
Confluence of Conditional Rewriting in Logic Form
Raúl Gutiérrez # Ñ

Universidad Politécnica de Madrid, Spain

Salvador Lucas #Ñ

DSIC & VRAIN, Universitat Politècnica de València, Spain

Miguel Vítores # Ñ

VRAIN, Universitat Politècnica de València, Spain

Abstract
We characterize conditional rewriting as satisfiability in a Herbrand-like model of terms where
variables are also included as fresh constant symbols extending the original signature. Confluence of
conditional rewriting and joinability of conditional critical pairs is characterized similarly. Joinability
of critical pairs is then translated into combinations of (in)feasibility problems which can be efficiently
handled by a number of automatic tools. This permits a more efficient use of standard results for
proving confluence of conditional term rewriting systems, most of them relying on auxiliary proofs
of joinability of conditional critical pairs, perhaps with additional syntactical and (operational)
termination requirements on the system. Our approach has been implemented in a new system:
CONFident. Its ability to (dis)prove confluence of conditional term rewriting systems is witnessed by
means of some benchmarks comparing our tool with existing tools for similar purposes.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Logic and verification; Theory of computation → Equational logic and rewriting

Keywords and phrases Confluence, Program analysis, Rewriting-based systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.44

Supplementary Material Software (Online Tool): http://zenon.dsic.upv.es/confident/

Funding Partially supported by grant RTI2018-094403-B-C32 funded by MCIN/AEI/10.13039
/501100011033 and by “ERDF A way of making Europe”, and PROMETEO/2019/098.

1 Introduction

Confluence is a property of (abstract) reduction relations → guaranteeing that, for all abstract
objects s (often called expressions without loss of generality) which can be reduced into
two different reducts t and t′, respectively (written s →∗ t and s →∗ t′), there is another
expression u to which both t and t′ are reducible, i.e., both t →∗ u and t′ →∗ u hold. A
weaker property is local confluence, where only a single reduction step is allowed on s, i.e.,
s → t and s → t′. As usual, they are defined by the commmutation of the diagrams:

t

∗
��

s

??

��

u

t′

∗
??

t

∗
��

s

∗ ??

∗ ��

u

t′

∗
??

Local confluence confluence

These two properties of abstract reduction relations are connected by the well-known New-
man’s Lemma: if → is terminating (i.e., there is no infinite reduction sequence t1 → t2 → · · ·),
then local confluence and confluence coincide (see, e.g., [23, Lemma 2.2.5]). Now, the fol-
lowing issues naturally arise: (i) How to define → from the specification of a program of a

© Raúl Gutiérrez, Salvador Lucas, and Miguel Vítores;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 44; pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raguti@upv.es
https://scholar.google.com/citations?user=tJPADVkAAAAJ&hl=en
https://orcid.org/0000-0002-3984-2868
mailto:slucas@dsic.upv.es
http://slucas.webs.upv.es
https://orcid.org/0000-0001-9923-2108
mailto:mvitvic@dsic.upv.es
http://www.upv.es/ficha-personal/mvitvic
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.44
http://zenon.dsic.upv.es/confident/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Confluence of Conditional Rewriting in Logic Form

(rule-based) formalism (e.g., (conditional) term rewriting [3]) or programming language? (ii)
How to prove/disprove (local) confluence of such a reduction relation? (iii) How to automate
the proofs? In this paper we address these problems.

Regarding (i), we use a logical approach to define reduction relations. Given a specification
R, we obtain an inference system I(R) out from the generic description of the operational
semantics of the underlying formalism or language. Then, → and →∗ are defined by
satisfiability of atoms s → t and s →∗ t in a canonical model MR which is the Herbrand
model (in an “extended” Herbrand universe where variables are treated as constants) of the
atoms that can be proved using I(R). This general approach applies to many computational
systems and programming languages, in particular to conditional term rewriting systems
(CTRS, see, e.g., [23, Chapter 7]), and Maude [5]. In Section 3, we develop this approach
with a particular focus on CTRSs (to keep things simpler). Most ideas, though, can be easily
generalized. Regarding (ii), we represent confluence properties above in logic form, e.g.,

φWCR (∀x)(∀y)(∀z)(∃u) x → y ∧ x → z ⇒ y →∗ u ∧ z →∗ u Local confluence
φCR (∀x)(∀y)(∀z)(∃u) x →∗ y ∧ x →∗ z ⇒ y →∗ u ∧ z →∗ u Confluence

In Section 4, we show that (local) confluence is characterized as satisfiability in MR, i.e.,
R is (locally) confluent iff MR |= φCR (resp. MR |= φWCR) holds. Regarding (iii), in
Section 6 we show how to translate confluence problems into combinations of (in)feasibility
problems [11]. In this setting, automated proofs are possible by using several techniques
and tools developed so far, see [21] for a summary of techniques and tools in this respect.
Section 7 shows how these techniques are used to prove and disprove confluence of CTRSs.
We have implemented our results as part of the new tool CONFident, which can be found
here:

http://zenon.dsic.upv.es/confident/

Section 8 provides some details of its implementation and use. The good results of the
aforementioned techniques are witnessed by our participation in the 2021 edition of the
Confluence Competition (CoCo 2021) on which we report at the end of the section. Section 9
discusses some related work. Section 10 concludes. Proofs of technical results are given in an
appendix.

2 Preliminaries

Given a binary relation R ⊆ A × A on a set A, we often write a R b instead of (a, b) ∈ R. The
transitive closure of R is denoted by R+, and its reflexive and transitive closure by R∗. An
element a ∈ A is irreducible (or an R-normal form), if there exists no b such that a R b. Given
a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · , then a is R-terminating
(or well-founded); also, R is said terminating if a is R-terminating for all a ∈ A. We say that
R is (locally) confluent if, for every a, b, c ∈ A, whenever a R∗b and a R∗c (resp. a R b and
a R c), there exists d ∈ A such that b R∗d and c R∗d.

We use the standard notations in term rewriting (see, e.g., [23]). In this paper, X denotes
a countable set of variables and F denotes a signature, i.e., a set of function symbols {f, g, . . .}
(disjoint from X), each with a fixed arity given by a mapping ar : F → N. The set of
terms built from F and X is T (F , X). The set of ground terms (i.e., terms without variable
occurrences) is denoted T (F). The set of variables occurring in t is Var(t). By abuse of
notation, we use Var also with sequences of terms or other expressions to denote the set of
variables occurring in them. Terms are viewed as labeled trees in the usual way. Positions

http://zenon.dsic.upv.es/confident/

R. Gutiérrez, S. Lucas, and M. Vítores 44:3

p, q, . . . are represented by chains of positive natural numbers used to address subterms t|p
of t. The set of positions of a term t is Pos(t). A substitution is a mapping from variables
into terms which is homomorphically extended to a mapping from terms to terms.

A conditional rule (with label α) is written α : ℓ → r ⇐ C, where ℓ ∈ T (F , X) − X
and r ∈ T (F , X) are called the left- and right-hand sides of the rule, respectively, and the
conditional part C is a sequence s1 ≈ t1, · · · , sn ≈ tn with s1, t1, . . . , sn, tn ∈ T (F , X) for
some n ≥ 0. The case n = 0 corresponds to an empty conditional part. A Conditional Term
Rerwiting System (CTRS) R is a set of conditional rules; if all rules ℓ → r ⇐ C in R have
an empty conditional part and Var(r) ⊆ Var(ℓ) holds, then R is called a Term Rewriting
System (TRS).

3 Term Rewriting as Satisfiability

In term rewriting variables occurring in terms ti in reduction sequences t1 → t2 → · · · → are
treated as constants in the sense that they are not instantiated in any way. This is in contrast
with variables occurring in rules of TRSs which are instantiated to implement reduction steps
by means of matching substitutions. In the following we provide a formal presentation of
this fact which permits the definition of a canonical model MR which captures the reduction
of terms with variables, in contrast to the usual (ground) models developed elsewhere (e.g.,
[6]) which are better suited to capture ground rewriting, i.e., rewriting of ground terms.

▶ Remark 1 (Confluence and ground confluence). In general, confluence and ground confluence
(i.e., confluence of → when restricted to ground terms) of (C)TRSs do not coincide. For
instance, the TRS R = {f(x) → a, f(x) → x} over the signature F = {a, f} is ground
confluent, but not confluent. If a new constant b is added to F , then R is not ground
confluent anymore.

In Section 4 we use MR to provide a characterization of confluence properties as satisfiability
in MR. In the following, as anticipated by the expression of (local) confluence using first-order
formulas φCR and φWCR, we view term rewriting from a logical point of view. A first-order
language with function symbols f, g, . . . from a signature F and predicate symbols P, Q, . . .

from a signature Π is considered where atoms and formulas are built in the usual way. The
pair F , Π is often called a signature with predicates [9]. In particular, rewriting expressions
s → t (one-step reduction), s →∗ t (zero or many-step reduction), s ↓ t (joinability), etc., are
viewed as atoms with (binary) predicate symbols →, →∗, ↓, etc.

3.1 Operational Semantics of Conditional Rewriting in Logic Form
Conditions s ≈ t in conditional rules admit several semantics, i.e., forms to evaluate them
see, e.g., [23, Definition 7.1.3]. Oriented CTRSs are those whose conditions s ≈ t are handled
as reachability tests. Join CTRSs use joinability tests instead. Semiequational CTRSs use
convertibility tests. For oriented CTRSs R, an inference system IO(R) is obtained from the
following generic inference system IO-CTRS:

(Rf)
x→∗ x

(C)f,i
xi → yi

f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)
for all f ∈ F and 1 ≤ i ≤ k

(T) x→ y y →∗ z

x→∗ z
(Rl)α

s1 →∗ t1 · · · sn →∗ tn

ℓ→ r

for α : ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R

FSTTCS 2021

44:4 Confluence of Conditional Rewriting in Logic Form

(∀x) x →∗ x (4)
(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z (5)
(∀x, y, z) x → y ⇒ f(x, z) → f(y, z) (6)
(∀x, y, z) x → y ⇒ f(z, x) → f(z, y) (7)

a → b (8)
(∀x) f(x, a) →∗ f(b, b) ⇒ f(c, x) → x (9)

(∀y) (y, y) → b (10)

Figure 1 Theory RO for the oriented semantics of R in Example 3.

by specializing (C)f,i for each k-ary symbol f in the signature F and 1 ≤ i ≤ k and (Rl)α for all
conditional rules α : ℓ→ r ⇐ C in R [14, Section 4.5]. Inference rules in IO(R) are schematic: each
inference rule B1 ··· Bn

A
in IO(R) can be used under any instance σ(B1) ··· σ(Bn)

σ(A) of the rule by a
substitution σ. For join CTRSs, we replace rule (Rl)α by

(Rl)J
α

s1 →∗ z1 t1 →∗ z1 · · · sn →∗ zn tn →∗ zn

ℓ→ r

where z1, . . . , zn do not occur in ℓ, r, si, ti for 1 ≤ i ≤ n. In this way, we obtain IJ-CTRS and IJ (R)
from IJ-CTRS as before. Note that the joinability predicate ↓ is not necessary.
▶ Remark 2 (Semi-equational CTRSs). For semi-equational CTRSs we would proceed similarly,
defining a new rule (Rl)SE

α borrowing (Rl)α where ↔∗ is used instead of →∗, and adding more
inference rules to deal with ↔∗: first x→y

x↔y
, also y→x

x↔y
, and then x↔y y↔∗z

x↔∗z
.

We obtain a theory RO (resp. RJ , etc.) from IO(R) (resp. IJ (R), etc.) as follows [14, Section 4.5]:
the inference rules (ρ) B1 ··· Bn

A
in I(R) are considered as sentences ρ of the form (∀x⃗)B1∧· · ·∧Bn ⇒

A, where x⃗ is the sequence of variables occurring in atoms B1, . . . , Bn and A; if empty, we just write
B1 ∧ · · · ∧Bn ⇒ A.

▶ Example 3. Consider the CTRS R

a → b (1)
f(c, x) → x⇐ f(x, a) ≈ f(b, b) (2)
f(y, y) → b (3)

The theory RO can be found in Figure 1. Note that this gives R the computational semantics of an
oriented CTRS. Also, RJ = {(4), (5), (6), (7), (8), (10), (11)} for

(∀x)(∀z) f(x, a)→∗ z ∧ f(b, b)→∗ z ⇒ f(c, x)→ x (11)

i.e., we use (11) instead of (9). We usually just write R to denote the (appropriate) theory associated
to a (join, oriented,. . .) CTRS. In the following, given a first-order theory Th and a formula φ,
Th ⊢ φ means that φ is deducible from (or a logical consequence of) Th.

For all terms s, t, we write (i) s→R t (resp. s→∗
R t) iff there is a (well-formed)1 proof tree for

s → t (resp. s →∗ t) using I(R). Equivalently, we have (ii) s →R t (resp. s →∗
R t) iff R ⊢ s → t

(resp. R ⊢ s→∗ t) holds. The first presentation (i) is well-suited for the analysis of the termination
behavior of CTRSs: we say that R is operationally terminating if there is no (well-formed) infinite
proof trees for goals s→ t and s→∗ t in I(R) [16]. However, the proof theoretic presentation (ii) is
more important in the analysis of (in)feasibility of rewriting goals in Section 4. It also suffices to

1 By a well-formed proof tree we mean a proof tree where proof conditions introduced by inference rules
are developed from left to right, see [16].

R. Gutiérrez, S. Lucas, and M. Vítores 44:5

define termination of CTRSs: a CTRS R is terminating if →R is terminating. Termination and
operational termination of CTRSs differ, see [17, Section 3] for a deeper discussion about differences
and connections between both notions.

We use termination and operational termination in some confluence results for CTRSs (Section 7).
The tool mu-term [12] can be used for automatically proving and disproving termination and
operational termination of CTRSs.2

▶ Definition 4 (Joinable terms). Given a CTRS R and terms s, t, we write s ↓R t if and only if
there is a term u such that s→∗

R u and t→∗
R u. We often say that s and t are joinable.

3.2 Dealing With Variables in Terms as (Fresh) Constants
Let F be a signature and X be a set of variables such that F ∩ X = ∅. We let FX = F ∪ CX where
variables x ∈ X are considered (different) constant symbols cx of CX = {cx | x ∈ X} and F and CX

are disjoint. Note that the set T (F ,X) of terms with variables for the signature F is isomorphic
to the set T (FX) of ground terms for FX : given a term t ∈ T (F ,X), t↓ ∈ T (FX) is obtained by
replacing each occurrence of x ∈ X in t by cx.3 Vice versa: given t ∈ T (FX), t↑ ∈ T (F ,X) is
obtained by replacing, for all x ∈ X , each constant cx in t by x.

▶ Proposition 5. For all terms t ∈ T (F ,X), (t↓)↑ = t. For all terms t ∈ T (FX), (t↑)↓ = t.

Also, given a substitution σ : X → T (F ,X), define σ↓ : X → T (FX) to be σ↓(x) = σ(x)↓ for all
x ∈ X (given θ : X → T (FX), define θ↑ : X → T (F ,X) similarly). The following result shows that
rewriting with terms in T (F ,X) can be simulated as ground rewriting in T (FX).

▶ Proposition 6. Let R = (F , R) be a CTRS and s, t ∈ T (F ,X). Then, s →R t if and only if
s↓ →R t↓ and s→∗

R t if and only if s↓ →∗
R t↓.

In the following, given a condition C, i.e., s1 ≈ t1, . . . , sn ≈ tn, we write C↓ to denote s↓
1 ≈

t↓
1, . . . , s↓

n ≈ t↓
n.

3.3 A Ground Model for Rewriting Terms with Variables
Given a signature with predicates F , Π, an F , Π-structure A (or just structure if F , Π is clear from
the context) consists of a domain (also denoted) A together with an interpretation of the function
symbols f ∈ F and predicate symbols P ∈ Π as mappings fA and relations P A on A, respectively.
Then, the usual interpretation of first-order formulas with respect to A is considered [20, page 60].
An F , Π-model for a theory Th, i.e., a set of first-order sentences (formulas whose variables are all
quantified), is just a structure A that makes them all true, written A |= Th. A formula φ is a logical
consequence of a theory Th (written Th |= φ) iff every model A of Th is also a model of φ. The
canonical model MR of a CTRS R is defined as follows.

▶ Definition 7 (Canonical model for conditional rewriting). Let R be a CTRS. The canonical modelMR

of R has domain T (FX); each k-ary symbol f ∈ F is interpreted as fMR (t1, . . . , tk) = f(t1, . . . , tk)
for all t1, . . . , tk ∈ T (FX). Finally, predicate symbols → and →∗ are interpreted as follows:

→MR = {(s↓, t↓) | s, t ∈ T (F ,X) ∧ s→R t} (→∗)MR = {(s↓, t↓) | s, t ∈ T (F ,X) ∧ s→∗
R t}

2 Although the version of mu-term described in [12] did not allow proofs of termination of CTRSs, for the
purpose of serving as a backbone for CONFident, we recently modified mu-term as to provide explicit
use of the techniques described in [18], which can be used to prove and disprove termination of CTRSs.
Thus, mu-term users can prove and disprove termination of CTRSs by following the instructions in
http://zenon.dsic.upv.es/muterm/?name=documentation#CTRSs.

3 We use ↓ as superindex denoting this grounding operation as in t↓, hopefully not leading to confusion
with the infix use of ↓ as joinability operator, as in s ↓ t.

FSTTCS 2021

http://zenon.dsic.upv.es/muterm/?name=documentation#CTRSs

44:6 Confluence of Conditional Rewriting in Logic Form

Definition 7 generalizes to accomodate interpretations for ↔ and ↔∗ in semi-equational CTRSs in
the obvious way.4

▶ Theorem 8. For all CTRSs R, MR |= R.

We have the following:

▶ Proposition 9. Let R = (F , R) be a CTRS, s, t ∈ T (F ,X), and x⃗ = x1, . . . , xn denote the
variables occurring in s and t, i.e., Var(s) ∪ Var(t) = {x1, . . . , xn}. Then,
1. We have that σ(s) →∗

R σ(t) for all substitutions σ : X → T (F ,X), if and only if (s↓, t↓) ∈
(→∗)MR .

2. MR |= (∀x⃗) s→∗ t if and only if (s↓, t↓) ∈ (→∗)MR .
Proposition 9 shows that we can remove universal quantifiers from reachability formulas if variables
x in the involved terms are replaced by the corresponding constants cx.

4 Confluence of Rewriting as a Satisfiability Problem

In view of Section 3.1, it is perhaps natural to adopt a proof theoretical definition of (local) confluence
of CTRSs as follows: a CTRS is (locally) confluent if and only if R ⊢ φCR (resp. R ⊢ φWCR) holds.
The following example (using a TRS) shows that this is not equivalent to the usual definition.

▶ Example 10. A well-known example of a locally confluent but nonconfluent TRS is R = {b→
a, b→ c, c→ b, c→ d}. The theory R for R is

(∀x) x →∗ x

(∀x, y, z) x→ y ∧ y →∗ z ⇒ x →∗ z

b → a
b → c

c → b
c → d

Unfortunately, φWCR is not a logical consequence of R (i.e., R |= φWCR does not hold) and hence5

it cannot be proved from R (i.e., R ⊢ φWCR does not hold): there is a model A of R which is not a
model of φWCR. The interpretation domain is A = {0, 1, 2, 3, 4}, function symbols are interpreted
by: aA = 0, bA = 1, cA = 2, dA = 3, and predicate symbols by

→A = {(1, 0), (1, 2), (2, 1), (2, 3), (4, 0), (4, 3)}
(→∗)A = {(1, 0), (1, 2), (2, 1), (2, 3), (4, 0), (4, 3)} ∪ {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)} ∪ {(2, 0), (1, 3)}

Although A |= R holds, with the valuation α given by α(x) = 4, α(y) = 0 and α(z) = 3,
[x → y ∧ x → z]Aα holds true, but [y →∗ u ∧ z →∗ u]Aα is false for all valuations of u. Thus,
A |= φWCR does not hold. Hence R |= φWCR does not hold either.

Instead, we use MR to define (local) confluence as satisfiability in MR.

▶ Theorem 11 (Confluence of CTRSs as satisfiability in MR). A CTRS R is (locally) confluent if
and only if MR |= φCR (resp. MR |= φWCR) holds.

Now, as a consequence of [14, Corollary 14] and Theorem 11, we have the following:

▶ Corollary 12. Let R be a CTRS. If MR ⊢ φCR (resp. MR ⊢ φWCR) holds, then R is (locally)
confluent.

Example 10 shows that the statement in Corollary 12 cannot be reversed.

4 The theory RJ associated to a join CTRS R uses predicates → and →∗ only. Hence, no change in the
definition of MR is necessary. According to Remark 2, though, for semi-equational CTRSs additional
predicate symbols ↔ and ↔∗ are necessary. We just need to enrich MR with the corresponding
interpretations for those new predicate symbols.

5 By Gödel’s completeness theorem, see, e.g., [20, Corollary 2.19], deducibility and logical consequence
are equivalent, i.e., Th ⊢ φ iff Th |= φ.

R. Gutiérrez, S. Lucas, and M. Vítores 44:7

5 Proofs of confluence using critical pairs

In proofs of confluence, joinability of critical pairs plays a main role. A conditional critical pair
(CCP) is an expression ⟨s, t⟩ ⇐ C where ⟨s, t⟩ is the peak of the CCP, for terms s and t, and C is
the conditional part, i.e., a sequence s1 ≈ t1, . . . , sn ≈ tn of conditions. They are obtained from
CTRSs as follows, see, e.g., [7, Definition 3] and also [23, Definition 7.1.8(1)].

▶ Definition 13 (Conditional critical pair). Let R be a CTRS. Let α : ℓ→ r ⇐ C and α′ : ℓ′ → r′ ⇐ C′

be rules of R sharing no variable (rename if necessary). Let p ∈ PosF (ℓ) be a nonvariable position of
ℓ such that ℓ|p and ℓ′ unify with mgu σ. Then, we call the expression ⟨σ(ℓ[r′]p), σ(r′)⟩ ⇐ σ(C), σ(C′)
a conditional critical pair (CCP) of R. If α and α′ are (possibly renamed versions of) the same
rule, the case p = Λ is not considered to obtain a CCP.

CCPs ⟨s, t⟩ ⇐ C whose conditional part C is empty are called critical pairs and simply written ⟨s, t⟩
as in the usual notation and definition, see, e.g., [23, Definition 4.2.1]. TRSs have (unconditional)
critical pairs only; the set of critical pairs of a TRS R is denoted CP(R). In the following, CCP(R)
denotes the set of CCPs of a CTRS R. Note that CP(R) ⊆ CCP(R), as ordinary, unconditional
critical pairs are particular CCPs with an empty conditional part. Although conditions si ≈ ti

admit multiple interpretations (as joinability, reachability, etc.), joinability of a critical pair is
homogeneously defined as follows [23, Definition 7.1.8(2)]:

▶ Definition 14 (Joinable conditional critical pair). Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical
pair. We say that π is joinable if σ(s) ↓R σ(t) holds for all substitutions σ such that σ(C) holds.
Otherwise, π is not joinable.

An important aspect in the analysis of confluence is checking (conditional) critical pairs for
(non)joinability. The following result provides a logical characterization of joinability of the CCPs of
a CTRS R as satisfiability in MR.

▶ Proposition 15. Let R be a CTRS. A CCP π : ⟨s, t⟩ ⇐ C is joinable if and only if MR |=
(∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds, where x⃗ = x1, . . . , xm are the variables occurring in C, s, t and
z /∈ Var(C, s, t).

The following sections investigate how to prove and disprove joinability of conditional critical pairs
by (dis)proving appropriate feasibility problems using existing tools like infChecker6 to automatically
prove and disprove such feasibility problems [11].

6 Joinability of Terms and Feasibility Problems

Given a set P of (binary) predicates, let T = {Th▷◁ | ▷◁∈ P} be a P-indexed set of first-order theories
Th▷◁ defining predicates ▷◁. An f-condition is an atom s ▷◁ t where ▷◁ ∈ P and s, t ∈ T (F ,X).
Sequences F = (γi)n

i=1 = (γ1, . . . , γn) of f-conditions are called f-sequences. We often drop “f-” when
no confusion arises. Empty sequences are written ().

▶ Definition 16 (Feasibility). A condition s ▷◁ t is (T, σ)-feasible if Th▷◁ ⊢ σ(s) ▷◁ σ(t) holds;
otherwise, it is (T, σ)-infeasible. We also say that s ▷◁ t is T-feasible (or Th▷◁-feasible, or just feasible
if no confusion arises) if it is (T, σ)-feasible for some substitution σ; otherwise, we call it infeasible.

A sequence F is T-feasible (or just feasible) iff there is a substitution σ such that, for all γ ∈ F,
γ is (T, σ)-feasible. Note that () is trivially feasible.

In the following, Th▷◁ = R for all ▷◁ ∈ {→,→∗, ↓, . . .}.

6 http://zenon.dsic.upv.es/infChecker/

FSTTCS 2021

http://zenon.dsic.upv.es/infChecker/

44:8 Confluence of Conditional Rewriting in Logic Form

6.1 Proving Conditional Joinability
Proposition 15 characterizes joinability of the CCPs of a CTRS R as the satisfiability of a logical
sentence inMR. In the following, we show how to advantageously use the results in [14, 11] to prove
and disprove joinability of CCPs. The following consequence of Proposition 15 and [14, Corollary 14]
provides a sufficient condition for joinability of CCPs.

▶ Corollary 17. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If R ⊢ (∀x⃗)(∃z) C ⇒ s→∗

z ∧ t→∗ z holds, then π is joinable.

This result can be used together with theorem provers like Prover9 [19] for a practical use in proofs
of joinability of critical pairs. The following result is a consequence of Proposition 15.

▶ Corollary 18. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If s↓ →∗ z, t↓ →∗ z is
R-feasible, then π is joinable.

▶ Example 19. Consider the following variant R of the CTRS in Example 3:

a → b (12)
f(c, x) → a⇐ f(x, a) ≈ f(b, b) (13)
f(y, y) → b (14)

Note that rule (13) is feasible, both under join and oriented semantics: f(a, a)→ f(b, a)→ f(b, b)
(which implies f(a, a) ↓ f(b, b)). The only CCP is π : ⟨a, b⟩ ⇐ f(c, a) ≈ f(b, b). Since a→∗ z, b→∗ z

is R-feasible (both for the join and oriented semantics of R), by Corollary 18, π is joinable.

6.2 Disproving Conditional Joinability
Regarding proofs of non-joinability, we show how to formulate it as an feasibility problem.

▶ Proposition 20. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that C↓ is R-feasible.
If s↓ →∗ z, t↓ →∗ z is R-infeasible, then π is not joinable.

▶ Example 21. Consider the following CTRS R

f(x, x) → x⇐ f(x, x) ≈ b (15)
f(y, y) → b (16)

There is only one critical pair π : ⟨x, b⟩ ⇐ f(x, x) ≈ b. Note that f(cx, cx) ≈ b is R-feasible due to
the unconditional rule (this can be proved with infChecker). Non-joinability of π can be proved as
the R-infeasibility of

cx →∗ z, b→∗ z (17)

using infChecker. By Proposition 20, π is not joinable.

The following result characterizes joinability of CCPs ⟨s, t⟩ ⇐ C where the conditional part C and
the peak ⟨s, t⟩ share no variable.

▶ Proposition 22. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that Var(s, t)∩Var(C) =
∅. Then, π is joinable if and only if C is R-infeasible or s↓ →∗ z, t↓ →∗ z is R-feasible.

▶ Example 23. Consider the CTRS R in Example 3. As in Example 19 for (13), rule (2) is feasible,
both under join and oriented semantics. There is a single critical pair π : ⟨c, b⟩ ⇐ f(c, a) ≈ f(b, b).

As a join CTRS, R-feasibility of f(c, a) ↓ f(b, b) together with R-infeasiblity of c→∗ z, b→∗ z

can both be proved with infChecker. Thus, π is not joinable.
As an oriented CTRS, R-infeasibility of f(c, a)→∗ f(b, b) can be proved with infChecker. Thus,
π is joinable.

For TRSs, whose critical pairs have no conditional part, we have the following characterization of
joinability as a consequence of Proposition 22.

R. Gutiérrez, S. Lucas, and M. Vítores 44:9

▶ Corollary 24. Let R be a (C)TRS. A critical pair ⟨s, t⟩ is joinable if and only if s↓ →∗ z, t↓ →∗ z

is R-feasible.

Actually, Corollary 24 characterizes joinability of terms s and t (being part of a critical pair or not).

▶ Example 25. Consider the following TRS from COPS (http://cops.uibk.ac.at/?q=999)

a(b(x)) → b(c(x)) (18)
c(b(x)) → b(c(x)) (19)
c(b(x)) → c(c(x)) (20)
b(b(x)) → a(c(x)) (21)
a(b(x)) → a(b(x)) (22)
c(c(x)) → c(b(x)) (23)
a(c(x)) → c(a(x)) (24)

By Corollary 24, joinability of the critical pair ⟨a(a(c(x))), b(c(b(x)))⟩ can be disproved as the
infeasibility of a(a(c(cx)))→∗ z, b(c(b(cx)))→∗ z, which is proved by infChecker.

7 Confluence of CTRSs

In the analysis of confluence of CTRSs, a crucial notion is that of conditional critical pairs associated
to a CTRS R. We have the following (well-known) fact.

▶ Proposition 26. Let R be a CTRS. If CCP(R) contains a non-joinable CCP, then R is not
(locally) confluent.

▶ Example 27. For the TRS R in Example 25, since CP(R) contains a nonjoinable critical pair
⟨a(a(c(x))), b(c(b(x)))⟩, by Proposition 26 we conclude that R is not confluent.

▶ Example 28. As a consequence of Proposition 26, R in Example 3, when considered as a join
CTRS, is not confluent. Except for CONFident, no tool available on the confluence platform CoCoWeb
[13], which provides access to several confluence tools, was able to reach this conclusion, as join
CTRSs are accepted (as part of COPS syntax), but currently unsupported by other confluence tools
in the platform. CONFident is able to provide a negative answer using Proposition 22 to prove
nonjoinability of the only CCP, and then Proposition 26 to conclude nonconfluence.

Dershowitz, Okada, and Sivakumar proved that a terminating (noetherian in their terminology) join
CTRSs is confluent if all its critical pairs are joinable overlays [7, Theorem 4], where a (conditional)
critical pair is an overlay if the critical position is the top position Λ [7, Definition 8].

▶ Example 29. Note that the CCP π for R in Example 19 is an overlay. It is joinable, as proved
in the example (both for the join and oriented semantics). The CTRS R is terminating as the
underlying TRS Ru = {a→ b, f(c, x)→ a, f(x, x)→ b} is clearly terminating. Thus, by [7, Theorem
4], R (viewed as a join CTRS) is confluent.

Unfortunately, this does not hold for oriented CTRSs.

▶ Example 30. The following oriented CTRS R [26, Counterexample 3.3]

a → b (25)
f(x) → c⇐ x ≈ a (26)

is terminating (the underlying TRS Ru = {a → b, f(x) → c} is clearly terminating), and has
no (conditional) critical pair. However, f(b) ← f(a) → c, but c is irreducible and f(b) also is as
the conditional part x ≈ a of rule (26), when instantiated by b ≈ a is not satisfiable by using a
reachability test b→∗ a. Hence f(b) and c are not joinable and R is not confluent.

FSTTCS 2021

http://cops.uibk.ac.at/?q=999

44:10 Confluence of Conditional Rewriting in Logic Form

Normal CTRSs are CTRSs where terms t in conditions s ≈ t of the conditional part of rules are
ground, irreducible terms.
▶ Remark 31 (Normal join, oriented, and semiequational CTRSs). Nowadays, the notion of a normal
CTRS R usually assumes that R is an oriented CTRS, see, e.g., [23, Definition 7.1.3]. Other authors,
though, have defined the notion of a normal join CTRS as one whose joinability conditions s ↓ t in
conditional rules always satisfy the restriction of t being an irreducible ground term [7, Definition 2];
then, the authors remark that normal join CTRSs can be seen as what we call normal CTRSs today.
Hence, normal join and oriented CTRSs coincide. As for semi-equational CTRSs, if normality is
required, then s ↔∗ t if and only if s →∗ t because t is irreducible. Therefore, when referring to
normal join, oriented, or semiequational CTRSs we are actually dealing with one and the same kind
of CTRSs.
For this reason, conditions of normal CTRSs can be equivalently handled as joinability conditions
si ↓ ti. Neither R in Example 30 nor R in Example 19 are normal. The following result, which is a
simple consequence of [7, Theorem 4], is useful:

▶ Corollary 32. A terminating normal CTRS is confluent if all its critical pairs are joinable overlays.

▶ Example 33. Consider the following normal CTRS

c → b (27)
d → b (28)

f(a, x) → c⇐ x ≈ a (29)
f(x, x) → d⇐ x ≈ a (30)

g(x) → d⇐ g(x) ≈ b (31)
g(a) → f(a, a) (32)

which is terminating, as the underlying TRS Ru is clearly terminating. The system has two (overlay)
conditional critical pairs which are feasible and joinable:

⟨c, d⟩ ⇐ a ≈ a with (29) and (30) (33)
⟨d, f(a, a)⟩ ⇐ g(a) ≈ b with (31) and (32) (34)

As for (33), using (27) and (28) we join c and d into b. Regarding (34), we have f(a, a)→(30) d. By
Corollary 32, R is confluent. No tool in CoCoWeb is able to prove it.

An oriented CTRS R is called deterministic (DCTRS) if for each rule ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn

in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(ℓ) ∪
⋃i−1

j=1 Var(tj). In the literature on confluence
of DCTRSs, some results that use termination properties of CTRSs to guarantee confluence have
been reported. For instance, [2, Theorem 4.1] establishes that a quasi-reductive strongly deterministic
CTRS is confluent if and only if its CCPs are all joinable. Strongly deterministic CTRSs (SDCTRSs)
are DCTRSs R where all conditions s ≈ t in the conditional part C of rules ℓ → r ⇐ C ∈ R
are strongly irreducible, i.e., every instance σ(t) of t by an irreducible substitution σ is irreducible
[2, Definition 4.1]. Clearly, normal DCTRSs are SDCTRSs. Quasi-reductiveness (see, e.g., [23,
Definition 7.2.36]) guarantees quasi-decreasingness of the DCTRS (see [23, Definition 7.2.39 and
Lemma 7.2.40]). As proved in [16], quasi-decreasingness is equivalent to operational termination.
Other results in the literature (see [23, Section 7.3]) usually require quasi-decreasingness, i.e,
operational termination. Operationally terminating CTRSs are terminating, but not vice versa. For
instance, viewed as an oriented CTRS, the (deterministic) CTRS R in Example 33 is terminating
(this can be proved by using mu-term) but it is not operationally terminating (this can also be
proved with mu-term). Therefore, the aforementioned results in [2, 23] cannot be used to prove
confluence of R in Example 33. Further results for proving confluence of terminating CTRSs are
reported in [10]; however, they apply to join CTRSs only.

Most confluence criteria for proving confluence of CTRSs involve checking (non)joinability of
(feasible) CCPs, possibly in connection with other structural or syntactical requirements on the
CTRS (e.g., left-linearity, etc.). The focus in this paper has been the investigation of (non)joinability
criteria which can be used together with these confluence criteria. The following section discusses
our implementation of those techniques and its impact in proofs of confluence of CTRSs in practice.

R. Gutiérrez, S. Lucas, and M. Vítores 44:11

Table 1 Meaning of CONDITIONTYPE in COPS syntax.

CONDITIONTYPE here == means
ORIENTED →∗

JOIN ↓
SEMI-EQUATIONAL ↔∗

8 Implementation and Experimental Evaluation
CONFident 1.0 is written in Haskell and consists of 80 Haskell modules with around 14000 lines
of code. The tool is accessible through its web interface (see Section 1). The input format is an
extended version of the Confluence Competition (CoCo) format [21], which is the official format
used in the confluence (CR) category of the competition. The input is a CTRS R in TPDB/COPS
format7. As in COPS syntax, symbol == stands for ≈ above to specify the conditional part of
rewrite rules. Its meaning depends on the CONDITIONTYPE section of the input specifying how the
conditions of rules are evaluated [23, Definition 7.1.3] according to Table 1. Furthermore, in our
extended version of TPDB/COPS syntax we can combine those relations by using them directly in
the condition part of the rules: we use ->* for →∗, ->*<- for ↓ and <–>* for ↔∗.

The implementation is based on a divide and conquer schema where, given an input problem, there
is a set of techniques and an application strategy for those techniques. The techniques can simplify
the problem, reduce it into a set of simpler problems or just give a positive or negative answer. We
consider two types of problems: Rewriting problems and Conditional Rewriting problems. Each type
of problem has its own strategy and processors. Although there are processors that can be applied to
Rewriting and Conditional Rewriting problems indifferently, from the implementation point of view
we prefer to implement them separately because we can apply simplifications when conditions are not
considered. According to Section 3.1, when the system is parsed, the tool computes RJ , RO, or RSE

(depending on the CONDITIONTYPE section) and then applies the appropriate strategy. Our proof
strategy is based on experimentation: we try to first apply techniques that simplify the problems
and reduce them into simpler problems (e.g., remove unnecesary rules and apply modularity results).
When all simplification techniques have been applied, we analyze the problem in order to extract
good properties that guide the strategy (linearity, weak normalization, termination, operational
termination, strongly deterministic conditions, or right stability, see [16, 23] for definitions of these
concepts). Then we calculate its conditional critical pairs and apply the techniques presented
in the paper combined with classical techniques to check the joinability or non-joinability of the
critical pairs. We also apply transformations to convert CTRSs into confluence equivalent TRSs and
CS-TRSs [15]. If the final answer is YES or NO, the tool displays a report in plain text. Otherwise,
MAYBE is returned. More details can be found in [28].

We participated in the CTRS (CR) category of CoCo 2021.8 With a timeout of 60 seconds,
the participating tools are expected to return a proof of confluence or nonconfluence (or a maybe
answer) for each of the considered problems. The other participating tools this year were CO3 [22]
and ACP [1]. The test set used in CoCo 2021 included 100 examples (see http://cops.uibk.ac.
at/results/?y=2021&c=CTRS). The following table sumarizes the obtained results:9

CTRS CR Tool Yes No Total
CONFident 37 24 61

CO3 28 19 47
ACP 29 15 44

Accordingly, CONFident was declared the winner of the competition.10

7 See http://zenon.dsic.upv.es/muterm/?name=documentation#formats
8 http://project-coco.uibk.ac.at/2021/
9 The 2020 version of the tool ConCon http://cl-informatik.uibk.ac.at/software/concon/ particip-

ated in CoCo 2021 as the winner of the CTRS category in 2020. Its results are displayed in the
aforementioned web page.

10 See http://project-coco.uibk.ac.at/2021/results.php

FSTTCS 2021

http://cops.uibk.ac.at/results/?y=2021&c=CTRS
http://cops.uibk.ac.at/results/?y=2021&c=CTRS
http://zenon.dsic.upv.es/muterm/?name=documentation#formats
http://project-coco.uibk.ac.at/2021/
http://cl-informatik.uibk.ac.at/software/concon/
http://project-coco.uibk.ac.at/2021/results.php

44:12 Confluence of Conditional Rewriting in Logic Form

CONFident is able to obtain confluence proofs not only for oriented CTRSs (which is the focus
of CoCo CTRS category) but also for join CTRSs as explained above (and currently unsupported
by the tools participating in the confluence competition). Full proofs for the discussed examples of
join CTRSs can also be found in the benchmarks section of the tool web site.

9 Related Work

Plaisted’s presentation of conditional rewriting [24] is related to ours. Conditional rules are viewed
as (universally quantified) formulas C ⇒ ℓ→ r, which can be seen as first-order formulas. Semantic
interpretations, though, consist of a base domain DB (an “ordinary” domain as introduced in Section
3.3) and an extended domain DE = T (F ∪DB) where values of the domain DB are treated as
constants. Symbols f have an interpretation11 fI , i.e., a mapping fI : DE × · · · ×DE → DE defined
so that fI(t1, . . . , tk) = f(t1, . . . , tk). Conveniently, if a ∈ DB , then aI = a. Terms in T (F ,X) are
interpreted as usual, except that Plaisted also interprets variables x ∈ X as xI ∈ DE . The usual
valuation of variables of first-order logic is therefore integrated as part of the interpretation I. In this
respect, his semantic approach differs from the usual one in first order logic (indeed, he rather speaks
of term logic when referring it). Predicates→ and→∗ are interpreted as subsets of DE×DE . Atoms
s→ t and s→∗ t are then interpreted as expected: (s→ t)I = sI →I tI and (s→∗ t)I = sI(→∗)ItI .
An interpretation I is a rewriting model of a CTRS R if I satisfies the formulas in R together with
a number of axioms A which, essentially, are the ones we obtain from the inference rules (Rf), (T),
and (C)f,i for f ∈ F and 1 ≤ i ≤ ar(f). Plaisted writes R |=m φ if φ is true in all minimal rewriting
models of R.12 Then, a CTRS R is said to be confluent if R |=m φCR holds. Finally, on page 219,
the confluence property of a CTRS is proved equivalent to RI |=m φCR for all minimal rewriting
models I of R, where RI is the (possibly infinite) TRS (i.e., without conditional rules) obtained
from R and I by considering rules s → t (where s, t ∈ T (F ∪DB)) such that s → t is a ground
instance of ℓ → r for some conditional rule ℓ → r ⇐ C, where variables are replaced by terms in
T (F ∪DB) and the corresponding instance C′ of C is true in I. Similar definitions are provided
for local confluence and joinability of critical pairs (which Plaisted calls to pass the critical pair
test). Note that, since there can be infinitely many interpretations I for a given CTRS R, proofs
of confluence in term logic involve the consideration of infinitely many TRSs RI . In contrast, our
definitions of confluence, local confluence, and joinability of CCPs use a single model MR.

In the so-called first-order theory of rewriting (FOThR in the following), a restricted first-order
language (without constant or function symbols), is used. The predicate symbols → and →∗ are
interpreted on the least (ground) Herbrand model HR for the signature F and predicates→ and→∗

[6]. In FOThR properties of TRSs R = (F , R) are expressed by satisfiability in HR of FOThR. For
instance HR |= φCR means “the TRS R is ground confluent” (the restriction to ground confuence
is due to the use of HR, which consists of atoms s → t and s →∗ t where s, t ∈ T (F)). Decision
algorithms for FOThR exist for restricted classes of TRSs R like left-linear right-ground TRSs,
where variables are allowed in the left-hand side of the rules (without repeated occurrences of the
same variable) but disallowed in the right-hand side [25]. However, a simple fragment of FOThR like
the First-Order Theory of One-Step Rewriting, where only a single predicate symbol → representing
one-step rewritings with R is allowed, has been proved undecidable even for linear TRSs [27]. In
contrast, we use the full expressive power of first-order logic to represent not only TRSs but also
CTRSs . Also in contrast to FOThR, where function symbols are not allowed in formulas, we can use
arbitrary sentences involving arbitrary terms. This is crucial, for instance, to investigate joinability
of CCPs ⟨s, t⟩ ⇐ C, as s and t are arbitrary terms, and C usually involves nonvariable terms.

On the other hand, the idea of turning variables into constants to see terms with variables as
ground terms of an extended signature is standard in algebraic specifications, see, e.g., [9, page 9].
However, as far as we know, such a model has not been used in the definition or verification of

11 Plaisted interprets symbols in two different ways. This is due to the more general kind of conditional
systems he considers, where the conditional part of rules can include first-order literals defined by an
additional first-order theory. Our simplified presentation suffices to handle the CTRSs considered here.

12 Plaisted obtains each of such minimal models as follows: given an interpretation I, he takes the least
model of the Horn clauses obtained as the ground instances of rules α : ℓ→ r ⇐ C when variables in α
are replaced by terms in T (F ∪DB) (see the proof of his Theorem 1).

R. Gutiérrez, S. Lucas, and M. Vítores 44:13

computational properties like confluence, which is the main focus of this paper. Also, the use ofMR

in Section 4 to define joinability of CCPs as satisfaction in MR, and the translation in Section 6 of
joinability problems into feasibility problems where terms with variables are “grounded” using _↓ is,
to the best of our knowledge, also new.

Research on confluence of CTRSs goes back to [4, 7], and many advances have been introduced
in the last years, leading to the construction of several tools which are able to automatically prove
it, see [21] and the references therein. To the best of our knowledge, though, our characterization of
(local) confluence of CTRSs as the satisfiability of appropriate logical formulas inMR (Theorem 11)
and its practical use in Section 7 is new. Also, the idea of decomposing proofs of confluence into
(in)feasibility problems by taking into account the structure of the logic formula, and the use of
constants instead of variables to improve these proves seems to be new.

10 Conclusions and Future Work
In this paper, we deal with computational (reduction) relations → and →∗ associated to reduction-
based systems R in logic form: reduction steps are defined by provability in a given inference
system I(R) obtained from R and the generic system describing the operational semantics of the
language of R, or, equivalently, as logical consequences of a theory R obtained similarly. We
have characterized (local) confluence of CTRSs R as the satisfiability of appropriate first-order
formulas φWCR and φCR in a canonical model MR where variables are treated as constants and
terms with variables in T (F ,X) are treated as ground terms in T (F ∪ CX) (Theorem 11). We have
also similarly characterized joinability of CCPs ⟨s, t⟩ ⇐ C (Proposition 15). Then, we show how to
translate joinability problems into (combinations of) feasibility problems which can be solved using
appropriate techniques and tools. For this purpose, the introduction of constants cx ∈ CX instead
of variables x ∈ X in feasibility goals has been useful to obtain faster proofs.

We have developed a new tool implementing our results: CONFident. We participated in the 2021
edition of the Confluence Competition (CoCo) in the CTRS CR (confluence of CTRSs) category
obtaining good results.

As for future work, we plan to apply our techniques to prove confluence of rewriting-based
programming languages like Maude, whose conditional rules include componenents not explicitly
considered here (matching conditions, etc.) but whose semantics can be defined by using the general
approach sketched in Section 3. Since the analysis of confluence of rewrite theories (which provide
the formal basis for the operational description of Maude programs) is also based in the analysis of
joinability of the appropriate critical pairs [8], we think that our approach will be useful as well.

References
1 Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama. Proving confluence of term rewriting

systems automatically. In Ralf Treinen, editor, Rewriting Techniques and Applications, 20th
International Conference, RTA 2009, Brasília, Brazil, June 29 - July 1, 2009, Proceedings,
volume 5595 of Lecture Notes in Computer Science, pages 93–102. Springer, 2009. doi:
10.1007/978-3-642-02348-4_7.

2 Jürgen Avenhaus and Carlos Loría-Sáenz. On conditional rewrite systems with extra variables
and deterministic logic programs. In Frank Pfenning, editor, Logic Programming and Auto-
mated Reasoning, 5th International Conference, LPAR’94, Kiev, Ukraine, July 16-22, 1994,
Proceedings, volume 822 of Lecture Notes in Computer Science, pages 215–229. Springer, 1994.
doi:10.1007/3-540-58216-9_40.

3 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

4 Jan A. Bergstra and Jan Willem Klop. Conditional rewrite rules: Confluence and termination.
J. Comput. Syst. Sci., 32(3):323–362, 1986. doi:10.1016/0022-0000(86)90033-4.

5 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007. doi:10.1007/978-3-540-71999-1.

FSTTCS 2021

https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/3-540-58216-9_40
https://doi.org/10.1016/0022-0000(86)90033-4
https://doi.org/10.1007/978-3-540-71999-1

44:14 Confluence of Conditional Rewriting in Logic Form

6 Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90), Phil-
adelphia, Pennsylvania, USA, June 4-7, 1990, pages 242–248. IEEE Computer Society, 1990.
doi:10.1109/LICS.1990.113750.

7 Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Confluence of conditional rewrite
systems. In Stéphane Kaplan and Jean-Pierre Jouannaud, editors, Conditional Term Rewriting
Systems, 1st International Workshop, Orsay, France, July 8-10, 1987, Proceedings, volume
308 of Lecture Notes in Computer Science, pages 31–44. Springer, 1987. doi:10.1007/
3-540-19242-5_3.

8 Francisco Durán and José Meseguer. On the church-rosser and coherence properties of
conditional order-sorted rewrite theories. J. Log. Algebraic Methods Program., 81(7-8):816–850,
2012. doi:10.1016/j.jlap.2011.12.004.

9 Joseph A. Goguen and José Meseguer. Models and equality for logical programming. In
Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT’87:
Proceedings of the International Joint Conference on Theory and Practice of Software De-
velopment, Pisa, Italy, March 23-27, 1987, Volume 2: Advanced Seminar on Foundations of
Innovative Software Development II and Colloquium on Functional and Logic Programming
and Specifications (CFLP), volume 250 of Lecture Notes in Computer Science, pages 1–22.
Springer, 1987. doi:10.1007/BFb0014969.

10 Bernhard Gramlich and Claus-Peter Wirth. Confluence of terminating conditional rewrite
systems revisited. In Harald Ganzinger, editor, Rewriting Techniques and Applications, 7th
International Conference, RTA-96, New Brunswick, NJ, USA, July 27-30, 1996, Proceedings,
volume 1103 of Lecture Notes in Computer Science, pages 245–259. Springer, 1996. doi:
10.1007/3-540-61464-8_56.

11 Raúl Gutiérrez and Salvador Lucas. Automatically proving and disproving feasibility conditions.
In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th
International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part II, volume 12167 of Lecture Notes in Computer Science, pages 416–435. Springer, 2020.
doi:10.1007/978-3-030-51054-1_27.

12 Raúl Gutiérrez and Salvador Lucas. mu-term: Verify termination properties automatically
(system description). In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated
Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,
Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pages 436–447.
Springer, 2020. doi:10.1007/978-3-030-51054-1_28.

13 Nao Hirokawa, Julian Nagele, and Aart Middeldorp. Cops and CoCoWeb: Infrastructure
for Confluence Tools. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors,
Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
volume 10900 of Lecture Notes in Computer Science, pages 346–353. Springer, 2018. doi:
10.1007/978-3-319-94205-6_23.

14 Salvador Lucas. Proving semantic properties as first-order satisfiability. Artif. Intell., 277,
2019. doi:10.1016/j.artint.2019.103174.

15 Salvador Lucas. Applications and extensions of context-sensitive rewriting. Journal of
Logical and Algebraic Methods in Programming, 121:100680, 2021. doi:10.1016/j.jlamp.
2021.100680.

16 Salvador Lucas, Claude Marché, and José Meseguer. Operational termination of conditional
term rewriting systems. Inf. Process. Lett., 95(4):446–453, 2005. doi:10.1016/j.ipl.2005.
05.002.

https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1007/3-540-19242-5_3
https://doi.org/10.1007/3-540-19242-5_3
https://doi.org/10.1016/j.jlap.2011.12.004
https://doi.org/10.1007/BFb0014969
https://doi.org/10.1007/3-540-61464-8_56
https://doi.org/10.1007/3-540-61464-8_56
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1016/j.artint.2019.103174
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1016/j.ipl.2005.05.002
https://doi.org/10.1016/j.ipl.2005.05.002

R. Gutiérrez, S. Lucas, and M. Vítores 44:15

17 Salvador Lucas and José Meseguer. Dependency pairs for proving termination properties
of conditional term rewriting systems. J. Log. Algebr. Meth. Program., 86(1):236–268, 2017.
doi:10.1016/j.jlamp.2016.03.003.

18 Salvador Lucas, José Meseguer, and Raúl Gutiérrez. The 2D Dependency Pair Framework for
conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci.,
96:74–106, 2018. doi:10.1016/j.jcss.2018.04.002.

19 William McCune. Prover9 & Mace4. Technical report, University of New Mexico, 2005–2010.
URL: http://www.cs.unm.edu/~mccune/prover9/.

20 Elliott Mendelson. Introduction to mathematical logic (4. ed.). Chapman and Hall, 1997.

21 A. Middeldorp, J. Nagele, and K. Shintani. CoCo 2019: report on the eight confluence
competition. J.International Journal on Software Tools for Technology Transfer, to appear,
2021. doi:10.1007/s10009-021-00620-4.

22 Naoki Nishida, Makishi Yanagisawa, and Karl Gmeiner. On Proving Confluence of Condi-
tional Term Rewriting Systems via the Computationally Equivalent Transformation. In 3rd
International Workshop on Confluence, IWC 2014, July 13, 2014, Vienna, Austria, page 42,
2014.

23 Enno Ohlebusch. Advanced topics in term rewriting. Springer, 2002.

24 David A. Plaisted. A logic for conditional term rewriting systems. In Stéphane Kaplan
and Jean-Pierre Jouannaud, editors, Conditional Term Rewriting Systems, 1st International
Workshop, Orsay, France, July 8-10, 1987, Proceedings, volume 308 of Lecture Notes in
Computer Science, pages 212–227. Springer, 1987. doi:10.1007/3-540-19242-5_16.

25 Franziska Rapp and Aart Middeldorp. Automating the first-order theory of rewriting for
left-linear right-ground rewrite systems. In Delia Kesner and Brigitte Pientka, editors, 1st
International Conference on Formal Structures for Computation and Deduction, FSCD 2016,
June 22-26, 2016, Porto, Portugal, volume 52 of LIPIcs, pages 36:1–36:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.FSCD.2016.36.

26 Taro Suzuki, Aart Middeldorp, and Tetsuo Ida. Level-confluence of conditional rewrite systems
with extra variables in right-hand sides. In Jieh Hsiang, editor, Rewriting Techniques and
Applications, 6th International Conference, RTA-95, Kaiserslautern, Germany, April 5-7,
1995, Proceedings, volume 914 of Lecture Notes in Computer Science, pages 179–193. Springer,
1995. doi:10.1007/3-540-59200-8_56.

27 Ralf Treinen. The first-order theory of linear one-step rewriting is undecidable. Theor. Comput.
Sci., 208(1-2):179–190, 1998. doi:10.1016/S0304-3975(98)00083-8.

28 Miguel Vítores. CONFident: a tool for confluence analysis of rewriting systems. PhD thesis,
Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València,
December 2021.

A Proofs of theorems
▶ Proposition 6. Let R = (F , R) be a CTRS and s, t ∈ T (F ,X). Then, s →R t if and only if
s↓ →R t↓ and s→∗

R t if and only if s↓ →∗
R t↓.

Proof. We develop the proof for oriented CTRSs. For join or equational CTRSs, it is similar. We
proceed by multiple induction on the depth d of the proof trees used to prove each goal s→ t (for
s→R t) and s→∗ t (for s→∗

R t). If d = 0, then we consider two cases (we develop the only if part;
the if part is analogous):

s → t is proved using (Rl)α for an unconditional rule α : ℓ → r, i.e., there is a substitution σ

such that s = σ(ℓ) and t = σ(r). Since s↓ = σ(ℓ)↓ = σ↓(ℓ) and t↓ = σ(ℓ)↓ = σ↓(ℓ), we have that
s↓ → t↓ is proved using the same rule.
s→ t is proved using (Rf). In this case, s = t and hence s↓ →∗ t↓ is proved using (Rf).

FSTTCS 2021

https://doi.org/10.1016/j.jlamp.2016.03.003
https://doi.org/10.1016/j.jcss.2018.04.002
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/s10009-021-00620-4
https://doi.org/10.1007/3-540-19242-5_16
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/3-540-59200-8_56
https://doi.org/10.1016/S0304-3975(98)00083-8

44:16 Confluence of Conditional Rewriting in Logic Form

If d > 0, then
s→ t is proved in one of the following two possible ways:

using rule (C)f,i where s = f(s1, . . . , si, . . . sk), t = f(s1, . . . , ti, . . . , sk) for some terms
s1, . . . , sk, ti, using a proof tree T

s→t
, where T is of depth d− 1 and si → ti is the root of T .

By the induction hypothesis, s↓
i → t↓

i can be proved and hence f(s↓
i , . . . , s↓

i , . . . , s↓
k) = s↓ →

t↓ = f(s↓
i , . . . , t↓

i , . . . , s↓
k) can be proved as well using (C)f,i.

using rule (Rl)α for some rule α : ℓ → r ⇐ s1 ≈ t1, . . . , sn ≈ tn and proof tree T1 ··· Tn
s→t

,
where s = σ(ℓ) and t = σ(r) for some substitution σ, and, for all 1 ≤ i ≤ n Ti, is a proof tree
with root σ(si)→∗ σ(ti) and depth at most d− 1. By the induction hypothesis, σ(si)↓ →∗

σ(ti)↓ can be proved for all 1 ≤ i ≤ n using proof trees T ↓
i with root σ(si)↓ →∗ σ(ti)↓. Since

for all terms u ∈ T (F ,X), σ(u)↓ = σ↓(u), there is a proof of s↓ = σ↓(ℓ)→ σ↓(ℓ) = t↓ using
(Rl)α with proof tree T

↓
1 ··· T

↓
n

s↓→t↓ .

s→∗ t is proved using (T) using a proof tree T1 T2
s→∗t

where T1 is a proof tree with root s→ u of
depth at most d− 1 for some term u and T2 is a proof tree with root u→∗ t of depth at most
d − 1. By the induction hypothesis, there are proof trees T ↓

1 and T ↓
2 with roots s↓ → u↓ and

u↓ →∗ t↓. Thus, s↓ →∗ t↓ is proved by the proof tree T
↓
1 T

↓
2

s↓→∗t↓ . ◀

▶ Theorem 8 For all CTRSs R, MR |= R.

Proof. We develop the proof for oriented CTRSs, for join and semi-equational CTRSs being similar.
We consider the sentences derived from each of the four inference rules in IO-CTRS:

From rule (Rf) a single sentence (∀x) x →∗ x ∈ R is obtained. We need to prove that for all
t ∈ T (F ,X), (t↓, t↓) ∈ (→∗)MR holds (remind that T (F ,X) and T (FX) are isomorphic). Since
for all terms t ∈ T (F ,X), t→∗

R t can be proved in I(R) by using axiom (Rf), by definition of
MR, we have (t↓, t↓) ∈ (→∗)MR as required.
From rule (T), a single sentence (∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z ∈ R is obtained.
Then, MR |= (∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z holds if and only if for all substitutions
σ : X → T (F ,X), whenever both (σ↓(x), σ↓(y)) ∈→MR and (σ↓(y), σ↓(z)) ∈ (→∗)MR hold,
then (σ↓(x), σ↓(z)) ∈ (→∗)MR holds as well. If both (σ↓(x), σ↓(y)) ∈→MR and (σ↓(y), σ↓(z)) ∈
(→∗)MR hold, then, by definition of MR, we have σ(x) →R σ(y) and σ(y) →∗

R σ(z). Hence,
σ(x)→∗

R σ(z) can be proved in I(R) and therefore (σ↓(x), σ↓(z)) ∈ (→∗)MR as desired.
For all k-ary symbols f ∈ F and 1 ≤ i ≤ k, from (C)f,i a sentence (∀x1) · · · (∀xk)(∀yi)xi →
yi ⇒ f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk) is obtained. It holds in MR because, for all
terms s1, . . . , sk, ti ∈ T (F ,X), if (s↓

i , t↓
i) ∈→MR , then, by definition of MR, si →R ti can be

proved in I(R), and using (C)f,i we know that f(s1, . . . , si, . . . , sk)→R f(s1, . . . , ti, . . . , sk) can
also be proved, i.e., (f(s↓

1, . . . , s↓
i , . . . , s↓

k), f(s↓
1, . . . , t↓

i , . . . , s↓
k)) ∈→MR holds.

As for (Rl)α, with α : ℓ → r ⇐ s1 ≈ t1, . . . , sn → tn, there is a sentence (∀x⃗)
∧n

i=1 si →∗

ti ⇒ ℓ → r in R. Then, MR |= (∀x⃗)
∧n

i=1 si →∗ ti ⇒ ℓ → r holds if and only if for all
substitutions σ : X → T (F ,X), whenever (σ↓(si), σ↓(ti)) ∈ (→∗)MR holds for all 1 ≤ i ≤ n,
then (σ↓(ℓ), σ↓(r)) ∈→MR holds as well. By definition of MR, if (σ↓(si), σ↓(ti)) ∈ (→∗)MR

holds for all 1 ≤ i ≤ n, then σ(si) →∗
R σ(ti) holds for all 1 ≤ i ≤ n. Therefore, σ(ℓ) →R σ(r)

can be proved in I(R), and hence (σ↓(ℓ), σ↓(r)) ∈→MR , as desired. ◀

▶ Proposition 9. Let R = (F , R) be a CTRS, s, t ∈ T (F ,X), and x⃗ = x1, . . . , xn denote the
variables occurring in s and t, i.e., Var(s) ∪ Var(t) = {x1, . . . , xn}. Then,
1. We have that σ(s) →∗

R σ(t) for all substitutions σ : X → T (F ,X), if and only if (s↓, t↓) ∈
(→∗)MR .

2. MR |= (∀x⃗) s→∗ t if and only if (s↓, t↓) ∈ (→∗)MR .

Proof.
1. As for the if part, if (s↓, t↓) ∈ (→∗)MR holds, then, by definition of MR, s →∗

R t holds. By
closedness of →∗ under substitution application, for all substitutions σ, we have σ(s)→∗

R σ(t).
Regarding the only if part, assume that for all substitutions σ, σ(s)→∗

R σ(t) holds. In particular,
for the empty substitution ϵ, we have s = ϵ(s)→∗

R ϵ(t) = t, i.e., (s↓, t↓) ∈ (→∗)MR .

R. Gutiérrez, S. Lucas, and M. Vítores 44:17

2. The if part is as in the previous item, considering the definition of satisfiability in MR of a
universally quantified formula. Regarding the only if part, if MR |= (∀x⃗) s→∗ t holds, then
for all substitutions σ : X → T (F ,X), (σ↓(s), σ↓(t)) ∈ (→∗

R)MR holds. In particular, for the
empty substitution ϵ, we have ϵ↓(s) = s↓ and ϵ↓(t) = t↓, i.e., (s↓, t↓) ∈ (→∗)MR holds. ◀

▶ Theorem 11. A CTRS is (locally) confluent if and only if MR |= φCR (resp. MR |= φWCR)
holds.

Proof. We develop the proof for confluence (i.e., φCR). For local confluence (i.e., φWCR)) it is
analogous. For the if part, if MR |= φCR holds, then, for all terms s, t, u ∈ T (F ,X), whenever
both (s↓, t↓) ∈ (→∗)MR and (s↓, u↓) ∈ (→∗)MR hold, there is v ∈ T (F ,X) such that both
(t↓, v↓) ∈ (→∗)MR and (u↓, v↓) ∈ (→∗)MR hold. By using Proposition 9, we conclude that, if
s→∗

R t and s→∗
R u hold, then t→∗

R v and u→∗
R v. Hence, R is confluent.

As for the only if part, if R is confluent, then for all terms s, t, u ∈ T (F ,X), whenever s→∗
R t

and s →∗
R u, there is v ∈ T (F ,X) such that t →∗

R v and u →∗
R v. By definition of MR, this

means that whenever (s↓, t↓), (s↓, u↓) ∈ (→∗)MR , we also have (t↓, v↓), (u↓, v↓) ∈ (→∗)MR . Thus,
by Proposition 9,MR |= (∀x⃗)s→∗ t∧s→∗ u impliesMR |= (∀x⃗)t→∗ v∧u→∗ v, i.e.,MR |= φCR

holds. ◀

▶ Proposition 15. Let R be a CTRS. A CCP π : ⟨s, t⟩ ⇐ C is joinable if and only if MR |=
(∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds, where x⃗ = x1, . . . , xm are the variables occurring in C, s, t and
z /∈ Var(C, s, t).

Proof. We treat the particular case of oriented CTRSs. For join or semi-equational CTRSs it
is similar. Let C = s1 ≈ t1, . . . , sn ≈ tn. As for the only if part, if π is joinable, then for all
substitutions σ ∈ X → T (F ,X) such that σ(C) holds, i.e., for all 1 ≤ i ≤ n, σ(si)→∗

R σ(ti) holds,
there is a term u ∈ T (F ,X) such that σ(s) →∗

R u and σ(t) →∗
R u holds as well. By Proposition

6, if σ(C) holds, then σ↓(C) holds as well. Furthermore, if σ(s) →∗
R u and σ(t) →∗

R u, then
σ↓(s) →∗

R u↓ and σ↓(t) →∗
R u↓. Therefore, for all substitutions σ : X → T (F ,X), whenever

σ↓(C) holds, then there is z ∈ T (FX) such that σ↓(s) →∗ z ∧ σ↓(t) →∗ z holds as well, i.e.,
MR |= (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds.

As for the if part, ifMR |= (∀x⃗)(∃z)C ⇒ s→∗ z∧t→∗ z holds, then by definition of satisfiability
in MR, for all substitutions σ : X → T (F ,X), if (σ(si)↓, σ(ti)↓) ∈ (→∗)MR holds for all 1 ≤ i ≤ n,
then there is u ∈ T (F ,X) such that both (σ(s)↓, u↓) ∈ (→∗)MR and (σ(t)↓, u↓) ∈ (→∗)MR hold as
well. By definition of MR, for all substitutions σ, whenever σ(si)→∗

R σ(ti) holds for all 1 ≤ i ≤ n,
we have σ(s)→∗ u and σ(s)→∗ u, i.e., π is joinable. ◀

▶ Corollary 17. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If R ⊢ (∀x⃗)(∃z) C ⇒ s→∗

z ∧ t→∗ z holds, then π is joinable.

Proof. If R ⊢ (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds, then R |= (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds
as well. By Theorem 8, MR |= R holds. Hence, MR |= (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds. By
Proposition 15, π is joinable. ◀

▶ Corollary 18. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If s↓ →∗ z, t↓ →∗ z is
R-feasible, then π is joinable.

Proof. If s↓ →∗ z, t↓ →∗ z is R-feasible, there is a term u ∈ T (F ,X) such that s↓ →∗
R u↓ and

t↓ →∗
R u↓, i.e., by Proposition 6, s →∗

R u and t →∗
R u, hence (s↓, u↓), (t↓, u↓) ∈ (→∗)MR . By

Proposition 9, MR |= (∀x⃗) s →∗ u ∧ t↓ →∗ u, i.e., MR |= (∀x⃗)(∃z) s →∗ z ∧ t↓ →∗ z holds. By
Proposition 15, π is joinable. ◀

▶ Proposition 20. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that C↓ is R-feasible.
If s↓ →∗ z, t↓ →∗ z is R-infeasible, then π is not joinable.

FSTTCS 2021

44:18 Confluence of Conditional Rewriting in Logic Form

Proof. By contradiction. If π is joinable, then for all substitutions σ : X → T (F ,X), if σ(C)
holds, then there is a term u such that σ(s) →∗ u and σ(t) →∗ u. Since C↓ is R-feasible, no
instantiation of variables in C is necessary for the condition C of π to hold, i.e., ϵ(C) holds and
therefore ϵ(s) = s ↓R t = ϵ(t) holds as well. By Proposition 6, s↓ ↓R t↓ holds, i.e., s↓ →∗ z, t↓ →∗ z

is R-feasible, leading to a contradiction. ◀

▶ Proposition 22. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that Var(s, t)∩Var(C) =
∅. Then, π is joinable if and only if C is R-infeasible or s↓ →∗ z, t↓ →∗ z is R-feasible.

Proof. By Proposition 15, π is joinable if and only if MR |= (∀x⃗)(∃z)C ⇒ s→∗ z ∧ t→∗ z holds.
Since Var(s, t) ∩ Var(C) = ∅, this is equivalent to MR |= (∀y⃗1)¬C ∨ (∀y⃗2)(∃z)s →∗ z ∧ t →∗ z,
where y⃗1 are the variables Var(C) and y⃗2 are the variables Var(s, t), with y⃗1∩ y⃗2 = ∅ and x⃗ = y⃗1∪ y⃗2.
This is equivalent to (i) MR |= ¬(∃y⃗1)C or (ii) MR |= (∀y⃗2)(∃z)s→∗ z ∧ t→∗ z. By definition of
satisfiability in MR and using Proposition 6, (ii) is equivalent to the existence of a term u such that
both (s↓, u↓) ∈ (→∗)MR and (t↓, u↓) ∈ (→∗)MR hold.

Now, for the if part, we show that R-infeasibility of C implies (i) and R-feasibility of s↓ →∗

z, t↓ →∗ z implies (ii). First, if C is R-infeasible, then there is no substitution σ : X → T (F ,X)
such that R ⊢ σ(C) holds. This clearly implies MR |= ¬(∃y⃗1)C; otherwise, there would be a
substitution σ : X → T (F ,X) such that MR |= σ(C) holds. By Proposition 6, though, this
implies that R ⊢ σ(C) holds as well, leading to a contradiction. Second, if s↓ →∗ z, t↓ →∗ z is
R-feasible, then there is u ∈ T (F ,X) such that R ⊢ s↓ →∗ u↓ and R ⊢ t↓ →∗ u↓, i.e., s→∗

R u

and t→∗
R u holds. Therefore, MR |= (∃z)s→∗ z ∧ t→∗ z holds and π is joinable.

For the only if part, if (i) holds, then there is no substitution σ : X → T (F ,X) such that
MR |= σ(C) holds. If C would beR-feasible, though, then, by [11, Theorem 1], R ⊢ (∃y⃗1)C holds.
By using Theorem 8, we then conclude that MR |= (∃y⃗1)C holds, leading to a contradiction.
Finally, if (ii) holds, then both (s↓, u↓) ∈ (→∗)MR and (t↓, u↓) ∈ (→∗)MR hold. By definition of
MR and Proposition 6, we have s↓ →∗

R u and t↓ →∗
R u, i.e., s↓ →∗ z, t↓ →∗ z is R-feasible. ◀

▶ Proposition 26. Let R be a CTRS. If CCP(R) contains a non-joinable CCP, then R is not
(locally) confluent.

Proof. If ⟨s, t⟩ ⇐ D ∈ CCP(R) is not joinable, then, according to Definition 14, there is a substitution
σ such that σ(D) holds and σ(s) ↓R σ(t) does not hold. Note that s = θ(ℓ[r′]p) and t = θ(r′) for
some rules ℓ → r ⇐ C and ℓ′ → r′ ⇐ C′, p ∈ PosF (ℓ), mgu θ of ℓ|p and ℓ′, and D = θ(C), θ(C′).
Since σ(D) = σ(θ(C)), σ(θ(C′)) holds, both σ(θ(C)) and σ(θ(C′)) hold as well (disregarding the
join, oriented, or semiequational semantics for R). Thus, σ(θ(ℓ))→ σ(s) using α′ and σ(θ(ℓ))→ σ(t)
using α. Since σ(s) and σ(t) are not joinable, R is not locally confluent. Hence, it is not confluent. ◀

▶ Corollary 32. A terminating normal CTRS is confluent if all its critical pairs are joinable overlays.

Proof. By [7, Theorem 4], a terminating conditional join CTRS whose critical pairs are all joinable
overlays is confluent. Now, considering Remark 31, the statement of the corollary follows. ◀

	1 Introduction
	2 Preliminaries
	3 Term Rewriting as Satisfiability
	3.1 Operational Semantics of Conditional Rewriting in Logic Form
	3.2 Dealing With Variables in Terms as (Fresh) Constants
	3.3 A Ground Model for Rewriting Terms with Variables

	4 Confluence of Rewriting as a Satisfiability Problem
	5 Proofs of confluence using critical pairs
	6 Joinability of Terms and Feasibility Problems
	6.1 Proving Conditional Joinability
	6.2 Disproving Conditional Joinability

	7 Confluence of CTRSs
	8 Implementation and Experimental Evaluation
	9 Related Work
	10 Conclusions and Future Work
	A Proofs of theorems

