5 from -« is formally defined in the proof of Theorem 5. The
w-word colr(7y) contains the relevant information to determine whether («, 8) € R(T), i.e.,
(o, B) € R. In particular, if 3 is finite, max Infcoly () is —1, that means that only finitely

many producing actions have been taken. If max Infcoly () is even, we have that («, 3) € R.

Thus, Win expresses that if & € L(D), then there is some 8 € T'¥, which can be built
continuously while reading « such that («, 8) € R.

From winning strategies to uniformizers. We are ready to state our first positive result: If
Eve has a winning strategy in the unbounded delay game G, then R(T) is uniformizable
by a computable function. In fact, we show a more precise result, namely, that if Eve
has a winning strategy, then the relation is uniformizable by a function recognized by a
deterministic two-way parity transducer. Additionally, if the domain of the relation is closed?,
then a deterministic one-way transducer suffices. Just as (one-way) transducers extend parity
automata with outputs on their transitions, input-deterministic two-way transducers extend
deterministic two-way parity automata with outputs. The reading tape is two-way, but the
output tape is one-way. The class of functions recognizable by 2DFTs is smaller than the
class of computable functions and enjoys many good algorithmic properties, e.g., decidability

4 Recall Footnote 2.
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Algorithm 1 Algorithm computing continuous function f that uniformizes R. The
algorithm is described in the proof sketch of Theorem 5.

Input: « € ¥, G game arena, S = (M, V,myg,d, u) strategy automaton
Output: 5 € '™, if a € dom(R), then (o, 8) € R

1m:=mgp; // current state of the strategy automaton
2 U =€ // first input block
3 Uy =€ // second input block
4 Sprey = So, initial vertex of G ; // previous vertex in the game
5 Scur = S0 ; // current vertex in the game
6 a:=a0); // current letter of «
7 while true do
8 Ug = U2.4 ;
9 Seur =8 1if Seur = s € E ; // update game vertex according to Adam’s
action
10 m:=0(m,Scur) ; // strategy automaton is updated with Adam’s action
11 Sprev = Scur ;
. (M8 cur) .
12 Seur 1= 8 if Scur seFE; // strategy automaton yields Eve’s
action, the updated game vertex is of the form (-, -, Py, Puy,vy-)
13 m:=06(m,Scur) ; // strategy automaton is updated with Eve’s action
14 if e := (Sprev, (D,4,€), Scur) s a producing edge then
15 choose output block v; € I'* such that T: p ul—/vl> q with max prio ¢ ;
; // this choice can be made canonical by computing for instance
the smallest word in lexicographic order satisfying this
property
16 Uy == ug ;
17 Ug =€
18 print(vy) ; // produce output block
19 end
20 a := a.nextLetter() ; // read next input letter
21 end

of the equivalence problem [3]. Note that any function recognizable by a 2DFT is computable,
in the sense that it suffices to “execute” the 2DFT to get the output. So, from now on, we
may freely say that a function is computable by a 2DFT.

» Theorem 5. Let R be defined by a transducer T. If Eve has a winning strategy in Gr,
then R is uniformizable by a function computable by a 2DFT.

Proof sketch. If Eve has a winning strategy in G7, then she also has a finite-state winning
strategy because the winning condition is w-regular. From such a strategy we can build an
algorithm (a Turing machine), see Algorithm 1, that computes a function f that uniformizes
R. The high-level idea of the algorithm is to simulate the strategy, which abstracts inputs
and outputs by profiles, and in parallel store concrete inputs and outputs corresponding to
those profiles. This is possible as Turing machines have infinite storage capacity. In the
algorithm, an input sequence « is read letter-by-letter and the corresponding play in G is
simulated where Adam plays according to a and Eve according to her winning strategy. In
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the play, a lookahead u; € ¥* gained on Adam’s input is stored as its profile P,,. In the
algorithm, the lookahead w; is stored concretely in addition to its profile P,,. When Eve
takes an action she picks a state transformation (that should occur in the transducer) from
P,,_,, the profile of the previous lookahead sequence u;_1, also stored by the algorithm. The
algorithm picks some v;_; € T'* such that u;_;/v;—; induces the state transformation picked

by Eve. A new non-empty lookahead u;4+1 € ¥* is built, stored as its profile P,,,, in the play

i+1
and as the concrete sequence ;41 in the algorithm until Eve picks a state transformation
from P,,, and so on. The lookaheads that are built are non-empty (except for the first one),
and since Eve plays according to her winning strategy, the sequence of state transformations
she picked can be used to build an accepting run of 7 on (uguq ...,vov; ...), proving that
the latter pair belongs to R.

Then we show that f can be actually recognized by a 2DFT. The main idea is to use
two-wayness to encode finite lookahead over the input: the reading head goes forward to
gather input information, and then must return to the initial place where the lookahead was
needed to transform the input letter. The difficulty is for the 2DF'T to return to the correct
position, even though the lookahead can be arbitrarily long. In order to find the correct
positions, we make use of a finite-state strategy automaton for Eve’s winning strategy in the
following sense. A (left-to-right) run of the strategy automaton on the input word yields a
unique segmentation of the input, such that segments i and i 4+ 1 contain enough information
to determine the output for segment i. The idea is to construct a 2DFT that simulates the
strategy automaton in order to find the borders of the segments. If the 2DFT goes right,
simulating a computation step of the deterministic strategy automaton is easy. Recovering
the previous step of the strategy automaton when the 2DFT goes left is non-trivial, it is
possible to compute this information using the Hopcroft-Ullman construction presented
in [18]. We show that having the knowledge of the profiles of segments ¢ and i+ 1 is enough to
deterministically produce a matching output for segment i on-the-fly going from left-to-right
over segment ¢ again. <

We make some remarks about the form of the game, in particular the use of two lookahead
profiles, instead of one. Assume we would have only one profile abstracting the lookahead

over Adam inputs. For simplicity, assume the specification is automatic (i.e., letter-to-letter).

Suppose, so far, Adam and Eve have alternated between providing an input letter and
producing an output letter (in the finite-state game, Eve producing letter(s) corresponds to
the abstract action of picking state transformations), but now, she needs to wait for more
inputs before she can safely output something new. Suppose that Adam has provided some
more input, say the word u, and Eve now has enough information about the input to be able
to produce something new. Abstractly, it means that in the game, Adam has given the word
u but only its profile P is stored. Eve might not be able to produce an output of the same
length as u (for example, if producing the ith output letter depends on the i + kth input

letter). So, she cannot consume the whole profile P (i.e., pick a state transformation in P).

What she has to do, is to decompose the profile P into two profiles such that P = P, ® P
and pick a state transformation in P;, and then continue the game with profile P> (and keep
on updating it until she can again produce something). The problem is, firstly, that there is
no unique way of decomposing P as P; ® P», and secondly, P; might not correspond to any
prefix of u. That is why it is needed to have explicitly the decomposition at hand in the
game construction.

» Lemma 6. Deciding whether Eve has a winning strategy in G is in EXPTIME.
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Proof sketch. Two-player w-regular games are decidable (see, e.g., [16]). The claimed upper
bound is achieved by representing the winning condition as a deterministic parity automaton,
carefully analyzing its size, and then solving a parity game. |

» Remark 7. The converse of Theorem 5 is not true.

Clearly, if the converse was true, the RAT-synthesis problem would be decidable, which
is a contradiction to Proposition 4. We also give a small example that illustrates that
uniformizability does not imply the existence of a winning strategy.

» Example 8. Consider the identity function f: {a,b}* — {a,b}* such that all inputs with
either finitely many a or b are in the domain. A (badly designed) letter-to-letter transducer
T that recognizes f has five states S, A, B, A’, B/, where S is the starting state, A, B (resp.
A’, B') are used to recognize finitely many b (resp. a), and from S, the first input/output
letter non-deterministically either enters A or A’. In a play in G7, at some point, Eve must
make her first output choice, i.e., she starts to build a run of 7. This choice fixes whether
the run is restricted to A, B or A’, B’. No matter Eve’s choice, Adam can respond with an
infinite sequence of either only a (for A, B) or b (for A’, B'), making it impossible to build an
accepting run. Thus, Eve has no winning strategy, but clearly the function f is computable.

While in the above example, the point of failure is clearly the bad presentation of the
specification, this is not the case in general. Recall the proof sketch of Proposition 4,
where we provide a reduction from Post’s correspondence problem. A non-deterministic
transducer constructed from a given PCP instance uy,v1, ..., Un, v, can guess whether the
input word contains infinitely many a, and accordingly either checks that the output begins
with w;, ---u;, for input sequences beginning with indices 4 - - - ig, or checks that it does
not begin with a prefix equal to v;, ---v;,. As detailed in the proof sketch, if the PCP
instance has no solution, there is a computable uniformization, however, using the same
argumentation as in the above example, such a transducer would make it impossible to have
a winning strategy. In order to have a winning strategy, the transducer must be changed
such that it checks at the same time whether the output starts with u;, ---u;, and does
not start with something equal to v;, - - - v;, for input sequences beginning with ¢; - - - i. In
general, depending on the PCP instance, it is not possible to make both checks in parallel.

We state a lemma about bounded delay.

» Lemma 9. Let R be defined by a transducer T . If there exists £ > 0, such that Eve has a
winning strategy in Gr with at most { consecutive skip-moves, then R is uniformizable by a
function computable by a 1DFT.

Intuitively, such a strategy yields a function computable by a 1DFT, because the needed
lookahead (as it is bounded) can be stored in the state space.

4 A Sufficient Condition for Completeness

As we have seen in the previous section,

» Remark 10. Theorem 5 yields a semi-decision procedure for solving the RAT-synthesis
problem (it is sound but not complete).

In this section, we show that the procedure is complete for two known and expressive
classes of rational relations, namely the class of automatic relations (AUT), which are for
example used as specifications in Church synthesis, as well as the class of deterministic
rational relations (DRAT) [24] (to be formally defined below), see Corollary 13.
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To arrive at these results, we define a structural restriction on transducers that turns out
to be a sufficient condition for completeness. Let T be a transducer. An input (resp. output)
state is a state p from which there exists an outgoing transition (p,u,v,q) such that u # e
(resp. v # £). The set of input (resp. output) states is called Q; (resp. @Q,). A transducer
T has property P if for all words u € ¥*, all v1,vs € I'* such that v; is a prefix of vy the
following holds:

ifT:p u/i> q.T:p u/i) r, and ¢, r are input states, then ¢ = r.

This property implies that, given o € ¥, 8 € I'“ such that there is a run of 7 with input «
and output S, for each prefix u € 3* of « there exists a unique prefix v € I'* of 8 that has to
be produced while reading u before the remainder o’ (let & = ua’) can be read. Furthermore,

the target state of 7 : qo u—/v> is unique and this state is exited only when further input
(from ') has to be read. In simpler terms, given a prefix of an input word, it is uniquely
determined how long the prefix of a given output word has to be so that further input can
be processed and the reached state is unique. This implies that input prefixes together with
(long enough) output prefixes are sufficient to determine the beginning of an accepting run if
such a run exists. This allows us to show the following.

» Theorem 11. Let R be defined by a transducer T with property P. If R is uniformizable
by a computable function, then Eve has a winning strategy in Gr.

Proof sketch. In fact, we explain how to construct a winning strategy from a continuous
(a computable function is always continuous, see Section 5) uniformizer f of R. Given « €
dom(R) and f(a), we show that it is possible to decompose the input « into ugu; - - - and the

up /vo u1/v1

output f(«) into vovy - - - such that there exists an accepting run 7: gg ——— ¢ ——— g2+ -
where each ¢; is an input state for ¢ > 0. Moreover, this decomposition and run can be
determined in a unique way and on-the-fly, in the sense that a factor u;/v; only depends on

the factors ug/vo,. . ., u;—1/v;—1. This makes it possible for Eve to pick a corresponding state
transformation sequence (qo, q1,¢0)(q1,q2,¢1) - - - which is only dependent on the so far seen
actions of Adam spelling uguy - - -. The main idea to determine the u; is to look at the indices

j for which the longest common prefix of the sets S; = {f(a(:j)B) | a(:j)f € dom(R)}
strictly increases. Given u;, the output vov; - - - v; is any common prefix of the sets S;, such

u; [v;

that a run 7: ¢; — is defined and its target is an input state. The fact that 7 has
property P guarantees that each of these runs has the same target, thus, the next state
transformation (g;, gi+1, ¢;) is uniquely determined. <

We turn to the setting of closed domains.

» Lemma 12. Let R with dom(R) closed be defined by a transducer T with property P. If
R is uniformizable by a computable function, then there exists a computable £ > 0 such that
FEve has a winning strategy in G5 with at most { consecutive skip-moves.

Proof sketch. Intuitively, the reason why bounded lookahead suffices in the setting of closed
domains is that (basically at each point of time during a play) Adam’s moves describe a
series of longer and longer finite input words that “converge” to a valid infinite input word
from the domain. Hence, Eve can not wait arbitrarily long to make producing moves, as
such a play describes a valid infinite input sequence and a finite output sequence. |

We formally introduce AUT and DRAT. A relation is deterministic rational if it is
recognized by a transducer where @); and @, partition its state space, and its transition
relation A is a function (Q; X X x {e} = Q) U (Q, x {e} xT' = Q). It is automatic if
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additionally A strictly alternates between @); and @, states. It is easy to see that every
DRAT-transducer (and a fortiori every AUT-transducer) satisfies the property P. In general,
given any transducer 7, we do not know if it is decidable whether 7 has property P.

Main result. We now state our main result: Asking for the existence of a uniformization
which is computable by a Turing machine or computable by an input-deterministic two-way
transducer (2DFT), are equivalent questions, as long as specifications are DRAT relations.
Moreover, these questions are decidable.

» Corollary 13. Let R be defined by a DRAT -transducer T. The following are equivalent:
1. R is uniformizable by a computable function.

2. R is uniformizable by a function computable by a 2DFT.

3. FEve has a winning strategy in Gr.

Moreover, if dom(R) is closed, then it is equivalent to R being uniformizable by a function
computable by a 1DFT.

Note that the above result also holds for the slightly more general case of relations given
by transducers with property P. We highlight two facts regarding closed domains.

» Remark 14. The set of infinite words over a finite alphabet is closed, i.e., every total
domain is closed. Furthermore, it is decidable whether a domain (e.g., given by a Biichi
automaton) is closed. It is a well-known fact that the topological closure of a Biichi language
is a Biichi language (one can trim the automaton and declare all states to be accepting) and
therefore one can check closedness by checking equivalency with its closure.

» Theorem 15. The AUT- and DRAT -synthesis problems are EXPTIME-complete.

Proof. Membership in EXPTIME directly follows from Lemma 6 and Corollary 13. In [20] it
was shown that this problem is ExPTIME-hard in the particular case of automatic relations
with total domain, so the lower bound applies to our setting. |

5 Discussion

Continuous functions. We have shown that checking the existence of a computable function
uniformizing a relation given by transducer with property P is decidable (a consequence of
Theorems 5 and 11 and Lemma 6). The proofs of Theorems 5 and 11 use another notion,
which is easier to manipulate mathematically than computability, that of continuity. A
function is called continuous if

Va € dom(f) Vi e N Jj e NVS € dom(f): [aAS| =7 —|f(a)Af(B)] > (1)

» Example 16. Consider the function f; of Example 3. f; is continuous, because the ith
output symbol only depends on the max(i,n + 1) first input symbols. Consider the function
f2 of Example 3. The function f5 is clearly rational, but it is not continuous. We verify that
f2 is not continuous, let a;,, denote a™b*, we have that |a, Aa¥| = n and | fa(an) A f2(a®)| =0
for all n € N. Thus, f, is not continuous.

The notions of computability and continuity are closely related. If a function f: ¥¢ — I'¥
is computable, it is also continuous. This is not difficult to see when comparing the definitions
of computable and continuous functions. The converse does not hold because the continuity
definition does not have any computability requirements (see [12] for a counter-example).
However, regarding synthesis, the two notions coincide:
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» Theorem 17. Let R be defined by T with property P. The following are equivalent:
1. R is uniformizable by a continuous function.
2. R is uniformizable by a computable function.

Proof. Indeed, any computable uniformizer is continuous. Theorem 11 states that if there

exists a computable uniformizer, then there exists a winning strategy in the delay game.

However, in the proof of this theorem, we show a stronger statement: If there exists a
continuous uniformizer, then there exists a winning strategy in the delay game. Such a
strategy can be assumed to have finite-memory (as finite-memory suffices to win games with
w-regular conditions). We have shown in the proof (sketch) of Theorem 5 how to translate a
finite-state winning strategy into an algorithm (a Turing machine) that computes a function f
which uniformizes the relation. |

Conclusion and future work. We investigated the synthesis of algorithms (aka. Turing
machine computable functions) from rational specifications. While undecidable in general,
we have proven decidability for DRAT (and a fortiori AUT). Furthermore, we have shown
that the whole computation power of Turing machines is not needed, two-way transducers
are sufficient (and necessary). As TMs reading heads are read-only left-to-right, converting a
2DFT into a TM requires that the TM stores longer and longer prefixes of the input in the

working-tape for later access. This is the only use the TM needs to make of the working tape.

This is a naive translation, and sometimes the working tape can be flushed (some prefixes
of the input may possibly not be needed anymore). More generally, it is an interesting
research direction to fine-tune the class of functions targeted by synthesis with respect to
some constraints on the memory, including quantitative constraints.

Related to the latter research direction is the following open question: is the synthesis
problem of functions computable by input-deterministic one-way (aka. sequential) transducers
from deterministic rational relations decidable? It is already open for automatic relations. We
have shown that if a rational relation with closed domain is uniformizable by a computable
function, then also by a sequential function. However, closedness is not a sufficient condition:
e.g., the function which maps any a™zc* to zc¥ for x € {#,$}, is sequential; a sequential
transducer just has to erase the a™ part, but its domain is not closed. This problem
is interesting because sequential transducers only require bounded memory to compute a
function (in contrast to two-way transducers that require access to unboundedly large prefixes
of the input).
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