
On the Expressive Equivalence of TPTL in the
Pointwise and Continuous Semantics
Raveendra Holla #

Citrix Systems India Pvt. Ltd., Bangalore, India

Nabarun Deka #

Indian Institute of Science Bangalore, India

Deepak D’Souza #

Indian Institute of Science Bangalore, India

Abstract
We consider a first-order logic with linear constraints interpreted in a pointwise and continuous
manner over timed words. We show that the two interpretations of this logic coincide in terms
of expressiveness, via an effective transformation of sentences from one logic to the other. As a
consequence it follows that the pointwise and continuous semantics of the logic TPTL with the since
operator also coincide. Along the way we exhibit a useful normal form for sentences in these logics.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Real-Time Logics, First-Order Logics

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.45

1 Introduction

Several real-time logics proposed in the literature have been interpreted over timed behaviours
in two natural ways which have come to be known as the “pointwise” and “continuous”
interpretations. In the pointwise semantics, formulas may be asserted only at points where
an action occurs (the so-called “action points”), while in the continuous semantics formulas
may be asserted at arbitrary time points. To illustrate these semantics, consider the popular
timed temporal logic Metric Temporal Logic (MTL) [10, 1, 12], which extends the U operator
of classical LTL with an interval index, to allow formulas of the form θUIη which says that,
with respect to the current time point, there is a future time point where η is satisfied and
which lies at a distance that falls within the interval I, and at all time points in between θ is
satisfied. Consider a timed word σ depicted in Fig. 1 below, in which the first action is an a
at time 2, followed subsequently by only b’s. Then the MTL formula ♢(♢[1,1]a) is satisfied in
σ in the continuous semantics, but not in the pointwise semantics since there is no action
point at time 1.

The Timed Temporal Logic (TPTL) of Alur and Henzinger [2, 3] is a well-known timed
temporal logic for specifying real-time behaviors. The logic is interpreted over timed words
and extends classical LTL with the “freeze” quantifier x.θ which binds x to the value of
the current time point, along with the ability to constrain these time points using linear
constraints of the form x ∼ y + c. For example the formula x.(♢y.(a ∧ y = x+ 2)) says that
with respect to the current time point, an action a occurs exactly two time units later. Then
the TPTL formula ♢x.♢y.(a ∧ y = x+ 1) is satisfied in σ in the continuous semantics, but
not in the pointwise semantics, since there is no action point at time 1. It is not difficult to

0 1 2 3 4

a b b

Figure 1 Timed word σ.

© Raveendra Holla, Nabarun Deka, and Deepak D’Souza;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 45; pp. 45:1–45:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raveendrak@gmail.com
mailto:nabarundeka@iisc.ac.in
mailto:deepakd@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.45
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Equivalence of Pointwise and Continuous TPTL

see that for a typical timed temporal logic the continuous semantics is at least as expressive
as the pointwise one, since one can ask for a time point to be an action point by asserting∨

a∈Σ a at each quantified time point.
There have been several results in the literature which show that for the logic MTL and

its variants the continuous semantics is in fact strictly more expressive than the pointwise
one. In particular, the logics MTL over infinite words [4, 5] and finite words [13]; MTLS

(MTL with the “since” operator S) and MTLSI
(MTL with the SI operator), over both

infinite and finite words [7]; are all strictly more expressive in the continuous semantics than
their pointwise counterparts. In addition, Ho et al [9] show the strict inclusion of MTL in a
first-order logic FO(<,+1) over finite words in the pointwise semantics, in contrast to their
equivalence in the continuous semantics [11].

In this paper we show, somewhat surprisingly, that the logic TPTLS (TPTL with the
“since” operator) has the same expressive power in both the pointwise and continuous
semantics. We do this by considering a natural first-order logic FO(<,+Q) interpreted over
timed words, which is similar in flavour to TPTLS . The logic allows atomic predicates of
the form a(x) which says that an a-event occurs at time point x, and constraints of the form
x < y + c. The interpretation of the quantifier ∃x depends on the pointwise or continuous
semantics: in the pointwise it is interpreted as “there exists an action point x”, while in the
continuous semantics it is interpreted as “there exists a time point x.” The main technical
result in this paper is that the expressiveness of FO(<,+Q) in the pointwise and continuous
interpretations coincide.

The main proof idea is to show that we can go from an arbitrary sentence in the
continuous version of FO(<,+Q) to an equivalent sentence in FO(<,+Q) which uses only
“active” quantifiers, where each ∃x is qualified by an assertion that x is an action point. A
sentence in which all quantifiers are active, is clearly equivalent to a pointwise formula.

The technique in this paper builds on the work reported in a preprint [6] by giving a more
transparent argument for a key step of the proof via Thm. 2. In the next few sections of this
paper we focus on the result for FO(<,+Q), and turn to its application to TPTL in Sec. 7.

2 Preliminaries

We begin with some preliminary definitions. Let R≥0 denote the set of non-negative real
numbers, Q the set of rational numbers, and N the set of non-negative integers. We use the
standard notation to represent intervals, which are convex subsets of R. For example [1,∞)
denotes the set {t ∈ R | 1 ≤ t}.

For an alphabet A we denote by Aω the set of infinite words over A. Let Σ be a finite
alphabet of actions, which we fix for the rest of this paper. An (infinite) timed word σ over
Σ is an element of (Σ × R≥0)ω of the form (a0, t0)(a1, t1) · · · , satisfying the conditions that:
for each i ∈ N, ti < ti+1 (monotonicity), and for each t ∈ R≥0 there exists an i ∈ N such
that t < ti (progressiveness). For convenience, we will also assume in this paper that t0 = 0,
so that the timed word begins with an action at time 0. We will sometimes represent the
timed word σ above as a pair (α, τ), where α = a0a1 · · · and τ = t0t1 · · · . Thus α(i) and
τ(i) denote the the action and the time stamp respectively, in σ at position i. We write TΣω

to denote the set of all timed words over Σ.
We now introduce the linear constraints we use in this paper, and some notation for

manipulating them. We assume a supply of variables Var = {x, y, . . .} which we will use
in constraints as well as later in our logics. We use restricted linear constraints of the
form x ∼ y + c or x ∼ c, where x and y are variables in Var , ∼ is one of the relations
{<,≤,=,≥, >}, and c is in Q. We call these constraints simple constraints. In general, by
(an unqualified) “constraint” we will mean a conjunction of simple constraints.

R. Holla, N. Deka, and D. D’Souza 45:3

0 ≤ x ≤ 1
x+ 1 ≤ y ≤ x+ 1.2

0 ≤ y

(a)

0 ≤ x ≤ 1
y − 1.2 ≤ x ≤ y − 1

0 ≤ y

(b)

0 ≤ y − 1
y − 1.2 ≤ 1
y − 1.2 ≤ y − 1

0 ≤ y

(c)

1 ≤ y ≤ 2.2

(d)

Figure 2 Illustrating steps of the Fourier-Motzkin elimination method.

An assignment for variables is a map I : Var → R≥0. For t ∈ R≥0 and x ∈ Var we will
use I[t/x] to represent the assignment which sends x to t, and agrees with I on all other
variables. When we are interested in a finite set of variables {x1, . . . , xn} we will write
[t1/x1, . . . , tn/xn] to represent an assignment that maps each xi to ti. For an assignment I
and a constraint δ, we write I |= δ to mean that the constraint δ is satisfied in the assignment
I, and defined in the expected way.

As a final piece of notation, we will make use of the well-known Fourier-Motzkin method
for eliminating variables from constraints. Given a conjunction π of simple constraints, some
of which contain a variable x, the technique gives us a conjunction π′ of simple constriants
not containing x, such that the formula ∃xπ is logically equivalent to π′ (assuming a standard
first-order logic interpreted over rationals or reals). When we are interested in the domain
of R≥0 (like in this paper), we assume that π implicitly contains the constraint z ≥ 0 for
each variable z in π. As an illustration of the method, consider the conjunction π of the
constraints in Fig. 2(a). To eliminate x from π, we first rewrite the constraints involving
x as lower and upper bounds on x, as shown in the first two constraints in Fig. 2(b), and
carry forward the constraints not involving x (like the third one). Next we relate each lower
bound of x to each upper bound of x, as shown in the first three constraints of Fig. 2(c),
while carrying forward the constraints not involving x. Finally, we simplify the constraints
by dropping looser bounds and removing redundant constraints like 0 ≤ 1, to obtain the
constraint π′ in Fig. 2(d). The constraint π′ can be seen to be logically equivalent to ∃xπ.

We will use the notation FMEx(π) to refer to the constraint π′. We refer the reader
to [14] for the details of this technique.

3 The FO(<, +Q) logic

We now define our first order logic with simple constraints FO(<,+Q), which is interpreted
over timed words over the alphabet Σ. The formulas of FO(<,+Q) are given by:

φ ::= a(x) | g | ¬φ | φ ∨ φ | ∃xφ,

where a ∈ Σ, x ∈ Var , and g is a simple constraint.
We first define the continuous semantics for FO(<,+Q). Let φ be a formula in FO(<,+Q).

Let σ = (α, τ) be a timed word over Σ, and let I be an assignment for variables. Then the
satisfaction relation σ, I |=c φ (read “σ satisfies φ with the assignment I in the continuous
semantics”) is inductively defined as:

σ, I |=c a(x) iff ∃i : τ(i) = I(x) and α(i) = a

σ, I |=c g iff I |= g

σ, I |=c ¬ν iff σ, I ̸|=c ν

σ, I |=c ν ∨ ψ iff σ, I |=c ν or σ, I |=c ψ

σ, I |=c ∃xν iff ∃t ∈ R≥0 such that σ, I[t/x] |=c ν.

FSTTCS 2021

45:4 Equivalence of Pointwise and Continuous TPTL

The derived connectives ∧, ⊃ (implies), ∀, etc are defined in the standard way. A variable
x is said to occur free in a formula φ if there is an occurrence of x that is not within the scope
of any ∃x quantifier in φ. A sentence is a formula in which there are no free occurrences of
variables. The satisfaction of a sentence in a timed word is independent of an assignment
for variables. The timed language defined by an FO(<,+Q) sentence φ in the continuous
semantics is given by Lc(φ) = {σ ∈ TΣω | σ |=c φ}.

We can similarly define the pointwise semantics of the logic FO(<,+Q), where the
quantification is over action points in the timed word. The satisfaction relation σ, I |=pw φ is
defined as above, except for the ∃ clause which is interpreted as follows:

σ, I |=pw ∃xν iff ∃t ∈ R≥0 such that t = τ(i) for some i ∈ N, and σ, I[t/x] |=pw ν.

The timed language defined by a sentence φ in the pointwise semantics is given by
Lpw(φ) = {σ ∈ TΣω | σ |=pw φ}.

The formulas of the logic FO(<,+Q) can be seen to be essentially that of a first-order logic
over the signature (0, {+c}c∈Q, <, {a}a∈Σ), where each +c is a function that adds the rational
c to its argument, and each a ∈ Σ is a unary predicate. The logic is interpreted over timed
words in the expected way, with the domain being R≥0 in the continuous interpretation, and
the set of action points in the pointwise interpretation. In the sequel we will write FOc(<,+Q)
to denote the logic with the continuous interpretation, and similarly FOpw(<,+Q) to denote
the pointwise interpretation.

4 A normal form for FO sentences

In this section we exhibit a normal form for FOc(<,+Q) sentences which will be useful in our
proofs. We begin with a normal form for formulas of the form ∃xφ. An FOc(<,+Q) formula
is said to be in ∃-normal form if it is of the form ∃x(a(x) ∧ π(x) ∧ ν), where a ∈ Σ, π(x) is a
conjunction of simple constraints each containing x, and ν is a conjunction of formulas of
the form ψ or ¬ψ, where each ψ is again in ∃-normal form. In addition, we allow any of the
components a(x) and ν to be absent. We say a formula is in negated ∃-normal form if it is
the negation of a formula in ∃-normal form. Fig. 3 depicts a sentence which is a boolean
combination of ∃-normal form sentences.

∨

∃x

g′(q)

∧

∧∧

∧ ¬

g(q)

g(x)a(x)
∃p

∧

b(p)g(p)

∃y

¬∃q g(y)

Figure 3 Boolean combination of sentences in ∃-normal form.

▶ Theorem 1. Any FOc(<,+Q) sentence can be equivalently expressed as a boolean combin-
ation of sentences in ∃-normal form.

Proof. Let φ be an FOc(<,+Q) sentence. Since φ is a sentence it must be a boolean
combination of sentences of the form ∃xφ′. We transform φ into an equivalent sentence
which is a boolean combination of sentences in ∃-normal form, by repeatedly transforming
the formula tree of φ as follows:

R. Holla, N. Deka, and D. D’Souza 45:5

1. In every subtree rooted at a ∃-node, in the formula tree of φ, push every ¬ operator
downwards over ∨, ∧, and all the way through g nodes, till it reaches a ∃-node or an a

(action) node. After this step, the subtree below every ∃ node contains only conjunctions
and disjunctions of a, ¬a, ∃, ¬∃, and g nodes.

2. For convenience, in the next couple of steps, we will consider ¬∃ as a single composite
node in the formula tree. Pull all the ∨’s upwards in the resulting formula tree for φ, using
the following identities: ν1 ∧ (ν2 ∨ν3) ≡ (ν1 ∧ν2)∨ (ν1 ∧ν3), ∃x(ν1 ∨ν2) ≡ (∃xν1)∨ (∃xν2)
and ¬∃x(ν1 ∨ ν2) ≡ (¬∃xν1) ∧ (¬∃xν2). It is not difficult to see that using these identities
we obtain a formula φ′ in which each ∃-node or ¬∃-node contains only conjunctions of a,
¬a, ∃, ¬∃, and g nodes.

3. In this step we pull up from a subtree rooted at an ∃x node, all nodes which are independent
of x, namely nodes of the form b(y), ¬b(y) (with y ̸= x), and g where g does not contain
x. This is done by recursively applying following equivalences starting from the lower
most ∃x or ¬∃x nodes: ∃x(b(y) ∧ ν) ≡ b(y) ∧ ∃x(ν) and ¬∃x(b(y) ∧ ν) ≡ ¬b(y) ∨ ¬∃x(ν).
We can use similar equivalences for ¬b(y) and g to pull them up the tree. Finally, we
move all the newly generated ∨’s up the tree using Step 2.
After this step, the subtrees rooted at each ∃x node is a conjunction of a(x), ¬a(x), ∃,
¬∃ and g(x) nodes.

4. We now update the formula tree with the following equivalences: a(x) ∧ b(x) ≡⊥ and
a(x) ∧ ¬b(x) ≡ a(x), where a, b ∈ Σ with a ̸= b. After this step, the only action-related
nodes in a subtree rooted at a ∃x node are a single action node a(x) or a conjunction of
negation of actions of the form

∧
a∈X ¬a(x) for some X ⊆ Σ.

5. We can now replace formulas of the form
∧

a∈A ¬a(x) by a disjunction of formulas which
contain at most one action, as described below. We then pull up the newly generated
∨ nodes up the tree using Step 2. After this step, the subtree rooted at every ∃x node
contains only conjunctions of a(x), ∃, ¬∃ and g(x) nodes. We can collect the g(x) nodes
together to get a single conjunction of constraints π(x). Thus finally each subtree rooted
at ∃ node is in ∃-normal form.

To see how we can replace formulas of the form
∧

a∈A ¬a(x) by a disjunction of formulas
in ∃-normal form, consider a formula ψ of the form ∃x(

∧
a∈A ¬a(x) ∧ π(x) ∧ ν). Let A(x)

be shorthand for the formula
∨

a∈A a(x). Then, ψ = ∃x(¬A(x) ∧ π(x) ∧ ν). We claim that
φ ≡ ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4 with each ψi defined as follows. The figure below illustrates these
cases. We view the constraint π(x) as an interval determined by the values assigned to the
variables other than x.

ψ1 :
a a a

π

ψ2 :
a a a a

xl

ψ3 :
a a a

xjxi

ψ4 :
a a a a

xr

If an A-action does not occur anywhere in the interval π(x), then φ is satisfied if ν is
satisfied for any x in π(x):

ψ1 = ¬∃x(A(x) ∧ π(x)) ∧ ∃x(π(x) ∧ ν)

If there are one or more actions A(x) in π(x) then φ is satisfied iff ν is satisfied before the
first occurrence of A(x), or between any two consecutive occurrences of A(x), or after the
last occurrence of A(x), in π(x). These three cases are formulated as follows:

FSTTCS 2021

45:6 Equivalence of Pointwise and Continuous TPTL

ψ2 = ∃xl(A(xl) ∧ π(xl) ∧ ¬∃x′(A(x′) ∧ π(x′) ∧ x′ < xl) ∧ ∃x(π(x) ∧ x < xl ∧ ν))
ψ3 = ∃xi(A(xi) ∧ π(xi) ∧ ∃xj(A(xj) ∧ π(xj) ∧ ¬∃x′(A(x′) ∧ π(x′) ∧ xi < x′ < xj)

∧∃x(π(x) ∧ xi < x ∧ x < xj ∧ ν)))
ψ4 = ∃xr(A(xr) ∧ π(xr) ∧ ¬∃x′(A(x′) ∧ π(x′) ∧ xr < x′) ∧ ∃x(π(x) ∧ xr < x ∧ ν))

This completes the proof of the normal form transformation. ◀

5 Equivalence of FOc and FOpw semantics

In this section our aim is to show that the logics FOpw(<,+Q) and FOc(<,+Q) are ex-
pressively equivalent. It is easy to translate an FOpw(<,+Q) sentence φ to an equivalent
FOc(<,+Q) sentence by simply replacing every ∃xφ′ subformula, by ∃x(

∨
a∈Σ a(x) ∧ φ′′),

where φ′′ is obtained by similarly replacing ∃-subformulas in φ′.
In the converse direction, let us call an FOc(<,+Q) formula φ actively quantified (or

simply active) if every ∃-subformula is of the form ∃x(a(x) ∧ φ′) for some action a ∈ Σ and
formula φ′. Then, an active FOc(<,+Q) formula clearly defines the same language of timed
words, regardless of the semantics being pointwise or continuous. Hence, our aim in the rest
of this section is to show how we can go from an arbitrary formula in FOc(<,+Q) to an
equivalent active formula.

5.1 Proof Idea
A formula in the continuous semantics has the obvious advantage of being able to associate
any value in R≥0 to its variables, whereas an actively quantified variable can refer only to the
action points in a timed word. Consider the sentence below where x is passively quantified:

∃x(0 ≤ x ∧ x ≤ 1 ∧ ∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)). (1)

In the continuous semantics this is essentially asking for an a action sometime in the interval
[1, 2, 2]. However, if we interpret this sentence in the pointwise semantics we get a strictly
stronger requirement of there being an action point in the interval [0, 1] from which we have
an a-action at a distance of 1 to 1.2. In our approach we transform the given sentence to an
equivalent active sentence (all in the continuous semantics), which we can do as follows. The
given sentence is equivalent to the sentence (2) below by simple logical manipulation. Then
we apply Fourier-Motzkin elimination in the ∃x part of (2) to get the sentence (3), which is
now an equivalent active formula.

∃y(a(y) ∧ ∃x(0 ≤ x ∧ x ≤ 1 ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)) (2)
∃y(a(y) ∧ 1 ≤ y ∧ y ≤ 2.2) (3)

As another example, consider the language of all timed words over a and b, where for
every b in the interval [1,2], there is an a in [0,1] exactly one time unit earlier. This can be
written easily in FOc as:

¬∃x((¬a(x) ∧ 0 ≤ x ∧ x ≤ 1 ∧ ∃y(b(y) ∧ y = x+ 1)). (4)

But if we interpret this sentence in the pointwise semantics it does not describe the same
property. The given sentence is not in ∃-normal form and the normalization yields a
disjunction of four formulas ψ1, ψ2, ψ3, ψ4, where x is the only variable which is passively

R. Holla, N. Deka, and D. D’Souza 45:7

0 1

a

21.2

a

3

a a a

0.5 1.8

0.2 0.6 1.71.5

Figure 4 Timed word σ satisfying formula (5).

quantified. If we can eliminate x from ψ1, ψ2, ψ3, and ψ4 without introducing any new
passively quantified variables, the disjunction of these actively quantified formulas recognizes
the required language. The subformula involving x in each ψi looks like ∃x(π(x)∧∃y(b(y)∧y =
x+ 1)). This can be equivalently written as ∃y(b(y) ∧ ∃x(π(x) ∧ y = x+ 1)). We can now
use Fourier-Motzkin elimination to eliminate x from π(x) ∧ y = x+ 1 to obtain a constraint
π′(y) on y. The above formula can now be expressed equivalently as ∃y(b(y) ∧π′(y)), thereby
eliminating the passively quantified variable x.

As a final example, consider the following modified version of formula (2):

∃x(0 ≤ x ∧ x ≤ 1 ∧ ¬∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)). (5)

For the sake of simplicity, let us consider a scenario where a is the only action in Σ. The
above formula is true iff there is a point x in [0, 1] such that there is no action point a
in the interval [x + 1, x + 1.2]. To eliminate the passively quantified variable x from this
formula, we will consider the interval π1 = w1 < x+ 1 < w2 ∧ w3 < x+ 1.2 < w4 and find an
assignment to the variables w1–w4 such that for every point x which lies in the intersection of
the intervals [0, 1] and π1, there is no action point a in the interval [x+ 1, x+ 1.2]. Consider
as an example the timed word σ shown in Fig. 4. This timed word satisfies the formula (5)
with the valuation x = 0.5 since there is no action point a in the interval [1.5, 1.7]. Now
consider the following assignment, w1 = 1.2 is the first action point in σ before 1.5 and
w2 = 1.8 is the first action point in σ after 1.5. Similarly, w3 = 1.2 is the first action point
in σ before 1.7 and w4 = 1.8 is the first action point in σ after 1.7. With this assignment,
we get the interval π1 = 1.2 < x + 1 < 1.8 ∧ 1.2 < x + 1.2 < 1.8 which is equivalent to
0.2 < x < 0.6. It is easy to see that for any x in the intersection of the intervals [0, 1] and π1
there is no action point a in the interval [x+ 1, x+ 1.2]. Hence, the timed word σ will also
satisfy the equivalent formula:

∃w1∃w2∃w3∃w4(a(w1) ∧ a(w2) ∧ a(w3) ∧ a(w4)
∧∀x((0 ≤ x ≤ 1 ∧ π1) ⊃ ¬∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2))) (6)

≡ ∃w1∃w2∃w3∃w4(a(w1) ∧ a(w2) ∧ a(w3) ∧ a(w4)
∧¬∃x(0 ≤ x ≤ 1 ∧ π1 ∧ ∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2))) (7)

≡ ∃w1∃w2∃w3∃w4(a(w1) ∧ a(w2) ∧ a(w3) ∧ a(w4)
∧¬∃y(a(y) ∧ ∃x(0 ≤ x ≤ 1 ∧ π1 ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2))). (8)

We get (7) from (6) using the equivalence ∀xφ ≡ ¬∃x¬φ. Finally, we eliminate x from the
innermost part of formula (8) using Fourier-Motzkin elimination to get a formula which is
completely actively quantified. We will prove in the later part of this section that it is always
possible to identify the interval π1 using the syntax of FOc(<,+Q).

5.2 Equivalence Proof
We begin with some definitions. The quantifier depth of an FO formula is the maximum
nesting depth of quantifiers in the formula. Given a formula φ(x) (where x is free in φ) and a
timed word σ, we will call an assignment I an x-restricted assignment for φ w.r.t. the timed

FSTTCS 2021

45:8 Equivalence of Pointwise and Continuous TPTL

word σ iff for every atomic subformula y ∼ x+ c of φ, I(x) + c is not an action point of σ,
and for every atomic subformula y ∼ x− c of φ, I(x) − c is not an action point of σ. Finally,
consider a formula φ of the form ∃x(π(x) ∧ψ), where π is a conjunction of simple constraints
and ψ is a formula in ∃-normal form. We say that a timed word σ strongly satisfies φ if
there exists an x-restricted assignment I for ψ w.r.t. σ such that σ, I |= π(x) ∧ ψ.

Also, observe that for any formula in ∃-normal form, we can replace all the equality
atomic formulas, i.e. atomic formulas of the form x = y + c, with the equivalent formula
x ≤ y + c ∧ x ≥ y + c. Hence, we will first remove all the equalities in our formula using
this replacement. Furthermore, for simplicity, we will assume that the set of actions Σ is a
singleton set i.e. Σ = {a}. This idea can be generalised to a finite set of actions Σ. Now we
have the following theorem:

▶ Lemma 2. Consider a formula of the form φ = ∃x(π(x) ∧ ψ) where π is a conjunction
of simple constraints and ψ is an actively quantified formula in ∃-normal form or negated
∃-normal form. Then, we can construct a formula θ which is a disjunction of formulas of
the form:

∃w1∃w2 · · · ∃wn(
i=n∧
i=1

a(wi) ∧ ∃x(π(x) ∧π1(x,w1, . . . , wn)) ∧ ∀x((π(x) ∧π1(x,w1, . . . , wn)) ⊃ ψ)),

such that for any timed word σ which strongly satisfies φ, we also have σ |= θ.

We will prove this theorem in the next section. In the rest of this section we see how to
use it to prove the equivalence of the pointwise and continuous semantics of FO(<,+Q).

▶ Theorem 3. Given any formula φ in ∃-normal form of the form ∃x(π(x) ∧ ψ) where
ψ is actively quantified, we can construct an equivalent formula ν which is a disjunction
of formulas that are either actively quantified formulas in ∃-normal form or conjunctions
of simple constraints that do not contain x. In other words, we can eliminate the passive
variable x from φ.

Proof. We prove this by induction on the quantifier depth of the formula ψ.

Base case (quantifier depth 0): In this case our formula φ is of the form φ = ∃xπ(x). We
can use Fourier Motzkin elimination here to eliminate the variable x and get a formula which
is a conjunction of simple constraints.

Inductive case: Now assume that we have proved the theorem for quantifier depth up to n,
and consider the case when ψ has quantifier depth n+ 1. We consider three different cases
for the form of ψ.

Case 1a (Single positive conjunct): ψ = ∃y(a(y) ∧ δ ∧ ψ′). In this case, we have

φ = ∃x(π(x) ∧ ∃y(a(y) ∧ δ ∧ ψ′))
≡ ∃y(a(y) ∧ ∃x(π(x) ∧ δ ∧ ψ′)).

By the induction hypothesis the formula ∃x((π(x) ∧ δ) ∧ ψ′) can be expressed as an
equivalent formula ν = ν1 ∨ · · · ∨ νk with each νi actively quantified in ∃-normal form or
negated ∃-normal form. Hence, we get

φ ≡ ∃y(a(y) ∧ ν)
≡ ∃y(a(y) ∧ (ν1 ∨ · · · ∨ νk))
≡ ∃y(a(y) ∧ ν1) ∨ · · · ∨ ∃y(a(y) ∧ νk),

which completes the proof for this case.

R. Holla, N. Deka, and D. D’Souza 45:9

Case 1b (Single negative conjunct): ψ = ¬∃y(a(y) ∧ δ ∧ ψ′). In this case, we construct ν
as follows.

We apply Lemma 2 on the formula φ to get a disjunct θ such that for any timed word σ
if σ strongly satisfies φ, we have that σ |= θ.

Each formula in the disjunct θ is of the form:

θi = ∃w1 · · · ∃wn(
n∧

i=1
a(wi)

∧ ∃x(π(x) ∧ πi(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ)).

In the conjunct ∃x(π(x) ∧ πi(x,w1, . . . , wn)) we can eliminate the passive variable x using
Fourier-Motzkin elimination. The third conjunct is ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ).
Substituting ψ = ¬∃y(a(y) ∧ δ ∧ ψ′), we get

∀x((π ∧ πi) ⊃ ¬∃y(a(y) ∧ δ ∧ ψ′))
≡¬∃x(π ∧ πi ∧ ∃y(a(y) ∧ δ ∧ ψ′))
≡¬∃y(a(y) ∧ ∃x(π ∧ πi ∧ δ ∧ ψ′)).

Now rewrite the interval π ∧ πi ∧ δ as π′ and apply the induction hypothesis on the formula
∃x(π′ ∧ ψ′) to replace it with an equivalent disjunct ν′ = ν′

1 ∨ ν′
2 ∨ · · · ∨ ν′

k where each
disjunct is actively quantified. Hence, after these manipulations, θ is a disjunction of actively
quantified formulas in ∃-normal form and we have that for any timed word σ, if σ strongly
satisfies φ, we have σ |= θ.

Now we have to take care of the corner cases where σ |= φ but σ does not strongly satisfy
φ. For this, we do the following:

For each atomic formula of the form x ∼ v + c, where v is some variable other than x,
appearing in the formula ψ, define a formula

µ = ∃w(a(w) ∧ π(w + c) ∧ ψ[(w + c)/x]).

Define D1 to be the disjunction of all such µ’s. Similarly, for each atomic formula of the form
x+ c ∼ v appearing in the formula ψ, define a formula

µ = ∃x(a(w) ∧ π(w − c) ∧ ψ[(w − c)/x]).

Define D2 to be the disjunction of all such µ’s. Finally, define

ν = D1 ∨ D2 ∨ θ.

Observe that all the formulas in the disjuncts D1 and D2 are actively quantified formulas in
∃-normal form. Hence, ν is a disjunction of actively quantified formula in ∃ normal form.

Now, we need to show that for any timed word σ, we have σ |= φ ⇐⇒ σ |= ν. Assume
that σ |= φ, i.e. there is an assignment x = t1 such that σ, [t1/x] |= π ∧ ψ. Then, this can
happen in three ways:
1. For some atomic formula x ∼ v + c occurring in ψ, t1 − c is an action point of σ. In this

case, σ |= D1.
2. For some atomic formula x+ c ∼ v occurring in ψ, t1 + c is an action point of σ. In this

case, σ |= D2.
3. x = t1 is an x-restricted assignment for φ w.r.t σ. In this case, from Lemma 2, we get

that σ |= θ.
The other direction is straightforward.

FSTTCS 2021

45:10 Equivalence of Pointwise and Continuous TPTL

Case 2 (Multiple Conjuncts): Now we consider the case where ψ has more than one
conjunct. For simplicity, let ψ be the conjunct ψ1 ∧ ψ2. Our original formula is thus
φ = ∃x(π(x) ∧ ψ1 ∧ ψ2). We apply Lemma 2 to the formulas φ1 = ∃x(π(x) ∧ ψ1) and
φ2 = ∃x(π(x) ∧ ψ2) to get two formulas

θ′
1 =

k∨
j=1

θ1j and θ′
2 =

m∨
j=1

θ′
2j ,

where each θ′
ij is of the form:

θ′
ij = ∃w1 · · · ∃wn(

p∧
i=1

a(wi)

∧ ∃x(π(x) ∧ πij(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ πij(x,w1, . . . , wn)) ⊃ ψi).

Here note that p might be different for each (i, j) . Now for each i ∈ {1, 2, . . . , k} and
j ∈ {1, 2, . . . ,m} we construct a formula θij below:

∃w1 · · · ∃wl∃w′
1 · · · ∃w′

n(
l∧

i=1

a(wi)
n∧

i=1

a(w′
i)

∧ ∃x(π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n)) ⊃ (ψ1 ∧ ψ2)),

and define θ =
∨k

i=1
∨m

j=1 θij .
We will now show that if σ strongly satisfies φ, then σ |= θ. Suppose σ strongly satisfies

φ, then σ strongly satisfies both φ1 and φ2. Now by the single conjunct case, we know that
there exists i0 and j0 such that σ |= θ′

1i0
and σ |= θ′

2j0
. We will now show that σ |= θi0j0 .

Since σ |= θ1i0 , we have an assignment W such that

σ,W |=(
n∧

i=1
a(wi)

∧ ∃x(π(x) ∧ π1i0(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ π1i0(x,w1, . . . , wn)) ⊃ ψ1).

Similarly, since σ |= θ2j0 , we have an assignment W ′ such that

σ,W ′ |= (
n∧

i=1
a(wi)

∧ ∃x(π(x) ∧ π2j0(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ π2j0(x,w1, . . . , wn)) ⊃ ψ2).

Now, it is easy to see that

σ,W,W ′ |= (
l∧

i=1
a(wi)

n∧
i=1

a(w′
i)

∧ ∃x(π(x) ∧ π1i0(x,w1, . . . , wl) ∧ π2j0(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π1i0(x,w1, . . . , wl) ∧ π2j0(x,w′
1, . . . , w

′
n)) ⊃ (ψ1 ∧ ψ2)).

Hence, σ |= θi0j0 and σ |= θ.

R. Holla, N. Deka, and D. D’Souza 45:11

Recall that we still have to eliminate x from the θ′
ijs which are of the form:

∃w1 · · · ∃wl∃w′
1 · · · ∃w′

n(
l∧

i=1

a(wi)
n∧

i=1

a(w′
i)

∧ ∃x(π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n)) (9)

∧ ∀x((π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n)) ⊃ (ψ1 ∧ ψ2)).

(10)

We can eliminate x from (9) using Fourier-Motzkin elimination. As for (10), we do the
following manipulations (we drop the free variables wi’s to remove some clutter):

∀x((π ∧ π1i ∧ π2j) ⊃ (ψ1 ∧ ψ2))
≡∀x((π ∧ π1i ∧ π2j) ⊃ ψ1) ∧ ∀x((π ∧ π1i ∧ π2j) ⊃ ψ2)
≡¬∃x(π ∧ π1i ∧ π2j ∧ ¬ψ1) ∧ ¬∃x(π ∧ π1i ∧ π2j ∧ ¬ψ2). (11)

Now (11) has two formulas containing the passive variable x, but both of them can be
handled by the single conjunct case (Case 1 above). Hence, we have successfully eliminated
x for the multiple conjunct case.

To handle the cases where σ |= φ but σ does not strongly satisfy φ, we can do a
construction similar to the one done for Case 1b.

This completes the proof of the theorem. ◀

▶ Theorem 4. Every FOc sentence can be transformed to an equivalent active sentence.

Proof. Any FOc sentence φ can be written as a boolean combination of sentences in ∃-
normal form. Since translation is intact across the boolean operations, it is sufficient if we
can eliminate all the passive variables from formulas in ∃-normal form. We will now show
that given a formula φ in ∃-normal form which has passive variables, we can construct an
equivalent formula which is a disjunction of actively quantified formulas in ∃-normal form or
negated ∃-normal form. Observe that if we can show this, the theorem follows immediately.

We will show this by induction on the number of passive variables n of the formula φ.
We assume all quantified variables of φ are distinct, by renaming them if necessary.

Base Case: Suppose φ has 1 passive variable. Let T be the formula tree of φ, and let N be
the corresponding node in T . The subtree roooted at N is thus of the form ∃x(π(x) ∧ ψ)
where ψ is actively quantified. Now we can use Theorem 3 to replace the subtree at N with
a disjunction of actively quantified formulas in ∃-normal form. We then pull up the disjuncts
to the top of the tree to get a disjunction of actively quantified formulas in ∃-normal form.

Inductive Case: Now suppose we have shown our hypothesis for formulas with up to n
passive variables. Let φ be a formula in ∃-normal form with n+ 1 passive variables. Let T
be the formula tree of φ. We call a subtree of T rooted at node N a maximal passive subtree
if N is a passive node and has no passive nodes as ancestors.

Now, if T has more than one maximal passive subtree, then the corresponding formula for
each subtree is a formula in ∃-normal form with at most n passive variables. By our induction
hypothesis, we can replace any such subtree with a disjunction of actively quantified formulas.
We then pull out the disjunction to the top of T to get a finite disjunction of formulas
in ∃-normal form, each of which has at most n passive variables. We can then apply the
induction hypothesis on each of these to replace them with equivalent actively quantified
formulas.

FSTTCS 2021

45:12 Equivalence of Pointwise and Continuous TPTL

If T has exactly one maximal passive subtree, the formula corresponding to this subtree
is of the form ∃x(π(x) ∧ ψ) where ψ = ψ1 ∧ ψ2 ∧ · · · ∧ ψm where each ψi is in ∃-normal
form or negated ∃-normal form. Observe that since ∃x(π(x) ∧ ψ) has n+ 1 passive variables,
each ψi can have atmost n passive variables. If ψi is in negated ∃-normal form, it is of the
form ¬µi where µi is in ∃-normal form and has atmost n passive variables. We can now
apply the induction hypothesis on µi and replace it with a disjunction of acitvely quantified
formulas, i.e.

µi = νi1 ∨ νi2 ∨ · · · ∨ νik.

Therefore,

ψi = ¬µi = ¬νi1 ∧ ¬νi2 ∧ · · · ∧ ¬νik.

We first replace all such ψi’s. Now the remaining ψi’s are in ∃-normal form and each have at
most n passive variables. We apply the induction hypothesis on each of these and replace
them with disjunctions of actively quantified formulas in ∃-normal form. Hence, we get

∃x(π(x) ∧ ψ) = ∃x(π(x) ∧
k∧

i=1

li∨
j=1

νij).

Let S := {1, 2, . . . , l1} × {1, 2, . . . , l2} × · · · × {1, 2, . . . , lk}. Then

∃x(π(x) ∧ ψ) =
∨

(a1,...,ap)∈S

∃x(π(x) ∧
p∧

i=1
νiai

). (12)

Now each disjunct in (12) is in ∃-normal form with exactly one passive variable. We apply our
induction hypothesis here and replace each of them with a disjunction of actively quantified
formulas in ∃-normal form. We then pull up the disjuncts to the top of the tree T to get a
disjunction of actively quantified formulas in ∃-normal form.

Thus we have shown that for any formula in ∃-normal form, we have an equivalent actively
quantified formula, and we are done. ◀

To summarise:

▶ Theorem 5. The logics FOc and FOpw are expressively equivalent. Moreover there is an
effective procedure to translate a sentence in one logic to an equivalent one in the other. ◀

6 Proof of Lemma 2

Here we will give a proof of Lemma 2 in a simplified setting. A more detailed exposition
is given in the Appendix. For now, we will consider a simplified setting where our timed
words are two way infinite timed words i.e. the timeline is not [0,∞) but instead (−∞,∞)
and for any timed word σ and a point t0 there are action points before and after the point
t0. Recall the definition of x-restricted assignment and strong satisfaction from Section 5.
Now in this setting, we have the following lemma which says that given a timed word σ, an
interval δ(x, y) which is an interval for y determined by x (for example: x+ 1 ≤ y ≤ x+ 2),
and a value x = t1 for x, we can construct an interval π1(x) (using some other variables)
such that for any x = t′1 in the interval π1(x), the set of action points a(y) in the intervals
δ(t1, y) and δ(t′1, y) are exactly the same, i.e. for any point in the interval π1 the set of action
points in the interval δ are preserved.

R. Holla, N. Deka, and D. D’Souza 45:13

▶ Lemma 6 (Preservation of action points). Consider a formula φ = a(y) ∧ δ(x, y) where x, y
are free variables, a is an action and δ is a conjunction of simple constraints. Then, we can
construct an interval π1(x,w1, . . . , wn) where the wi’s are newly introduced free variables,
such that given any timed word σ and a x-restricted assignment I for φ w.r.t. σ (let I(x) = t1),
there exists an assignment W = [b1/w1, . . . , bn/wn] such that the bi’s are action points of σ
and, for any t′1 which satisfies [t′1/x],W |= π1(x), and for any t0, we have

σ, [t1/x, t0/y] |= φ ⇐⇒ σ, [t′1/x, t0/y] |= φ.

Furthermore, [t1/x],W |= π1(x,w1, . . . , wn).
Proof. We can think of δ as an interval for y that is determined by the value of x. This
lemma says that for any t′1 in the interval π1, the set of action points a(y) in the interval
δ([t′1/x]) is the same as that of the interval δ([t1/x]).

We construct the interval π1 using the right and left boundaries of δ. The right boundary
of δ will be of the form y ∼ x± c where ∼∈ {<,≤} and the left boundary will be of the form
y ∼ x± c where ∼∈ {>,≥}. W.l.o.g, take the left boundary to be y ≥ x− c1 and the right
boundary to be y ≤ x+ c2. Define four new variables w1, w2, w3 and w4 and define π1 as

π1 := w1 < x− c1 < w2 ∧ w3 < x+ c2 < w4.

Now take any timed word σ and a x-restricted assignment I for φ w.r.t. σ, with I(x) = t1.
The assignment W is defined as follows:
1. Let b1 be the first action point of σ that precedes the point t1 − c1. Assign w1 := b1
2. Let b2 be the first action point of σ that succeeds the point t1 − c1. Assign w2 := b2
3. Let b3 be the first action point of σ that precedes the point t1 + c2. Assign w3 := b3
4. Let b4 be the first action point of σ that succeeds the point t1 + c2. Assign w4 := b4
With this assignment, it is easy to see that for any x = t′1 in the interval π1 i.e. [x/t′1],W |= π1,
the set of action points in the intervals δ([x/t1]) and δ([x/t′1]) is the same. Also, [x/t1],W |=
π1(x,w1, . . . , wn). And hence, the lemma follows. ◀

With this lemma we will prove the version of Lemma 2 in our simplified setting, which
we state below:
▶ Lemma 7. Consider a formula of the form φ = ∃x(π(x) ∧ ψ) where π is a conjunction
of simple constraints and ψ is an actively quantified formula in ∃-normal form or negated
∃-normal form. Then, we can construct an equivalent formula µ which is of the form:

∃w1 · · · ∃wn(
n∧

i=1
a(wi) ∧ ∃x(π(x) ∧π1(x,w1, . . . , wn)) ∧ ∀x((π(x) ∧π1(x,w1, . . . , wn)) ⊃ ψ))

such that for any timed word σ which strongly satisfies φ, we also have σ |= µ

Proof. We will prove the lemma by inducting on the quantifier depth of the formula ψ.

Base Case (quantifier depth = 1): In this case, ψ = ∃y(a(y) ∧ δ) or ψ = ¬∃y(a(y) ∧ δ).
We apply the preservation of action points lemma on the formula a(y) ∧ δ to get the interval
π1(w1, w2, . . . , wn) for which action points in the interval δ are preserved. We define µ as
follows:

∃w1, w2, . . . , wn(
n∧

i=1
a(wi)∧∃x(π(x)∧π1(x,w1, . . . , wn))∧∀x((π(x)∧π1(x,w1, . . . , wn)) ⊃ ψ)).

Now pick any timed word σ such that σ strongly satisfies φ. The preservation of action
points lemma will give us a valuation W for the variables w1, . . . , wn. It is easy to see that
σ |= µ with the valuation W

FSTTCS 2021

45:14 Equivalence of Pointwise and Continuous TPTL

Inductive Case (quantifier depth = n): In this case, ψ = ∃y(a(y) ∧ δ ∧ ν) or ψ =
¬∃y(a(y) ∧ δ ∧ ν) where ν is of quantifier depth n− 1. To construct θ, we first look at the
formula φ′ = ∃x(π(x) ∧ ψ′) where ψ′ = ν if ψ = ∃y(a(y) ∧ δ ∧ ν) and ψ′ = ¬ν otherwise.
Applying induction hypothesis to this formula, we get the formula

µ′ = ∃w′
1, w

′
2, . . . , w

′
m(

m∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

1(x,w1, . . . , wm))

∧ ∀x((π(x) ∧ π′
1(x,w1, . . . , wm)) ⊃ ψ′)).

We apply the preservation of action points lemma on the formula a(y) ∧ δ to get the interval
π1(w1, w2, . . . , wn) for which action points in the interval δ are preserved. We construct µ
using π1 and µ′ as follows:

µ = ∃w1, . . . , wn∃w′
1, w

′
2, . . . , w

′
m(

n∧
j=1

a(wj)
m∧

i=1
a(w′

i)

∧ ∃x(π(x) ∧ π1(x,w1, . . . , wn) ∧ π′
1(x,w′

1, . . . , w
′
m))

∧ ∀x((π(x) ∧ π1(x,w1, . . . , wn) ∧ π′
1(x,w′

1, . . . , w
′
m)) ⊃ ψ)).

Pick any timed word σ such that σ strongly satisfies φ i.e. there is a x-restricted assigment
I(x) = t1 such that σ, [t1/x] |= π(x) ∧ ψ. We need to show that for any x = t′1 in the interval
π ∧ π1 ∧ π′

1 we have ψ. Now from the preservation of action points lemma, we know that
for any x = t′1 in the interval π1, the action points in the interval δ are preserved. Also, by
the induction, the interval π′

1 ensures that for any x = t′1 in the interval π′
1, σ, [t′1/x] |= ψ′.

Hence, for any x = t′1 in the intersection of these intervals, i.e. the interval π ∧ π1 ∧ π′
1 we

have σ, [t′1/x] |= ψ. Hence, we get that σ |= µ. ◀

7 Equivalence of FO and TPTLS

We can now argue that the logic TPTLS is expressively equivalent in its continuous and
pointwise semantics. We recall that the formulas of TPTLS [3, 5] over the alphabet Σ, are
defined as follows: θ ::= a | g | ¬θ | θ ∨ θ | θUθ | θSθ | x.θ where a ∈ Σ, x is a variable in
Var , and g is a simple constraint.

In the pointwise semantics, for a TPTLS formula θ, timed word σ = (α, τ) over Σ, i ∈ N,
and an assignment for variables I, we define the satisfaction relation σ, i, I |=pw θ, as:

σ, i, I |=pw a iff α(i) = a

σ, i, I |=pw g iff I |= g

σ, i, I |=pw θUη iff ∃k : i < k s.t. σ, k, I |=pw η and ∀j : i < j < k : σ, j, I |=pw θ

σ, i, I |=pw θSη iff ∃k : 0 ≤ k < i s.t. σ, k, I |=pw η and ∀j : k < j < i, σ, j, I |=pw θ

σ, i, I |=pw x.θ iff σ, i, I[τ(i)/x] |=pw θ,

with boolean operators handled in the expected way. For a “closed” TPTLS formula θ, in
which every occurrence of x is within the scope of a freeze quantifier “x.”, we set the language
defined by it to be Lpw(θ) = {σ ∈ TΣω | σ, 0 |=pw θ}.

In the continuous semantics, for a TPTLS formula θ, a timed word σ = (α, τ) over Σ,
t ∈ R≥0, and an assignment I, the satisfaction relation σ, t, I |=c θ is defined similarly, except
that:

R. Holla, N. Deka, and D. D’Souza 45:15

σ, t, I |=c a iff ∃i : α(i) = a and τ(i) = t

σ, t, I |=c θUη iff ∃t′ : t < t′ s.t. σ, t′, I |=c η and ∀t′′ : t < t′′ < t′, σ, t′′, I |=c θ

σ, t, I |=c θSη iff ∃t′ : 0 ≤ t′ < t s.t. σ, t′, I |=c η and ∀t′′ : t′ < t′′ < t, σ, t′′, I |=c θ

σ, t, I |=c x.θ iff σ, t, I[t/x] |=c θ.

We use the standard syntactic abbreviations of ♢,♢- ,□ and □- defined in a reflexive manner:
♢θ = θ ∨ (⊤Uθ), ♢- θ = θ ∨ (⊤Sθ), □θ = ¬♢¬θ, and □- θ = ¬♢- ¬θ. We note that in TPTLS it
is possible to express the U and S operators using ♢ and ♢- operators, in both the continuous
and pointwise semantics. For instance, θUη ≡ x.♢y.(η ∧ x < y ∧ □- z.(x < z ∧ z < y ⇒ θ)).
Hence we concentrate only on these operators in the translations below.

▶ Theorem 8. The logics TPTLc
S and TPTLpw

S are expressively equivalent. ◀

Proof. We first show that we can translate a formula in TPTLS to an equivalent one in
FO(<,+Q), and vice-versa. For a closed formula θ in TPTLS we show how to give a formula
tptl-fo(θ) in FO(<,+Q), which has a single free variable z, such that for any timed word
σ, σ, t |=c θ if and only if σ, [t/z] |=c tptl-fo(θ) (and similarly in pointwise semantics). The
translation tptl-fo is defined inductively on the structure of θ as follows:

tptl-fo(a) = a(z)
tptl-fo(g) = g

tptl-fo(♢θ′) = ∃x(x ≥ z ∧ tptl-fo(θ′)[x/z])
tptl-fo(♢- θ′) = ∃x(x ≤ z ∧ tptl-fo(θ′)[x/z])
tptl-fo(x.θ′) = (tptl-fo(θ′))[z/x]

with boolean operators handled in the expected manner. We can now translate a closed
formula θ in TPTLS to an FO(<,+Q) sentence φ = ∃z(z = 0 ∧ tptl-fo(θ)), with Lc(θ) =
Lc(φ).

In the other direction, we translate an FO(<,+Q) sentence φ, to an equivalent closed
TPTLS formula fo-tptl(φ) as follows. We first transform φ into its normal form as given in
Thm 1. The translation fo-tptl is defined inductively in a similar manner to tptl-fo above,
with ∃-subformulas being translated via the rule:

fo-tptl(∃x(a(x) ∧ π(x) ∧ ν)) = ♢x.(a ∧ π(x) ∧ fo-tptl(ν)) ∨ ♢-x.(a ∧ π(x) ∧ fo-tptl(ν)).

It is easy to see that Lc(φ) = Lc(fo-tptl(φ)).
We can now prove the non-trivial direction of the theorem. Consider a closed formula

θ of TPTLc
S . We go over to an equivalent FO(<,+Q) formula φ = tptl-fo(θ), obtain an

equivalent pointwise FO(<,+Q) formula φ′ using Thm. 5, and finally obtain an equivalent
pointwise TPTLS formula θ′, with Lc(θ) = Lpw(θ′). ◀

8 Conclusion

In this paper we have shown the expressive equivalence of, and in fact given an effective
translation between, the pointwise and continuous versions of two natural logics FO(<,+Q)
and TPTLS over timed words. Some interesting directions include addressing a similar
question for TPTL (i.e. without the since operator). One may be able to use an argument
like [8] to say that TPTL is as expressive as TPTLS in the pointwise setting. Another
interesting question is about first-order logic with Presburger constraints in general. Here it
appears that we can express strong properties in the continuous interpretation which seem
difficult to express in the pointwise setting.

FSTTCS 2021

45:16 Equivalence of Pointwise and Continuous TPTL

References
1 Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.

In 10th ACM Symposium on Principles of Distributed Computing, pages 139–152, 1991.
2 Rajeev Alur and Thomas A. Henzinger. A Really Temporal Logic. In IEEE Symposium on

Foundations of Computer Science, pages 164–169, 1989.
3 Rajeev Alur and Thomas A. Henzinger. A Really Temporal Logic. J. ACM, 41(1):181–204,

1994. doi:10.1145/174644.174651.
4 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and

MTL. In Foundations of Software Technology and Theoretical Computer Science, 2005.
5 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and

MTL. Inf. Comput., 208(2):97–116, 2010. doi:10.1016/j.ic.2009.10.004.
6 Deepak D’Souza, Raveendra Holla, and Raj Mohan M. Equivalence of the pointwise and

continuous semantics of first order logic with linear constraints, 2010. URL: https://www.
csa.iisc.ac.in/~deepakd/papers/tptl.pdf.

7 Deepak D’Souza and Pavithra Prabhakar. On the expressiveness of MTL in the pointwise and
continuous semantics. In Formal Methods Letters, Software Tools for Technology Transfer,
Vol. 9, No. 1, pages 1–4. Springer, 2007.

8 Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis of
fairness. In 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 163–173, 1980.

9 Hsi-Ming Ho, Joël Ouaknine, and James Worrell. On the Expressiveness and Monitoring of
Metric Temporal Logic. Log. Methods Comput. Sci., 15(2), 2019. doi:10.23638/LMCS-15(2:
13)2019.

10 Ron Koymans. Specifying Real-Time Properties with Metric Temporal Logic. In Real Time
Systems, pages 2(4):255–299, 1990.

11 Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-Bounded Verification. In
Mario Bravetti and Gianluigi Zavattaro, editors, 20th International Conference on Concurreny
Theory, volume 5710 of Lecture Notes in Computer Science, pages 496–510. Springer, 2009.
doi:10.1007/978-3-642-04081-8_33.

12 Joël Ouaknine and James Worrell. On the Decidability of Metric Temporal Logic. In 20th
Annual IEEE Symposium on Logic in Computer Science, pages 188–197, 2005.

13 Pavithra Prabhakar and Deepak D’Souza. On the expressiveness of MTL with past operators.
In 4th Intl. Conference on Formal Modelling and Analysis of Timed Systems, pages 322–336,
2006. doi:10.1007/11867340_23.

14 Alexander Schrijver. Theory of Linear and Integer Programming, pages 155–157. John Wiley
& Sons, 2000.

A Proof of Lemma 2

▶ Lemma 9 (Preservation of action points). Consider a formula φ = a(y) ∧ δ(x, y) where x, y
are free variables, a is an action and δ is a conjunction of simple linear constraints. Then,
we can construct a finite number of intervals π1(x,w1, w2, . . . , wn), . . . , πm(x,w1, w2, . . . , wk)
where the wi’s are newly introduced free variables, such that given any timed word σ and
an x-restricted assignment, x = t1 for φ w.r.t σ, there exists an i ∈ {1, . . . ,m} and an
assignment W = {w1 = b1, w2 = b2, . . . , wn = bn} with the bi’s being action points of the
timed word σ, such that for any t′1 which satisifes x = t′1,W |= πi(x), and for any valuation
y = t0 for y, we have

σ, x = t1, y = t0 |= φ ⇐⇒ σ, x = t′1, y = t0 |= φ.

Furthermore, x = t1,W |= πi

https://doi.org/10.1145/174644.174651
https://doi.org/10.1016/j.ic.2009.10.004
https://www.csa.iisc.ac.in/~deepakd/papers/tptl.pdf
https://www.csa.iisc.ac.in/~deepakd/papers/tptl.pdf
https://doi.org/10.23638/LMCS-15(2:13)2019
https://doi.org/10.23638/LMCS-15(2:13)2019
https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1007/11867340_23

R. Holla, N. Deka, and D. D’Souza 45:17

Proof. Observe that the constraints in δ are defining an interval for y. Based on the
boundaries of this interval, we can have four different cases:
1. Both the left end and right end of δ are of the form y ∼ x+ c

2. the left end of δ is of the form y ∼ x− c and the right end of δ is of the form y ∼ x+ c

3. Both the left and right end of δ are of the form y ∼ x− c

4. the left end of δ is of the form y ∼ x+ c and the right end is of the form y ∼ x− c

We now provide the constructions for each of the cases.
Case 1: Let the left end of δ be y ∼ x + c1 and the right end be y ∼ x + c2. In this

case, we have only 1 interval π1. We introduce 4 new variables w1, w2, w3, w4 and construct
π1 = w1 < x+ c1 < w2 ∧ w3 < x+ c2 < w4

Case 2: Let the left end of δ be y ∼ x− c1 and the right end be y ∼ x+ c2. In this case,
we have two intervals:

π1 = w1 < x− c1 < w2 ∧ w3 < x+ c2 < w4
π2 = 0 < x < c1 ∧ w3 < x+ c2 < w4

Case 3: Let the left end of δ be y ∼ x− c1 and the right end be y ∼ x− c2. We have 4
intervals:

π1 = w1 < x− c1 < w2 ∧ w3 < x− c2 < w4

π2 = 0 < x < c1 ∧ w3 < x− c2 < w4

π3 = w1 < x− c1 < w2 ∧ 0 < x < c2

π4 = 0 < x < c1 ∧ 0 < x < c2

Case 4: Let the left end of δ be y ∼ x+ c1 and the right end be y ∼ x− c2. We have 2
intervals:

π1 = w1 < x+ c1 < w2 ∧ w3 < x− c2 < w4

π2 = w1 < x+ c1 < w2 ∧ 0 < x < c2

We will prove the theorem for case 2. The proof is similar for the others. Pick any timed
word σ and an x-restricted valuation x = t1 for φ w.r.t σ. W.l.o.g, let the left end of δ be
y ≥ x− c1 and the right end be y ≤ x+ c2. We can have two cases:

Case 1 : t1 − c1 > 0. For this case, pick the interval π1 = w1 < x − c1 < w2 ∧ w3 <

x+ c2 < w4. we define the assignment W as follows:
Set w1 to be the first action point of σ that is less than t1 − c1
Set w2 to be the first action point of σ that is greater than t1 − c1
Set w3 to be the first action point of σ that is less than t1 + c2
Set w4 to be the first action point of σ that is greater than t1 + c2

Now we need to show that for any assignment y = t0 for y and any t′1 such that x = t′1,W |=
π1(x), we have σ, x = t1, y = t0 |= φ ⇐⇒ σ, x = t′1, y = t0 |= φ. Pick any assignment y = t0
for y and any t′1 such that x = t′1,W |= π1(x). Assume σ, x = t1, y = t0 |= φ. Suppose that
σ, x = t′1, y = t0 ̸|= φ, then,

σ, x = t′1, y = t0 ̸|= δ

=⇒ σ, x = t′1, y = t0 ̸|= y ≥ x− c1 OR σ, x = t′1, y = t0 ̸|= y ≤ x+ c2

WLOG suppose σ, x = t′1, y = t0 ̸|= y ≥ x−c1 or in other words, σ, x = t′1, y = t0 |= y < x−c1.
Now observe that t′1,W |= π1(x) and hence, t′1 − c1 < w2. Furthermore,

σ, x = t1, y = t0 |= φ =⇒ σ, x = t1, y = t0 |= δ

=⇒ σ, x = t1, y = t0 |= y ≥ x− c1 =⇒ t0 ≥ t1 − c1

FSTTCS 2021

45:18 Equivalence of Pointwise and Continuous TPTL

Hence, we get the inequality, t1 − c1 ≤ t0 < t′1 − c1 < w2. This is saying that t0 is an action
point of σ which lies in between t1 − c1 and w2. This directly contradicts our assignment of
w2. Hence, our assumption is wrong. Therefore, σ, x = t′1, y = t0 |= y ≥ x− c1. An exactly
similar proof will show the other direction.

Case 2: t1 − c1 < 0. For this case, pick the interval π2 = 0 < x < c1 ∧ w3 < x+ c2 < w4.
We use the same assignment W as in case 1, but restricted to the variables w3 and w4. One
can argue similar to above to show that the lemma holds in this case also.

Hence, we get our Lemma. ◀

▶ Theorem 10. Consider a formula of the form φ = ∃x(π(x) ∧ ψ) where π is a conjunction
of simple constraints and ψ is an actively quantified formula in ∃-normal form or the negation
of an actively quantified formula in ∃-normal form. Then, we can construct a formula θ

which is a disjunction of formulas of the form:

θi = ∃w1∃w2 · · · ∃wn(
n∧

i=1
a(wi) ∧ ∃x(π(x) ∧ πi(x,w1, . . . , wn))

∧ ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ))

such that for any timed word σ which strongly satisfies φ we also have σ |= θ.

Proof. Assume that σ strongly satisfies φ with an x-restricted assignment x = t1 for φ w.r.t.
σ. Observe that if σ |= θ, then there is an i0 such that σ |= θi0 . We will not only show that
σ |= θi0 for some i0, but we will also further show that σ |= θi0 with an assignment W for the
wi’s such that x = t1,W |= πi0(x,w1, . . . , wn) and the choice of the assignment W depends
only on σ and the assignment x = t1 for x.

We prove this by inducting on the quantifier depth of the formula ψ.

Base Case: Quantifier depth = 1
In this case, we have φ = ∃x(π(x) ∧ ψ) where

ψ = ∃y(a(y) ∧ δ) OR ψ = ¬∃y(a(y) ∧ δ)

Now we apply the preservation of action points lemma on the formula a(y) ∧ δ to get a finite
number of intervals π1, π2, . . . , πm. For each such interval, we construct a formula

θi = ∃w1∃w2 · · · ∃wn(
n∧

i=1
a(wi) ∧ ∃x(π(x) ∧ πi(x,w1, . . . , wn))

∧ ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ)).

We define θ =
m∨

i=1
θi.

To prove the lemma, let ψ = ∃y(a(y) ∧ δ). Now pick any timed word σ such that σ
strongly satisfies φ, i.e. there is an x- restricted assignment x = t1 for ψ w.r.t σ, such that
σ, x = t1 |= π(x) ∧ ∃y(a(y) ∧ δ). Applying our preservation of action points lemma on the
formula a(y) ∧ δ, we get an i0 ∈ {1, 2, . . . ,m}. We will now show that σ |= θi0 . To show this,
we have to show that there is an assignment W = {w1 = b1, . . . , wn = bn} such that

σ,W |=(
i=n∧
i=1

a(wi) ∧ ∃x(π(x) ∧ πi0(x,w1, . . . , wn))

∧ ∀x((π(x) ∧ πi0(x,w1, . . . , wn)) ⊃ ψ)).

R. Holla, N. Deka, and D. D’Souza 45:19

The preservation of action points lemma gives us an assignment W which preserves the
action points in the interval δ. We will use the same assignment here. σ,W |= a(wj) holds
for each j by the preservation of action points lemma. By our hypothesis, σ, x = t1 |= π(x)
and by the preservation of action points lemma we also have σ, x = t1,W |= πi0 . Hence,
we also have σ,W |= ∃x(π ∧ πi0). Also, observe that from the preservation of action points
lemma, we get that the choice of W depends only on σ and the assignment x = t1.

Now all that remains is to show that σ,W |= ∀x((π(x) ∧ πi0(x,w1, . . . , wn)) ⊃ ψ). Pick
any assignment x = t′1 of the variable x such that σ, x = t′1,W |= π(x) ∧ πi0(x,w1, . . . , wn).
We need to show that σ, x = t′1 |= ψ. By our assumption, we have that σ, x = t1 |=
π(x) ∧ ∃y(a(y) ∧ δ). Hence, there is an assigment y = t0 such that σ, x = t1, y = t0 |= a(y) ∧ δ.
By the preservation of action points lemma, we get that σ, x = t′1, y = t0 |= a(y) ∧ δ. Hence,
we get that σ, x = t′1 |= ψ.

Hence, we get that σ |= θi0 and hence σ |= θ. Observe that, in the process we also showed
that σ |= θi0 with an assignment W such that x = t1,W |= πi0 and the choice of W depended
only on σ and the assignment x = t1 for x.

One can similarly argue that the lemma holds if ψ = ¬∃y(a(y) ∧ δ).

Inductive Step: Let us assume that we have proved the lemma for quantifier depth of
1, 2, . . . , n− 1. Now, consider a formula φ = ∃x(π(x) ∧ ψ) where ψ is of quantifier depth n.
We will split this proof into two cases based on whether ψ is a formula in ∃ normal form, or
negation of a formula ∃ normal form. We will show the lemma for the first case, and the
second case can be shown similarly.

Case 1 (Positive Case) : ψ = ∃y(a(y) ∧ δ ∧ ψ′).
We will first prove it assuming ψ′ is of the form ν or ¬ν where ν is in ∃ normal form of

quantifier depth n− 1. Later, we will give the construction for when ψ′ is a conjunction of
formulas of the form ν or ¬ν, where ν is in ∃ Normal form, and the proof of the lemma is
similar.

Now consider the formula φ′ = ∃x(π(x) ∧ ψ′). By our induction hypothesis, there exists

a formula θ′ =
k∨

j=1
θ′

j such that the lemma holds, and each θ′
j is of the form:

θ′
j = ∃w′

1, w
′
2, . . . , w

′
n(

n∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

j(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
j(x,w′

1, . . . , w
′
n)) ⊃ ψ′)).

We apply the preservation of action points lemma to the formula a(y) ∧ δ to get a finite
number of intervals π1, . . . , πm. We now construct m × k formulas denoted by θij where
i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , k} as follows:

θij = ∃w1, w2, . . . , wl∃w′
1, w

′
2, . . . , w

′
n(

l∧
i=1

a(wi)
n∧

i=1
a(w′

i)

∧ ∃x(π(x) ∧ πi(x,w1, . . . , wl) ∧ π′
j(x,w′

1, . . . , w
′
n))

∧ ∀x((π(x) ∧ πi(x,w1, . . . , wl) ∧ π′
j(x,w′

1, . . . , w
′
n)) ⊃ ψ)).

Now define θ =
m∨

i=1

k∨
j=1

θij .

FSTTCS 2021

45:20 Equivalence of Pointwise and Continuous TPTL

Pick any timed word σ such that σ strongly satisfies φ. We need to show that σ |= θ.
Observe that

σ |= φ =⇒ σ |= ∃x(π(x) ∧ ∃y(a(y) ∧ δ ∧ ψ′)
=⇒ σ, x = t1, y = t0 |= π(x) ∧ a(y) ∧ δ ∧ ψ′.

Hence, σ, y = t0 |= ∃x(π(x) ∧ ψ′) i.e. σ strongly satisfies φ′ with the x-restricted assignment
x = t1 for φ′ w.r.t σ. Now by the induction hypothesis, σ, y = t0 |= θ′ =⇒ σ, y =
t0 |= θ′

j0
for some j0. Furthermore, σ, y = t0 |= θ′

j0
with an assignmnet W ′ such that

x = t1,W ′ |= π′
j0

and the assignment W ′ depends only on σ and the assignment x = t1.

Applying the preservation of action points lemma on the formula a(y) ∧ δ gives us a
i0 ∈ {1, . . . ,m}. We will now show that σ |= θi0j0 . Recall that

θi0j0 = ∃w1, w2, . . . , wl∃w′
1, w

′
2, . . . , w

′
n(

l∧
i=1

a(wi)
n∧

i=1
a(w′

i)

∧ ∃x(π(x) ∧ πi0(x,w1, . . . , wl) ∧ π′
j0

(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ πi0(x,w1, . . . , wl) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ)).

We need to come up with an assignment W for the variables w1, . . . , wl and an assignment
W ′ for the variables w′

1, . . . , w
′
n. The preservation of action points lemma on the formula

a(y) ∧ δ using the timed word σ and the assignment x = t1 for x gives us the assignment W .
Also, observe σ, y = t0 |= θ′

j0
. Hence,

σ, y = t0 |= ∃w′
1, w

′
2, . . . , w

′
n(

n∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

j0
(x,w′

1, . . . , w
′
n))

∧ ∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′)).

This gives us a valuation W ′ such that

σ, y = t0,W ′ |=(
n∧

i=1
a(w′

i) ∧ ∃x(π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′)).

Hence, we have σ,W,W ′ |=
∧l

i=1 a(wi)
∧n

j=1 a(w′
j). From the preservation of action points

lemma, we know that, σ, x = t1,W |= πi0(x,w1, . . . , wl) and the choice of W depends only on
σ and the assignment x = t1. From the induction hypothesis, we know: σ, x = t1,W ′ |= π(x)∧
π′

j0
(x,w′

1, . . . , w
′
n). Combining these two together, we get, σ,W,W ′ |= ∃x(π(x) ∧ πi0 ∧ π′

j0
).

All that remains is to show that σ,W,W ′ |= ∀x((π ∧ πi0 ∧ π′
j0

) ⊃ ψ).
To do this, pick any assignment x = t′1 such that σ, x = t′1,W,W ′ |= π ∧ πi0 ∧ π′

j0
. Recall

that ψ = ∃y(a(y) ∧ δ ∧ ψ′). Hence, we need to show:

σ, x = t′1,W,W ′ |= ∃y(a(y) ∧ δ ∧ ψ′).

From the preservation of action points lemma, we know that since σ, x = t1, y = t0 |= a(y)∧δ,
and since σ, x = t′1,W |= πi0 , we have:

σ, x = t′1, y = t0,W,W ′ |= a(y) ∧ δ.

R. Holla, N. Deka, and D. D’Souza 45:21

We also already have that

σ, y = t0,W ′ |=(
n∧

i=1
a(w′

i) ∧ ∃x(π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′))

=⇒ σ, y = t0,W ′ |=∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′).

Now σ, x = t′1,W,W ′ |= π ∧ π′
j0

. Hence, we get σ, x = t′1, y = t0,W,W ′ |= ψ′, which gives us
σ, x = t′1,W,W ′ |= ∃y(a(y) ∧ δ ∧ ψ′). This is what we needed to show. Hence we are done.

Now consider ψ = ∃y(a(y) ∧ δ ∧ ψ′) where ψ′ = ψ′
1 ∧ ψ′

2 ∧ · · · ∧ ψ′ and each ψ′
i is either

a formula in ∃ normal form, or the negation of a formula in ∃ normal form. Consider the
formulas: φ′

i = ∃x(π ∧ ψ′
i) for i = 1, 2, . . . , n. For each i = 1, 2, . . . , n, we can apply the

induction hypothesis to get a disjunction θ′
i =

ki∨
j=1

θ′
ij such that the lemma holds and where

each θ′
ij is of the form:

θ′
ij = ∃w′

1, w
′
2, . . . , w

′
n(

n∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

ij(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
ij(x,w′

1, . . . , w
′
n)) ⊃ ψ′

i)).

We apply the preservation of action points lemma to the formula a(y) ∧ δ to get a finite
number of intervals π1, . . . , πm. We now construct m× k1 × k2 × · · · × kn formulas denoted
by θij1j2...jn where i ∈ {1, 2, . . . ,m} and ji ∈ {1, 2, . . . , ki} as follows:

θij1j2...jn = ∃w1, w2, . . . , wl(
l∧

i=1
a(wi) ∧ ∃x(π(x) ∧ πi ∧ π′

1j1
∧ π′

2j2
∧ · · · ∧ π′

njn
)

∧ ∀x(π(x) ∧ πi ∧ π′
1j1

∧ π′
2j2

∧ · · · ∧ π′
njn

) ⊃ ψ)).

Now define θ =
i=m∨
i=1

j1=k1∨
j1=1

· · ·
jn=kn∨
jn=1

θij1j2...jn
.

It can be shown similar to the above that the theorem holds with this construction. ◀

FSTTCS 2021

	1 Introduction
	2 Preliminaries
	3 The FO(<,+Q) logic
	4 A normal form for FO sentences
	5 Equivalence of foc and fop semantics
	5.1 Proof Idea
	5.2 Equivalence Proof

	6 Proof of Lemma 2
	7 Equivalence of fo and tptls
	8 Conclusion
	A Proof of Lemma 2

