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Abstract
We investigate the separation problem for regular ω-languages with respect to the Wagner hierarchy
where the input languages are given as deterministic Muller automata (DMA). We show that a
minimal separating DMA can be computed in exponential time and that some languages require
separators of exponential size. Further, we show that in this setting it can be decided in polynomial
time whether a separator exists on a certain level of the Wagner hierarchy and that emptiness of
the intersection of two languages given by DMAs can be decided in polynomial time. Finally, we
show that separation can also be decided in polynomial time if the input languages are given as
deterministic parity automata.
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1 Introduction

The membership problem for a class of languages asks to decide whether a given language
is contained in this class. More generally, we can ask for a hierarchy of classes to decide
membership for each of its classes. This problem has been studied for a variety of classes and
hierarchies [11, 5, 6, 4, 12]. Solving the membership problem for a class helps us understand
the expressive power of a class [8].

For example, the regular ω-languages are classified by the Wagner hierarchy [12, 7] which
has been studied extensively. The hierarchy is infinite and refines both the Mostowski [7]
and the Borel hierarchy with respect to the regular ω-languages [12]. The class of a language
L is determined by the loop structure of any deterministic Muller automaton (DMA) that
recognizes L, every DMA that recognizes L has the same structure. Using this, membership
for the Wagner hierarchy can be decided efficiently if the language is given as a DMA [7].

Membership has also been studied with respect to the quantifier alternation hierarchy
of first order logic for regular language of finite or infinite words [9], [8]. This hierarchy is
infinite but the membership problem has only been solved for a few classes of the hierarchy.
One approach towards solving membership for more classes uses the separation problem [8].

The Separation problem asks given two languages L1, L2 and a class C whether there
is a language L in C that separates L1 and L2, i.e. L1 ⊆ L and L2 ∩ L = ∅. Separation is
more general than membership because a language L is in C iff L and its complement can
be separated by a language in C, so membership can be reduced to separation. Solving the
separation problem for a class C requires understanding the discriminating power of C and
therefore an even deeper understanding of a class than for solving membership [8].
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46:2 Separating Regular Languages over Infinite Words

In this paper, we study the separation problem for the Wagner hierarchy to gain a
deeper understanding of this hierarchy. Further, we might get some insights on how to
solve the membership problem for the Mostowski hierarchy for infinite trees [5, 6] and the
aforementioned quantifier alternation hierarchy which are similar to the Wagner hierarchy.

We assume that the input languages for the separation problem are given as DMAs. First,
we show that the loop structure of every separating DMA is similar. Using this, a DMA
whose language separates the two input languages and which is minimal with respect to the
Wagner hierarchy can be computed in exponential time. Next, we show that this result is
optimal in the sense that there are infinitely many pairs of DMAs for which every separating
DMA is exponentially larger than the DMAs in the pair.

Surprisingly, deciding whether a separator exists is possible in polynomial time. This can
be done by analyzing the loop structure of a special product automaton. This also works if
the input languages are given as deterministic parity automata (DPA).

We can also use the separation algorithm to decide in polynomial time whether the
languages of two DMAs (DPAs) are disjoint. Meanwhile, the intersection of DMAs (DPAs)
has exponential size in general [1], so our algorithm has better complexity than a naive
algorithm for disjointness and, to the best of our knowledge, is the first to do so.

2 Preliminaries

We denote the natural numbers by N = {0, 1, 2, . . . }. The strict linear order on the natural
numbers is denoted by <. All numbers in this paper are natural, we do not state that for
every number explicitly. The projection function to the i-th component is denoted by pri.

An alphabet Σ is a finite, non-empty set of symbols. A finite word over Σ is a mapping
from {0, 1, . . . , k − 1} to Σ for some k ∈ N. Here, k is the length of w. The empty word ε is
the unique word of length 0. The class of all finite words over Σ is Σ∗. An infinite word α

over Σ is a mapping from N to Σ. The class of all infinite words over Σ is denoted by Σω.
For w ∈ Σ∗ and i, j ∈ N with i, j < |w| we define w[i, j] as w[i, j] = w(i) . . . w(j) for i ≤ j

and w[i, j] = ε for i > j. For infinite words the definition is analogous.
A symbol a ∈ Σ occurs infinitely often in a word α ∈ Σω if there are infinitely many

i ∈ N with α(i) = a. For an infinite word α ∈ Σω let Inf(α) be the set of letters that occur
infinitely often in α.

2.1 Automaton Structures
An automaton structure is a tuple A = (Q, Σ, δ, q0) where Q is a finite, non-empty set of
states, Σ is an alphabet, δ : Q × Σ → Q is a transition function and q0 ∈ Q is the initial
state. All automata considered in this paper are deterministic.

The run of an automaton structure A = (Q, Σ, δ, q0) on a finite word w ∈ Σ∗ from p ∈ Q

is the word ρ ∈ Q∗ with ρ(0) = p and ρ(i + 1) = δ(ρ(i), w(i)) for all i ∈ N with i < |w|. The
run of an automaton structure A on an infinite word α ∈ Σω from a state p ∈ Q is an infinite
word ρ ∈ Qω with ρ(0) = p and ρ(i + 1) = δ(ρ(i), α(i)) for all i ∈ N. We denote such a run
by ρA(p, w) for w ∈ Σ∗, respectively ρA(p, α) for α ∈ Σω.

We write p
w−→
P

q if there is a run of A on w from p to q and the set of states visited on
this run is exactly P , i.e. P = {p′ ∈ Q | there is 0 ≤ i ≤ |w| such that ρA(p, w)(i) = p′}.
We write p

w−→ q if there is some P such that p
w−→
P

q. With p → q we denote that there is a

word w ∈ Σ∗ with p
w−→ q. We assume that all states are reachable from the initial state q0

for every automaton structure A, i.e. q0 → q for all q ∈ Q.
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A loop of an automaton structure A = (Q, Σ, δ, q0) is a non-empty, strongly connected
set of states. So, P ⊆ Q is a loop if there is a state p ∈ P and a finite word v ∈ Σ∗ with
v ̸= ε and p

v−→
P

p. Equivalently, P is a loop if there is an infinite word α ∈ Σω such that the
infinite run ρ of A on α from q0 satisfies Inf(ρ) = P . A loop P of A is a strongly connected
component (SCC) if there is no loop P ′ of A with P ′ ⊋ P .

Notice that for every loop P of A there is exactly one SCC S of A with P ⊆ S. If there
are two SCCs S, S′ with P ⊆ S, S′ we have S ∩ S′ ̸= ∅. So, S = S′ since the union of
non-disjoint loops is a loop again.

2.2 Deterministic Muller Automata
We denote the powerset of a set Q by 2Q = {P | P ⊆ Q}.

A deterministic Muller automaton (DMA) is a tuple A = (Q, Σ, δ, q0, F) where A =
(Q, Σ, δ, q0) is an automaton structure and F ⊆ 2Q is an acceptance condition, we also write
A = (A, F).

When we talk about a run or a loop of a DMA A we mean a run or a loop of its
automaton structure. A loop P is accepting in A if P ∈ F and rejecting otherwise. A
DMA A = (Q, Σ, δ, q0, F) accepts an infinite word α ∈ Σω if the run ρA(q0, α) satisfies
Inf(ρA(q0, α)) ∈ F , i.e. the set of states visited infinitely often is an accepting loop. The
language accepted by A is the set of words L(A) accepted by A.

The size |A| of a DMA A = (Q, Σ, δ, q0, F) is |Q| + |F|. Notice that |F| might be
exponentially larger than |Q|. For a DMA (A, F) we can compute a DMA (A, F ′) such that
L(A, F) = L(A, F ′) and F ′ contains only loops in polynomial time with respect to |(A, F)|.

An ω-language L is regular iff there is a DMA A with L(A) = L.

3 Wagner Hierarchy

Wagner defined chains and superchains for deterministic Muller automata. He proved that
if L is an ω-regular language then every DMA that recognizes L has the same maximal
superchain length [12]. So, the maximal length of superchains is an invariant of the language.
Hence, the regular ω-languages can be classified according to this invariant. This classification
forms the Wagner hierarchy.

3.1 Chains
Let A = (Q, Σ, δ, q0, F) be a DMA. For m ≥ 1 an m-chain of A is a sequence of loops
c = (P1, . . . , Pm) such that Pi ⊆ Pi+1 and Pi ∈ F iff Pi+1 ̸∈ F for all 0 < i < m. We also
speak of a chain c if it is clear from context that c is an m-chain for a certain m ∈ N. A
chain c = (P1, . . . , Pm) is positive if P1 is accepting and negative if P1 is rejecting.

An m′-chain c′ = (P ′
1, . . . , P ′

m′) is reachable from an m-chain c = (P1, . . . , Pm) if there are
states p ∈ P1, p′ ∈ P ′

1 with p → p′. We denote this by c → c′. Notice that this is equivalent
to saying that every (or some) state of P ′

m′ can be reached from every (or some) state of Pm.

3.2 Superchains
A superchain is a reachability-ordered sequence of chains which alternate between positive
and negative chains. Formally, an (m, n)-superchain is a sequence s = (c1, . . . , cn) of m-chains
such that ci is positive iff ci+1 is negative and further ci → ci+1 for all 0 < i < n. An
(m, n)-superchain s = (c1, . . . , cn) is positive if c1 is positive and negative otherwise.

FSTTCS 2021
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▶ Remark 1. Let A = (Q, Σ, δ, q0, F) be a DMA and m > 1. The following are equivalent:
1. A has an m-chain.
2. A has an (m − 1, n)-superchain for all n ∈ N.
3. A has an (m − 1, |Q| + 1)-superchain.

Let ≤ be the lexicographic order on N2. An (m′, n′)-superchain is longer than an (m, n)-
superchain if m′ > m or if m′ = m and n′ > n, i.e. (m′, n′) > (m, n). This order prioritizes
m over n which ensures that for each DMA there is a maximal length of superchains in this
DMA. If we prioritize n this is not the case as one can see with Remark 1.

3.3 Wagner hierarchy
Wagner showed that the superchains of a DMA A are an invariant of the language L(A) [12]
in the following sense: For m, n ∈ N and two DMAs A1, A2 with L(A1) = L(A2) it holds that
A1 has an (m, n)-superchain if and only if A2 has an (m, n)-superchain. So, the existence of
a superchain in A is completely determined by L(A).

The Wagner hierarchy classifies the regular ω-languages based on superchains. We
consider downward-closed classes that Wagner defined. For all m, n ∈ N there are three
classes C n

m, Dn
m, En

m which are defined as follows:

En
m = {L(A) | If A has an (k, ℓ)-superchain then (k, ℓ) ≤ (m, n)}

Dn
m = {L(A) | If A has an (k, ℓ)-superchain then (k, ℓ) ≤ (m, n)

and all (m, n)-superchains in A are positive}
C n

m = {L(A) | If A has an (k, ℓ)-superchain then (k, ℓ) ≤ (m, n)
and all (m, n)-superchains in A are negative}

It holds Cn
m, Dn

m ⊆ En
m and En

m is closed under complement.

4 Wagner Separation

Let Xn
m be a Wagner class. We say that two languages L1, L2 ⊆ Σω are Xn

m-separable if there
is a language L ∈ Xn

m with L1 ⊆ L and L2 ∩ L = ∅. Notice that L1, L2 are En
m-separable iff

L2, L1 are En
m-separable. Further, L1, L2 are C n

m-separable iff L2, L1 are Dn
m-separable, if L

separates L1, L2 then Σω \ L separates L2, L1. We investigate the following problem:
WagnerSeparation
Given: Two DMAs A1, A2, X ∈ {C, D, E} and m, n ∈ N.
Decide: Are the languages L(A1) and L(A2) Xn

m-separable?
In the following we define chains for DMAs that can recognize two languages and show how
to construct a separating DMA that is minimal with respect to the Wagner hierarchy.

4.1 Generalization of Chains
Consider a DMA A = (Q, Σ, δ, q0, F). Wagner defined chains in A as sequences of loops
that alternate between F and its complement. It turns out that a slight generalization
of this concept is helpful for this paper. Let F1, F2 be two subsets of 2Q. We say that
c = (P1, . . . , Pm) is an m-chain with respect to (F1, F2) if
1. Pi is a loop for 1 ≤ i ≤ m,
2. Pi ⊆ Pi+1 for 1 ≤ i < m,
3. Pi ∈ F1 ∪ F2 for 1 ≤ i ≤ m,
4. Pi ∈ F1 iff Pi+1 ∈ F2 for 1 ≤ i < m.
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(a) Blue-start, red-end 4-chain. (b) Blue-start (3, 2)-superchain. (c) A (3, 2)-forcing SCC.

Figure 1 Illustration of patterns in A. Each circle represents a loop in A. Notice that no matter
how the black loop in (c) is colored there will be a (3, 2)-superchain in A.

An m-chain c = (P1, . . . , Pm) with respect to (F1, F2) is F1-start if P1 ∈ F1 and otherwise
it is F2-start. Notice that c is an m-chain in A (in the sense of Wagner) if and only if c is an
m-chain with respect to (F , 2Q \ F). Further, notice that there are arbitrarily long chains
with respect to (F1, F2) whenever these sets are not disjoint.

An (m, n)-superchain with respect to (F1, F2) is a sequence s = (c1, . . . , cn) such that
each cj is an m-chain with respect to (F1, F2), cj+1 is reachable from cj and cj is F1-start iff
cj+1 is F2-start for all 1 ≤ j < n. The superchain s = (c1, . . . , cn) is F1-start if c1 is F1-start
and otherwise it is F2-start.

4.2 Blue and Red Chains
Let LB , LR ⊆ Σω be two regular ω-languages. An automaton structure A = (Q, Σ, δ, q0) can
accept both languages LB and LR if there are acceptance conditions FB , FR ⊆ 2Q such that
L(A, FB) = LB and L(A, FR) = LR. For example, the product automaton structure of two
automata can accept both their languages.

For the remainder of the section fix two languages LB , LR and an automaton structure
A = (Q, Σ, δ, q0) that can accept both LB and LR. There are unique sets of loops FB , FR

such that L(A, FB) = LB and L(A, FR) = LR. We refer to FB as the set of blue loops and
to FR as the set of red loops.

We study chains in A with respect to (FB , FR) and their connection to chains in DMAs
whose language separate LB and LR. In Section 4.4 we show that if there is an (m, n)-
superchain in A with respect to (FB , FR) then there is an (m, n)-superchain in every DMA
that separates LB and LR. Additionally, there are loops in A that are neither blue nor red
but nevertheless important for the existence of superchains in a separating DMA.

We say that an m-chain c = (P1, . . . , Pm) is blue-end (red-end) if Pm ∈ FB (Pm ∈ FR).
An SCC S in A is blue-end (red-end) if all of the longest chains in S are blue-end (red-end).
An SCC S is (m, n)-forcing for A if all of the following conditions hold:
1. A has a blue-end (m − 1)-chain cB = (P B

1 , . . . , P B
m−1) and a red-end (m − 1)-chain

cR = (P R
1 , . . . , P R

m−1).
2. These chains are contained in S, i.e. P B

m−1 ⊆ S and P R
m−1 ⊆ S.

3. A has an (m, n−1)-superchain sB whose first chain is blue-end and an (m, n−1)-superchain
sR whose first chain is red-end.

4. These superchains can be reached from S.
See Figure 1 for an illustration. Notice that if A has an (m, n)-superchain with respect to
(FB , FR) then the SCC that contains its first chain is (m, n)-forcing. We say that A is at
most (m, n)-forcing if for every SCC in A that is (k, ℓ)-forcing we have (k, ℓ) ≤ (m, n).

FSTTCS 2021



46:6 Separating Regular Languages over Infinite Words

4.3 Separator
In the following we show that we can define two DMAs that separate LB and LR (if possible)
and show later that one of them is minimal with respect to the Wagner hierarchy. To
construct these DMAs we use the automaton structure A. If there is a loop in A that is
blue and red then LB ∩ LR ̸= ∅, so the languages cannot be separated. Otherwise, L(A, FB)
separates LB and LR.

We give an intuitive description of the separator before defining it formally. We define an
automaton structure Asep that consists of three copies of A such that each loop of A is in
one of the copies. The languages LB and LR can be accepted by Asep using the sets F0

B , F0
R

of loops whose projection to A is in FB , FR respectively.
Each SCC is then added to F0

B or F0
R, this yields sets F1

B and F1
R. For example, a

blue-end SCC is in F1
B. If A is at most (m, n)-forcing then each superchain in Asep with

respect to (F1
B , F1

R) has at most length (m, n).
Then, it remains to fix the acceptance of the loops that are not an SCC and have no color

(neither blue nor red). We fix the acceptance of these remaining loops based on the longest
chains with respect to (F1

B , F1
R). This yields the sets F2

B , F2
R, analogously we construct

G1
B , G1

R, G2
B , G2

R. The DMA whose language separates LB and LR and which are minimal
with respect to the Wagner hierarchy are (Asep, F2

B) and (Asep, G2
B).

Separator Construction
Recall that A = (Q, Σ, δ, q0) is an automaton structure that can accept both LB and LR.
Let m, n ∈ N such that A is at most (m, n)-forcing.

We construct an automaton structure Asep = (Qsep, Σ, δsep, qsep). The states Qsep =
Q × {N, B, R} consist of three copies of the states of A. The initial state qsep = (q0, N) is in
the N -copy. These copies are used to remember in a run whether an m-chain has been seen
and if so it also remembers whether the most recent m-chain was blue-end or red-end. For
p ∈ Q, a ∈ Σ, q = δ(p, a) and C ∈ {N, B, R} let

δsep((p, C), a) =



(q, B) , if there is an SCC S in A with q ∈ S

and there is a blue-end m-chain in S

(q, R) , if there is an SCC S in A with q ∈ S

and there is a red-end m-chain in S

(q, C) , otherwise

The transition function δsep is well-defined because in no SCC in A there are both a blue-
and a red-end m-chain since A is at most (m, n)-forcing. Notice that if a run in Asep enters
a new copy then the corresponding run in A has to leave an SCC because the m-chains in
the SCC changed. So, every loop P in Asep is either in Q × {B}, in Q × {R} or in Q × {N}.

We define sets F1
B and F1

R that cover every SCC and every set whose projection is colored.
Let P ⊆ Qsep be a set. Then, P ∈ F1

B if one of the following is true:
1. pr1(P ) is blue in A

2. pr1(P ) is colorless, P ⊆ Q × {B}, P is an SCC
3. pr1(P ) is colorless, P ⊆ Q × {N}, P is an SCC, pr1(P ) is a blue-end SCC
4. pr1(P ) is colorless, P ⊆ Q×{N}, P is an SCC and there is no (m, n)-superchain reachable

from pr1(P ) whose first chain is red-end
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Similarly, P ∈ F1
R if one of the following is true:

1. pr1(P ) is red in A

2. pr1(P ) is colorless, P ⊆ Q × {R}, P is an SCC
3. pr1(P ) is colorless, P ⊆ Q × {N}, P is an SCC, there is an (m, n)-superchain reachable

from pr1(P ) whose first chain is red-end and pr1(P ) is not a blue-end SCC

▶ Lemma 2. The longest superchains in Asep w.r.t. (F1
B , F1

R) have at most length (m, n).

The sets F1
B and F1

R are defined to minimize the chain length but there are other sets
that also do this. We define two such sets G1

B and G1
R that only differ in the third and fourth

condition from F1
B and F1

R. A loop P is in G1
B if one of the following is true

1. pr1(P ) is blue in A

2. pr1(P ) is colorless, P ⊆ Q × {B}, P is an SCC
3. pr1(P ) is colorless, P ⊆ Q × {N}, P is an SCC, there is an (m, n)-superchain reachable

from pr1(P ) whose first chain is blue-end and pr1(P ) is not a red-end SCC
Similarly, P ∈ G1

R if one of the following is true
1. pr1(P ) is red in A

2. pr1(P ) is colorless, P ⊆ Q × {R}, P is an SCC
3. pr1(P ) is colorless, P ⊆ Q × {N}, P is an SCC, pr1(P ) is a red-end SCC
4. pr1(P ) is colorless, P ⊆ Q×{N}, P is an SCC and there is no (m, n)-superchain reachable

from pr1(P ) whose first chain is blue-end

▶ Lemma 3. The longest superchains in Asep w.r.t. (G1
B , G1

R) have at most length (m, n).

To obtain a separator that is minimal with respect to the Wagner hierarchy it is not only
important how long superchains are but also how they start.

▶ Lemma 4. If there are no blue-start (red-start) (m, n)-superchains in A then
there are no F1

B-start (F1
R-start) (m, n)-superchains in Asep with respect to (F1

B , F1
R) or

there are no G1
B-start (G1

R-start) (m, n)-superchains in Asep with respect to (G1
B , G1

R).

We define the acceptance for every loop P that is not in F1
B or F1

R based on the longest
chains with respect to (F1

B , F1
R) that start with a strict superloop of P . Let P be a loop

in Asep such that there is an SCC S with P ⊊ S. We define P⊊ = {P ′ | P ⊊ P ′ ⊆ S}. For
P consider the chains with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊). A loop P ⊆ Qsep is in F2

B if
P ∈ F1

B or if P ̸∈ F1
R and the longest chains with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊) are all

(F1
B ∩ P⊊)-start. So, a set P ⊆ Qsep is in its complement F2

R = 2Q \ F2
B if P ̸∈ F1

B and
P ∈ F1

R or if P ̸∈ F1
B and the longest chains with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊) are all

(F1
R ∩ P⊊)-start. We define G2

B and GR
B analogously.

We show that F2
B is well-defined, the proof for G2

B is analogous. The longest chains
with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊) are all (F1

B ∩ P⊊)-end or all (F1
R ∩ P⊊)-end because

S is in F1
B ∩ P⊊ or in F1

R ∩ P⊊. So, the longest chains are also all (F1
B ∩ P⊊)-start or all

(F1
R ∩ P⊊)-start. Further, there is always a chain in P⊊ because (S) is a chain.

▶ Lemma 5. If there is a F2
B-start (F2

R-start) (k, ℓ)-superchain in A with respect to (F2
B , F2

R)
then there is a F1

B-start (F1
R-start) (k, ℓ)-superchain in A with respect to (F1

B , F1
R).

The analogous statement holds for (G1
B , G1

R) and (G2
B , G2

R). Finally, we can define the
DMA (Asep, F2

B) and (Asep, G2
B) whose languages separate LB and LR if possible.

▶ Lemma 6. If LB ∩ LR = ∅ then L(Asep, F2
B), L(Asep, G2

B) separate LB and LR.

FSTTCS 2021
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4.4 Translating Chains
We show that the separator constructed in the previous section is minimal with respect to
the Wagner hierarchy. Let AB , AR, Asep be DMAs such that L(Asep) separates L(AB) and
L(AR). Further, let A be an automaton structure that can accept both L(AB) and L(AR).

▶ Lemma 7. If A has an (m, n)-forcing SCC then Asep has an (m, n)-superchain.

To prove Lemma 7 we consider the loops that appear in the chains and in the superchains
of the (m, n)-forcing SCC. We find finite words that run repeatedly through these loops.
These words have runs in any separating DMA Asep. These runs yield loops and ultimately
superchains in Asep. An analysis of this proof yields the following result:

▶ Lemma 8. If A has a blue-start (red-start) (m, n)-superchain then Asep has a positive
(negative) (m, n)-superchain.

Combining all previous results yields the main result of this paper.

▶ Theorem 9. Let m, n ∈ N and LB , LR ⊆ Σω. Let A be an automaton structure that can
accept both LB and LR. The languages LB and LR are
1. E n

m-separable iff A is at most (m, n)-forcing,
2. D n

m-separable iff A is at most (m, n)-forcing and every (m, n)-superchain in A is blue-start,
3. C n

m-separable iff A is at most (m, n)-forcing and every (m, n)-superchain in A is red-start.

▶ Corollary 10. LB, LR are Cn
m- and Dn

m-separable iff there are no (m, n)-superchains in A.

5 Solving Separation

We use Theorem 9 to show how WagnerSeparation and related questions can be resolved.

5.1 Computing a Separator
We show that DMAs as defined in Section 4.3 can be computed in exponential time. For this
we use product automata. Let A1, A2 be two automaton structures with Ai = (Qi, Σ, δi, qi)
for i ∈ {1, 2}. The product automaton of A1 and A2 is the automaton structure A1 × A2 =
(Q1 × Q2, Σ, δ, (q1, q2)), where δ applies the transition functions component wise, i.e. for
(p1, p2) ∈ Q1 × Q2 and a ∈ Σ we have δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)) . The product
automaton of two DMAs is defined as the product automaton of their automaton structures.

▶ Theorem 11. Let A1, A2 with Ai = (Qi, Σ, δi, qi, Fi) be two DMA. A separating DMA
that is minimal with respect to the Wagner hierarchy can be constructed in exponential time.

The product automaton structure A1 × A2 can be computed in polynomial time and
it can accept both L(A1) and L(A2). The set of states of the automaton structure Asep
consists of three copies of Q1 × Q2 which clearly can be computed in polynomial time. The
transition function δsep and the acceptance conditions F2

B , G2
B are defined based on the chain

structure in the product automaton with respect to blue and red loops.
The chain structure with respect to the red and blue loops can be computed as follows.

Iterate over all subsets of Q1 × Q2 and color a subset blue if its projection to the first
component is in F1. Color a subset red if its projection to the second component is in F2.

Next, construct a graph that has the colored loops as nodes. Introduce an edge between
two loops if they have different colors and the first loop is a subset of the second. Then
the paths of maximal length in this graph correspond to chains of maximal lengths. To
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compute the superchains of maximal length a new graph can be constructed with chains of
maximal length as nodes. Further, there is an edge between two chains if the second chain
is reachable from the first chain and they start with different colors. The superchains of
maximal length then correspond to paths of maximal length in this graph. The constructed
graphs are acyclic.

These graphs are of exponential size in |A1|+ |A2| or smaller. Using for example Dijkstra’s
algorithm, the paths of maximal length in an acyclic graph can be computed in polynomial
time. Thus, the chain structure of A and therefore (Asep, F2

B), (Asep, G2
B) can be computed

in exponential time.

5.2 Exponential blowup of Separators
We show that in some cases the size of every separator that is minimal with respect to the
Wagner hierarchy is exponentially larger than the size of the input DMAs. So, if one wants to
compute a complete separator (not just deciding the value of a certain bit) then exponential
time is the best complexity one can hope for.

▶ Theorem 12. For all 1 ≤ m ≤ k ∈ N there are DMAs A1, A2 of size at most 2k such that
every DMA A with no (m + 1)-chain whose language separates L(A1) and L(A2) has size at
least 2k−m − k − 1 and there is such a DMA.

Proof. Let Σ = {1, . . . , k}. We define the DMA A1, A2 that have the same automaton
structure A. Let A = (Q, Σ, δ, 1) with Q = {1, . . . , k} ∪ {⊥} and δ as follows: For a state
i ∈ Q and j ∈ Σ let δ(i, j) = j if i ̸= j and δ(i, j) = ⊥ if i = j. Further, δ(⊥, j) = ⊥ for all
j ∈ Σ, so ⊥ is a sink state.

The DMA A1 = (Q, Σ, δ, 1, F1), A2 = (Q, Σ, δ, 1, F2) differ in their acceptance conditions.
The set {1, . . . , k − m + 1} is in F1. If {1, . . . , i} is in F1 then {1, . . . , i + 1} is in F2 for
i < m. Similarly, if {1, . . . , i} ∈ F2 then {1, . . . , i + 1} ∈ F1 for i < m. Further, {⊥} ∈ F1
and no other sets are in F1, F2.

Clearly, the automaton structure A can recognize both L(A1) and L(A2). Further, the
longest chain in A with respect to (F1, F2) is the F1-first m-chain c = (P1, . . . , Pm) with
Pi = {1, . . . , k − m + i}. Let F = F1 ∪ 2{1,...,k−m} and consider A = (Q, Σ, δ, 1, F). Then
L(A) separates L(A1), L(A2) and A has no (m + 1)-chain.

Let Asep = (Qsep, Σ, δsep, qsep, Fsep) be a DMA with no (m + 1)-chain that separates
L(A1) and L(A2) and let r = |Qsep|. To prove |Asep| ≥ 2k−m − m − 1, we define an injective
function f : (2{1,...,k−m} \ {∅, {1}, . . . , {k}}) → Fsep.

Definition of the function

For a set P = {p1, . . . , p|P |} ⊆ {1, . . . , k − m} with |P | > 1 we define the word wP =
p1 . . . p|P | where p1 < p2 < · · · < p|P |. Let P be a non-empty subset of {1, . . . , k − m} and
Pi = {1, . . . , k − m + i} with 1 ≤ i ≤ m and consider the words

w0 = wr
P ,

wi = (wi−1wPi
)r, for 1 ≤ i ≤ m.

Consider the finite run ρ of Asep on wm. For 1 ≤ i ≤ m consider the state in which Asep is
before reading wi = (wi−1wPi

)r and the states after each wi−1wPi
. These are r+1 = |Qsep|+1

many, so one state must occur twice. So, for 1 ≤ i ≤ m there are positions 0 ≤ di < ei ≤ |wm|

in the word wm and a number of repetitions ri ∈ N with ρ(di)
(wi−1wPi

)ri

−−−−−−−−→ ρ(ei). Because

FSTTCS 2021
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wi−1 is a proper infix of wi there is a sequence of indices dm+1 ≤ · · · ≤ d1 < e1 ≤ · · · ≤ em+1

with ρ(di)
(wi−1wPi

)ri

−−−−−−−−→ ρ(ei) for 0 ≤ i ≤ m. Consider Qi = {ρ(j) | di ≤ j ≤ ei} for
1 ≤ i ≤ m.

Similarly, we get d0, e0, r0 with ρ(d0) (wP )r0
−−−−→ ρ(e0) and d1 ≤ do < e0 ≤ e1. We set

f(P ) = Q0 = {ρ(j) | d0 ≤ j ≤ e0}.

Image of the function

We show that (Q1, . . . , Qm) is an (2Q \ Fsep)-start m-chain in Asep. Notice that each Qi is a
loop and that Q0 ⊆ Q1 ⊆ · · · ⊆ Qm. Further, notice that Pi ∈ F1 if i is even and Pi ∈ F2 if
i is odd for 1 ≤ i ≤ m. So, wm(wi)ω ∈ L(A1) if i is even and wm(wi)ω ∈ L(A2) if i is odd
for 1 ≤ i ≤ m. Because L(Asep) separates L(A1) and L(A2) we have wm(wi)ω ∈ L(Asep) iff
i is odd. Let ρi be the run of Asep on wm(wi)ω. Then, Inf(ρi) = Qi and therefore Qi ∈ Fsep
iff i is odd.

Now assume that f(P ) = Q0 ̸∈ Fsep for some P ⊆ {1, . . . , k−m}. Then c = (Q0, . . . , Qm)
is an (m + 1)-chain in Asep which contradicts the assumption. Thus, f(P ) ∈ Fsep.

The function is injective

Assume that there are P, P ′ ⊆ {1, . . . , k − m} such that |P |, |P ′| > 1, P ̸= P ′ and f(P ) =

f(P ′). There are states p ∈ f(P ), p′ ∈ f(P ′) and r0, r′
0 ∈ N such that p

w
r0
P−−−→

f(P )
p and

p′ w
r′

0
P ′−−−→

f(P )
p′. We have P ̸= P ′, so wP ̸= wP ′ . Without loss of generality there is a letter

a in wP that does not occur in wP ′ . This letter is mapped to some state q in f(P ) and
some letter b of wP ′ is mapped to this state as well because f(P ) = f(P ′). Thus, there are
x, x′ ∈ Σ∗, a, b ∈ Σ, a ̸= b and a state q ∈ f(P ) such that qsep

xa−→ q and qsep
x′b−−→ q.

So, the words xa and x′b are mapped to the same state. But xaaα ̸∈ L(Asep) for all
α ∈ Σω while there are α ∈ Σω with xbaα ∈ L(Asep). These words cannot be distinguished
by Asep, contradiction.

Thus, f is an injective mapping from 2{1,...,k−m} \ {∅, {1}, . . . , {k}} to Fsep and therefore
2k−m − k − 1 ≤ |Qsep| + |Fsep| = |Asep|. ◀

The proof idea is based on a construction in [10]. The construction can be extended to
show a lower bound for a symmetric separation concept, that is L2 ⊆ L and L ∩ L1 = ∅ is
also allowed, by adding a copy of A where F1 and F2 are swapped.

5.3 Deciding Separability
Let A1, A2 be two DMAs with Ai = (Qi, Σ, δi, qi, Fi) and consider their product automaton
structure A1 × A2. Further, let FB = {P ⊆ Q1 × Q2 | pr1(P ) ∈ F1} and FR = {P ⊆
Q1 × Q2 | pr2(P ) ∈ F2}. According to Theorem 9 it suffices to determine the loop structure
of A1 × A2 with respect to (FB , FR) to decide Wagner-separability.

However, there might be exponentially many loops in FB or in FR. We show that it
suffices to consider only certain maximal loops whose number is polynomial in |A1| + |A2|.
A similar idea has already been used in [3].

The set M ⊆ 2Q1×Q2 contains a set P ⊆ Q1 ×Q2 if there are P1 ∈ F1, P2 ∈ F2 such that
P is a maximal loop in P1 × P2 with respect to set-inclusion. There are at most polynomially
many sets of the form P1 ×P2 and each such set contains at most polynomially many maximal
loops because the union of two loops is again a loop. Further, the set MB contains a loop P

if P ∈ M and pr1(P ) ∈ F1. Similarly, MR contains a loop P if P ∈ M and pr2(P ) ∈ F2.
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▶ Lemma 13. Let S be an SCC of A1 × A2 and m ∈ N, m ≥ 1.
There is an FB-start (FR-start) m-chain in S with respect to (FB , FR) iff
there is an MB-start (MR-start) (m − 1)-chain in S with respect to (MB , MR).

Proof. “⇒” Let c = (P1, . . . , Pm) be an FB-start m-chain with respect to (FB , FR). For
1 ≤ i < m and b = i mod 2 the set pr2−b(Pi) × pr1+b(Pi+1) contains a maximal loop P ′

i

with pr2−b(P ′
i ) = pr2−b(Pi) because Pi ⊆ pr2−b(Pi) × pr1+b(Pi+1) can be extended to such a

maximal loop. Because Pi ⊆ Pi+1 we have P ′
i ⊆ P ′

i+1 for 1 ≤ i < m. So, c′ = (P ′
1, . . . , P ′

m−1)
is an (m − 1)-chain with respect to (MB , MR). Further, P1 ∈ FB iff P ′

1 ∈ MB, so c′ is
MB-start.

“⇐” Let c = (P1, . . . , Pm−1) be an MB-start (m − 1)-chain with respect to (MB , MR).
Every chain with respect to (MB , MR) is a chain with respect to (FB , FR) because MB ⊆ FB

and MR ⊆ FR. So, c is an (m − 1)-chain with respect to (FB , FR). Further, c is FB-start.
Consider the case Pm−1 ∈ MB . By the definition of M there are R1 ∈ F1, R2 ∈ F2 such

that Pm−1 ⊆ R1 ×R2. So, there is a loop Pm with Pm−1 ⊆ Pm ⊆ Q1 ×R2 and pr2(Pm) = R2.
Thus, Pm ∈ MR and (P1, . . . , Pm−1, Pm) is an FB-start m-chain with respect to (FB , FR).

The case that c is MR-start follows analogously. ◀

▶ Theorem 14. The problem WagnerSeparation can be decided in polynomial time.

Proof. According to Lemma 13, it suffices to determine the superchains with respect to
(MB , MR). This can be done in polynomial time as mentioned in Section 5.3. ◀

The intersection of two DMAs can cause an exponential blowup [2]. In contrast to this,
Lemma 14 implies that the disjointness (emptiness of the intersection) of two DMAs can be
checked in polynomial time.

▶ Corollary 15. Given two DMAs A1, A2, it can be decided in polynomial time whether
L(A1) ∩ L(A2) is empty.

Proof. L(A1) ∩ L(A2) ̸= ∅ iff there are arbitrarily long chains in A1 × A2 with respect to
(FB , FR) iff L(A1), L(A2) are not E1

m-separable for m = |Q1| · |Q2| + 1. The proof of these
equivalences mirrors the proof of Remark 1. ◀

5.4 Wagner Separation for Parity Automata
In this section we consider the Wagner separation problem with deterministic parity automata
as input. A deterministic parity automaton (DPA) is a tuple A = (Q, Σ, δ, q0, Ω) where
A = (Q, Σ, δ, q0) is an automaton structure and Ω : Q → N is the priority function of A.
An infinite word α ∈ Σω is accepted by A if the maximal priority seen infinitely often by
the run ρ of A in α is even. That is, max({Ω(q) | q ∈ Inf(ρ)}) is even. For a set P ⊆ Q let
Ω(P ) = {Ω(p) | p ∈ P}. Since every DPA can be transformed into an equivalent DPA with
Ω(Q) = {0, . . . , |Q|} we define the size of a DPA A = (Q, Σ, δ, q0, Ω) as |Q|.

An ω-language L is regular iff there is a DPA A with L(A) = L, so DMAs and DPAs
define the same class of languages. However, there are languages for which every DMA is
exponentially larger than the smallest DPA for the language and there are languages for
which every DPA is exponentially larger than the smallest DMA for the language [1]. So, it
makes a difference with respect to computational complexity whether a language is given as
a DMA or as a DPA.

WagnerSeparationParity
Given: Two DPAs A1, A2, X ∈ {C, D, E} and m, n ∈ N.
Decide: Are L(A1) and L(A2) Xn

m-separable?
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As in the previous section, we use maximal chains to show that this problem can be
solved in polynomial time. This implies that disjointness of two languages given as DPA can
be decided in polynomial time, too.

▶ Theorem 16. WagnerSeparationParity can be decided in polynomial time.

Proof. Let A1, A2 be two DPAs, Ai = (Qi, Σ, δi, qi, Ωi) and Ai the corresponding automaton
structure for i ∈ {1, 2}. Consider their product automaton and the acceptance conditions
FB = {P ⊆ Q1 × Q2 | max(Ω1(pr1(P ))) is even and P is a loop} and FR = {P ⊆ Q1 × Q2 |
max Ω2(pr2(P ))) is even and P is a loop}. As shown in Section 5.3 the chain structure
with respect to (FB , FR) suffices to decide separability. However, F1 and F2 might be of
exponential size.

For q, q′ ∈ Q1 × Q2, k1, k2 ∈ N we denote with q −−−−−→
≤(k1,k2)

q′ that there is a word w ∈ Σ∗

and a run ρ of A1 × A2 on w from q to q′ such that for all 0 ≤ j ≤ |ρ| we have pr1(ρ(j)) ≤ k1
and pr2(ρ(j)) ≤ k2. For q ∈ Q1 ×Q2, k1, k2 ∈ Ω(Q) consider the set P k1,k2

q = {q′ | q −−−−−→
≤(k1,k2)

q′ −−−−−→
≤(k1,k2)

q}. Consider MB = {P k1,k2
q ̸= ∅ | q ∈ Q1 × Q2, k1, k2 ∈ Ω(Q) and k1 is even}

and MR = {P k1,k2
q ≠ ∅ | q ∈ Q1 × Q2, k1, k2 ∈ Ω(Q) and k2 is even}. These sets can be

computed in polynomial time.
Let S be an SCC of A1 × A2. We show that there is an m-chain c in S with respect to

(MB , MR) iff there is an m-chain c′ in S with respect to (FB , FR). Further, we show that c

is MB-start iff c′ is FB-start.
“⇒” We have MB ⊆ FB and MR ⊆ FR, so every m-chain with respect to (MB , MR)

is an m-chain with respect to (FB , FR) and it is MB-start iff it is FB-start.
“⇐” Let c′ = (P ′

1, . . . , P ′
m) an m-chain in A1 × A2 with respect to (FB , FR). Let p ∈ P ′

1,
ki

1 = max(Ω1(pr1(P ′
i ))) and ki

2 = max(Ω2(pr2(P ′
i ))). Then c = (P k1

1,k1
2

p , . . . , P
km

1 ,km
2

p ) is an
m-chain with respect to (MB , MR). Further, c is MB start iff c′ is FB-start and the chains
are in the same SCC.

Thus, the chain structure with respect to (MB , MR) is the same as it is with respect to
(FB , FR). So, separability can be decided using (MB , MR) as done in Section 5.3. ◀

6 Conclusion

We have seen that separation of two languages given by two DMAs with respect to the
Wagner hierarchy can be viewed as analyzing the loop structure in their product automaton.
Using this result one can compute a separator in exponential time. We showed that there are
languages of DMAs whose separator requires exponential size. So, if one wants to compute
the complete separator then exponential time is optimal. However, we can decide separation
with respect to the Wagner hierarchy in polynomial time using maximal loops. This implies
that we can decide disjointness of two languages given as DMAs in polynomial time. A
variation of the separation problem where the languages are given as DPAs can be solved in
polynomial time as well.

A separating DMA can be large because it has to list all accepting loops explicitly.
Meanwhile, we can decide separation efficiently because we can restrict ourselves to maximal
loops. These maximal loops, in a sense, give a more succinct representation of the acceptance
condition of a DMA.

In a follow-up paper we will investigate a new automaton model based on this suc-
cinct representation. We hope that this new model has better properties with respect to
computational complexity than current automata models.
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