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Abstract
We propose polynomial-time algorithms to minimise labelled Markov chains whose transition
probabilities are not known exactly, have been perturbed, or can only be obtained by sampling. Our
algorithms are based on a new notion of an approximate bisimulation quotient, obtained by lumping
together states that are exactly bisimilar in a slightly perturbed system. We present experiments
that show that our algorithms are able to recover the structure of the bisimulation quotient of the
unperturbed system.
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1 Introduction

For the algorithmic analysis and verification of system models, computing the bisimulation
quotient is a natural preprocessing step: it can make the system much smaller while preserving
most properties of interest. This applies equally to probabilistic systems: probabilistic model
checkers, e.g., Storm [12], speed up the verification process by “lumping” together states
that are equivalent with respect to probabilistic bisimulation. While this is a safe approach,
it may not be effective when the probabilities in the system are not known precisely. For
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Figure 1 Two intuitively similar labelled Markov chains.

example, in the labelled Markov chain shown in Figure 1 the states s1, t1 are intuitively
“similar”, but they are not probabilistically bisimilar even though they carry the same label
(here indicated with the colour white) and they both lead, with similar probabilities, to states
s2, t2, which are again intuitively “similar” but not probabilistically bisimilar.
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48:2 Approximate Bisimulation Minimisation

For analysis and verification of a probabilistic system, tackling state space explosion
is key. The more symmetry a system has (e.g., due to variables that do not influence the
observable behaviour of the model), the greater are the benefits of computing a quotient
system with respect to probabilistic bisimulation. However, when the transition probabilities
in the Markov chain are perturbed or not known exactly, bisimulation minimisation may fail
to capture the symmetries in the system and thus fail to achieve the objective of making the
probabilistic system amenable to algorithmic analysis. The motivation of this paper is to
counter this problem.

A principled approach towards this goal may consider notions of distance between
probabilistic systems or between states in a probabilistic system. A probabilistic bisimilarity
pseudometric, based on the Kantorovich metric, was introduced in [8, 9], which assigns to each
pair of states s, t a number in the interval [0, 1] measuring a distance between s, t: distance 0
means probabilistic bisimilar, and distance 1 means, in a sense, maximally non-bisimilar.
This pseudometric can be computed in polynomial time [5], and, quoting [5], has “been
studied in the context of systems biology, games, planning and security, among others”.
The corresponding distances can be intuitively large though: the pseudometric yields a
distance less than 1 only if the two states can reach, with the same label sequence, two states
that are exactly bisimilar; see [18, Section 4]. As a consequence, for any ϵ > 0, the states
s1, t1 in Figure 1 have distance 1 in the probabilistic bisimilarity pseudometric of [9] (in the
undiscounted version). From a slightly different point of view, a small perturbation of the
transition probabilities in the model can change the distance between two states from 0 to 1.

Another pseudometric, ϵ-bisimulation ∼ϵ, was defined in [10], which avoids this issue. It
has natural characterisations in terms of games and can be computed in polynomial time
using network-flow based algorithms [10]. The runtime of the algorithm from [10] is O(|S|7),
where S is the set of states, thus not practical for large systems. A more fundamental
problem lies in the fact that ϵ-bisimulation is not an equivalence: s ∼ϵ t ∼ϵ u implies s ∼2ϵ u

(by the triangle inequality) but not necessarily s ∼ϵ u. Therefore, efficient minimisation
algorithms via quotienting (such as partition refinement for exact probabilistic bisimilarity)
are not available for ϵ-bisimulation.

In this paper we develop algorithms that, given a labelled Markov chain M with possibly
imprecise transition probabilities and a slightly perturbed version, say M′, of M, compute
a compressed version, Q, of M′. By slightly perturbed we mean that for each state the
successor distributions in M′ and M have small (say, less than ϵ) L1-distance. We hope
that Q is not much bigger than the exact quotient of M, and we design polynomial-time
algorithms that fulfill this hope in practice, but we do not insist on computing the smallest
possible Q. Indeed, we show that, given an LMC, ϵ > 0 and a positive integer k, it is
NP-complete to decide whether there exists a perturbation of at most ϵ such that the (exact)
bisimulation quotient of the perturbed system is of size k. See, e.g., [1] for an exact but
non-polynomial approach, where the target number n of states is fixed, and a Markov chain
with at most n states is sought that has minimal distance (with respect to the probabilistic
bisimilarity pseudometric of [9]) to the given model.

It is not hard to prove (Proposition 2) that if an LMC can be made exactly bisimilar to
another LMC by a perturbation of at most ϵ, then these two LMCs are also ϵ

2 -bisimilar in
the sense of [10]. If, in turn, two states are ϵ-bisimilar, one can show (see [3, Theorem 4])
that any linear-time property that depends only on the first k labels has similar probabilities
in the two states, where similar means the difference in probabilities is at most 1 − (1 − ϵ)k.
Combining these two results, we obtain a continuity property that says if two LMCs can be
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made bisimilar by a small perturbation, then any k-bounded linear-time property has similar
probabilities in the two LMCs. In other words, our approximate minimisation approximately
preserves the probability of bounded linear-time properties.

We apply our approximate minimisation algorithms in a setting of active learning. Here
we assume we do not have access to the transition probabilities of the model; rather, for
each state we only sample the successor distribution. Sampling gives us an approximation of
the real Markov chain, and our approximate minimisation algorithms apply naturally. This
allows us to lump states that are exactly bisimilar in the real model, but only approximately
bisimilar in the sampled model. We give examples where in this way we recover the structure
(not the precise transition probabilities) of the quotient of the exact model, knowing only
the sampled model.

The rest of the paper is organised as follows. In Section 2 we introduce ϵ-quotient, a new
notion of approximate bisimulation quotient. In Section 3 given an LMC, ϵ and k > 0, we
show it is NP-complete to decide whether there exists an ϵ-quotient of size k. In Section 4
we present our approximate minimisation algorithms. We put them in a context of active
learning in Section 5. In Section 6 we evaluate these algorithms on slightly perturbed versions
of a number of LMCs taken from the probabilistic model checker PRISM [16]. We conclude
in Section 7.

2 Preliminaries

We write N for the set of nonnegative integers and Z+ for the set of positive integers. We
write R for the set of real numbers. Let S be a finite set. We denote by Distr(S) the
set of probability distributions on S. By default we view vectors, i.e., elements of RS , as
row vectors. For a vector µ ∈ RS we write ∥µ∥1 :=

∑
s∈S |µ(s)| for its L1-norm. A vector

µ ∈ [0, 1]S is a distribution (resp. subdistribution) over S if ∥µ∥1 = 1 (resp. 0 < ∥µ∥1 ≤ 1).
For a (sub)distribution µ we write support(µ) = {s ∈ S : µ(s) > 0} for its support.

A partition of the states S is a set X consisting of pairwise disjoint subsets E of S with⋃
E∈X = S. For an equivalence relation R ⊆ S × S, S/R denotes its quotient set and [s]R

denotes the R-equivalence class of s ∈ S.
A labelled Markov chain (LMC) is a quadruple ⟨S, L, τ, ℓ⟩ consisting of a nonempty finite

set S of states, a nonempty finite set L of labels, a transition function τ : S → Distr(S), and
a labelling function ℓ : S → L.

We denote by τ(s)(t) the transition probability from s to t. Similarly, we denote by
τ(s)(E) =

∑
t∈E τ(s)(t) the transition probability from s to E ⊆ S. For the remainder of

the paper, we fix an LMC M = ⟨S, L, τ, ℓ⟩. Let |M| denote the number of states, |S|.
The direct sum M1 ⊕ M2 of two LMCs M1 = ⟨S1, L1, τ1, ℓ1⟩ and M2 = ⟨S2, L2, τ2, ℓ2⟩

is the LMC formed by combining the state spaces of M1 and M2.
An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all (s, t) ∈ R,

ℓ(s) = ℓ(t) and τ(s)(E) = τ(t)(E) for each R-equivalence class E. Probabilistic bisimilarity,
denoted by ∼M (or ∼ when M is clear), is the largest probabilistic bisimulation.

Any probabilistic bisimulation R on M induces a quotient LMC denoted by M/R =
⟨S/R, L, τ/R, ℓ/R⟩ where the transition function τ/R([s]R)([t]R) = τ(s)([t]R) and the la-
belling function ℓ/R([s]R) = ℓ(s).

We define the notion of an approximate quotient. Let ϵ ≥ 0. An LMC Q is an ϵ-quotient of
M if and only if there is transition function τ ′ : S → Distr(S) such that for all s ∈ S we have
∥τ ′(s) − τ(s)∥1 ≤ ϵ and Q is the (exact) bisimulation quotient of the LMC M′ = ⟨S, L, τ ′, ℓ⟩,
that is, Q = M′/∼M′ . Since the choice of τ ′ is not unique, there might be multiple ϵ-quotients
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48:4 Approximate Bisimulation Minimisation

of M. We are interested in the problem of obtaining an ϵ-quotient of M with small state
space. We retrieve the notion of (exact) quotient when ϵ = 0. For s from M, denote the
state in Q which corresponds to s by [s]ϵQ (or [s]ϵ when Q is clear).

The set Ω(µ, ν) of couplings of µ, ν ∈ Distr(S) is defined as Ω(µ, ν) ={
ω ∈ Distr(S × S) :

∑
t∈S ω(s, t) = µ(s) ∧

∑
s∈S ω(s, t) = ν(t)

}
. Note that a coupling ω ∈

Ω is a joint probability distribution with marginals µ and ν (see, e.g., [4, page 260-262]).
The ϵ-lifting of a relation R ⊆ S × S proposed by Tracol et al. [19] is the relation

R↑ϵ ⊆ Distr(S) × Distr(S) defined by (µ, ν) ∈ R↑ϵ if there exists ω ∈ Ω(µ, ν) such that∑
(u,v)∈R ω(u, v) ≥ 1 − ϵ.
The ϵ-bisimulation (∼ϵ) by Desharnais et al. [10] is a relation R ⊆ S × S in which for

all (s, t) ∈ R we have ℓ(s) = ℓ(t) and (τ(s), τ(t)) ∈ R↑ϵ. The ϵ-bisimulation is reflexive and
symmetric, but in general not transitive; hence, it is not an equivalence relation.

3 Properties of Approximate Quotients

M M/∼M

M′ Q

quotient

perturbation approximate quotient Q is not much bigger than M/∼M

Figure 2 Problem setup.

Recall from the introduction that we are given an LMC M′, which is a slightly perturbed
version of an (unknown) LMC M. By slightly perturbed we mean that for each state the
successor distributions in M′ and M have small (say, less than ϵ) L1-distance. For example,
with sampling we can obtain with high probability a perturbed system that has small distance
with M. Assume there are many symmetries, that is, lots of probabilistic bisimilar states
in M. The state space of M can then be compressed a lot by (exact) quotienting. Since
the transition probabilities are perturbed in M′, the states that are probabilistic bisimilar
in M might become inequivalent in M′; as a result, the (exact) bisimulation quotient of
M′ is much larger than that of M. Given a small compression parameter ϵ2 > 0, we aim
to compute an approximate quotient Q, an ϵ′-quotient of M′ that satisfies two conditions:
(1) ϵ′ should be small, so that little precision is sacrificed; and (2) the state space of the
quotient should be small, to speed up verification algorithms. Our contribution consists of
approximate quotienting algorithms with (a) theoretical guarantees on goal (1) in Theorem 7
and Corollary 8, applying to both algorithms: ϵ′ is bounded (and can be controlled) by a
compression parameter ϵ2 and the number of iterations i; (b) empirical results on goal (2):
the experiments show that our algorithms produce small quotients.

We first show that it is hard to find an ϵ2-quotient of M′ with minimum number of
states: Q∗ = arg min{|Q| : Q is an ϵ2-quotient of M′}. If there are several ϵ2-quotients of
M′ of minimum size, Q∗ can be taken to be any one of them. Unfortunately, this problem is
unlikely to have an efficient (polynomial-time) solution, as we will see from the next theorem
that the decision version of this problem is NP-complete.

Given an LMC M′, a compression parameter ϵ2 > 0 and a constant k ∈ Z+, it is NP-
complete to decide whether there exists an ϵ2-quotient of M′ of size k. The hardness result
is by reduction from the Subset Sum problem. Given a set P = {p1, . . . , pn} and N ∈ N,
Subset Sum asks whether there exists a set Q ⊆ P such that

∑
pi∈Q pi = N . Given an

instance of Subset Sum ⟨P, N⟩ where P = {p1, . . . , pn} and N ∈ N, we construct an LMC;
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Figure 3 The LMC in the reduction for NP-hardness. All states have the same label a except sb

and tb which have label b.
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Figure 4 An LMC in which s1 ∼ϵ s3 ∼ϵ s2.

see Figure 3. Let T =
∑

pi∈P pi, ϵ = 1
2T and k = 5. In the LMC, state s transitions to

state si with probability pi/T for all 1 ≤ i ≤ n. Each state si transitions to sa and sb with
equal probabilities. State t transitions to t1 and t2 with probability N/T and 1 − N/T ,
respectively. State t1 (resp. t2) transitions to ta (resp. tb) and tb (resp. ta) with probability
1
2 − ϵ and 1

2 + ϵ, respectively. All the remaining states transition to the successor state with
probability one. States sb and tb have label b and all other states have label a. We can show
that ⟨P, N⟩ ∈ Subset Sum ⇐⇒ there exists an 1

2T -quotient of M′ of size 5.

▶ Theorem 1. Given an LMC M′, ϵ2 ∈ (0, 1] and k ∈ Z+. The problem whether there exists
an ϵ2-quotient of M′ of size k is NP-complete. It is NP-hard even for (fixed) k = 5.

Due to the NP-hardness result, we hope to develop practical algorithms to compute
approximate quotients of M′ that are small but not necessarily of minimum size. To do
that, an intuitive idea is to merge “similar” states. As we have discussed in the introduction,
merging states with small probabilistic bisimilarity distances might be insufficient. Consider
the LMC shown in Figure 1. Assume ϵ>0. The states s1 and t1 (s2 and t2) have probabilistic
bisimilarity distance one. Thus, to merge s1, t1 or s2, t2, one needs to merge states with
probabilistic bisimilarity distance one. Alternatively, we explore the relation of approximate
quotient and ϵ-bisimulation. It is not hard to prove the following proposition:

▶ Proposition 2. Let Q be an ϵ2-quotient of M′. Then in the LMC M′ ⊕ Q, we have
s ∼ ϵ2

2
[s]ϵ2

Q for all s from M′.

Proposition 2 suggests that ϵ2-quotients and ϵ2-bisimulation are related. The runtime of
the algorithm to compute the ϵ2-bisimulation in [10] is O(|S|7) which makes it not practical
for large systems. Furthermore, the algorithms based on merging states that are ϵ2-bisimilar
may produce an ϵ′-quotient where ϵ′ is large, violating the first condition of a satisfying
approximate quotient. Assume the positive number ϵ is much smaller than 1

8 . Let us choose
the compression parameter ϵ2 to be the same as ϵ. We compute the ϵ-bisimulation of the
LMC shown in Figure 4 and get s1 ∼ϵ s3 ∼ϵ s2. Since ϵ-bisimulation is not an equivalence

FSTTCS 2021
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Figure 5 (a) An ϵ′-quotient obtained by merging s1 and s3 where ϵ′ is at least 1
4 + ϵ; (b) An

ϵ-quotient obtained by merging s2 and s3; (b) A 2ϵ-quotient obtained by merging s1, s2 and s3.

relation, s1 ∼ϵ s2 does not necessarily follow. Indeed, in this LMC, we have s1 ∼2ϵ s2 but
not s1 ∼ϵ s2. If s2 and s3, related by ∼ϵ, are chosen to be merged, the resulting LMC in
Figure 5(b) is an ϵ-quotient. However, if s1 and s3 are (unfortunately) chosen to be merged,
the resulting LMC, shown in Figure 5(a), is an ϵ′-quotient where ϵ′ cannot be smaller than
1
4 + ϵ. This ϵ′, much bigger than ϵ under the assumption that ϵ is much smaller than 1

8 ,
makes the resulting LMC undesirable. This example shows that arbitrarily merging states
that are ϵ-bisimilar may not work. The LMC in Figure 5(c) is obtained by merging s1, s2
and s3, the states that are related by the transitive closure of ∼ϵ. We show in [15] that
for any n ∈ Z+ there exists an LMC M(n) such that merging all states in M(n) that are
related by the transitive closure of ∼ϵ results in an ϵ′-quotient where ϵ′ is at least nϵ.

Lemma 3, the additivity lemma, asserts an additivity property of approximate quotients.
In Section 4, this lemma will be applied as the two minimisation algorithms successively
compute a sequence of approximate quotients.

▶ Lemma 3. Consider three LMCs M1, M2 and M3. Let ϵ1 ≥ 0 and M2 be an ϵ1-quotient
of M1. Let ϵ2 ≥ 0 and M3 be an ϵ2-quotient of M2. Then M3 is an (ϵ1 + ϵ2)-quotient
of M1.

4 Approximate Minimisation Algorithms

M′ Q0 Q1 · · · Qi
exact

quotient
approximate

quotient
approximate

quotient
approximate

quotient

Figure 6 Overview of the minimisation algorithms. Lemma 3 applies to M′, Q0, Q1, · · · , Qi.

In this section, we present two practical minimisation algorithms that compute approxim-
ate quotients of M′. Given an LMC M′ = ⟨S, L, τϵ, ℓ⟩ with perturbed transition probabilities
and a small compression parameter ϵ2. Both algorithms start by computing Q0, the exact
quotient of M′. They proceed in iterations and compute a sequence of approximate quotients
where the approximate quotient (Qi) computed at the end of the ith iteration is an ϵ2-quotient
of the quotient (Qi−1) given at the beginning of that iteration. Using the additivity lemma,
we can show that the (approximate) quotient Qi after the ith iteration is an iϵ2-quotient
of M′. See Figure 6 for an overview of this approach. Each iteration computes a partition
of the state space, lumps the states that are together in the partition and concludes with
taking the exact quotient.
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4.1 Local Bisimilarity Distance
We define the notion of local bisimilarity distance, denoted by dM

local (or dlocal when M is clear).
Intuitively, two states s and t are at small local bisimilarity distance if they are probabilistic
bisimilar in an LMC which is slightly perturbed only at the successor distributions of s and t.
We provide a polynomial-time algorithm to compute the local bisimilarity distance. Given
an LMC M′ = ⟨S, L, τϵ, ℓ⟩ (with perturbed transition probabilities) and a small compression
parameter ϵ2, we propose an iterative minimisation algorithm to compute approximate
quotients of M′ by merging state pairs with small local bisimilarity distances. In each
iteration of the algorithm, we select the state pair with the same label and the minimum
local bisimilarity distance if such distance is at most ϵ2. We compute a partition in which
this state pair are together and lump together the states that are together in the partition.
The algorithm terminates when no pairs can be lumped, that is, all state pairs have local
bisimilarity distances greater than ϵ2.

Computing Local Bisimilarity Distances

Given two different states s, t ∈ S with the same label. We want to compute a new
transition function τ ′

ϵ by only changing the successor distributions of s and t (τϵ(s) and τϵ(t),
respectively) such that {s, t} belongs to an R-induced partition where R is a probabilistic
bisimulation of the LMC M′′ = ⟨S, L, τ ′

ϵ, ℓ⟩. Let T be the set of the all transition functions
that satisfy this condition, more precisely, we define T = {τ ′

ϵ : τ ′
ϵ(x) = τϵ(x) ∀x ̸∈ {s, t} ∧

{s, t} ∈ S/R where R is a probabilistic bisimulation of the LMC M′′ = ⟨S, L, τ ′
ϵ, ℓ⟩}. The

local bisimilarity distance is defined as dM′

local(s, t) = infτ ′∈T max{∥τ ′(s) − τϵ(s)∥1, ∥τ ′(t) −
τϵ(t)∥1}. It is not immediately clear how to compute it.

By the definition of T, the probabilistic bisimulation R is the same for any LMC ⟨S, L, τ ′
ϵ, ℓ⟩

with τ ′
ϵ ∈ T. Let us define the partition X = S/R where R is the common probabilistic

bisimulation. The local bisimilarity distance can be computed by using X:

▶ Proposition 4. We have dM′

local(s, t) = 1
2 ∥(τϵ(s)(E))E∈X − (τϵ(t)(E))E∈X∥1.

It turns out that X can simply be computed by Algorithm 1. As this algorithm is basically
taking the (exact) quotient of the LMC constructed on line 1, it runs in polynomial time. It
follows from Proposition 4 that the local bisimilarity distance can be computed in polynomial
time.

Algorithm 1 Compute Partition for Local Bisimilarity Distances.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a state pair (s, t) ∈ S × S

Output: A partition X over S containing {s, t}
1 Construct a new LMC M′′ from M′ by introducing a new label, labelling both s and

t with the new label and making both s and t absorbing1

2 X := S/∼M′′

▶ Example 5. Assume ϵ < 1
2 . Consider the LMC shown in Figure 1. Let τϵ denote

its transition function. To compute the local bisimilarity distance of s1 and t1, we
first compute the partition containing {s1, t1}: X =

{
{s1, t1}, {s2}, {t2}

}
. We have

1 An absorbing state is a state that, once entered, cannot be left; that is, a state with self-loop.

FSTTCS 2021
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(τϵ(s1)(E))E∈X = ( 1
2 , 1

2 , 0) and (τϵ(t1)(E))E∈X = ( 1
2 +ϵ, 0, 1

2 −ϵ). By Proposition 4, the local
bisimilarity distance is dlocal(s1, t1) = 1

2 ∥(τϵ(s1)(E))E∈X − (τϵ(t1)(E))E∈X∥1 = 1
2 . Similarly,

we have dlocal(s2, t2) = 1
2 .

Algorithm 2 LMC Minimisation Using Local Bisimilarity Distances.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a compression parameter ϵ2
Output: An LMC Qi

1 i := 0
2 Qi := M′/∼M′ and Qi = ⟨SQi , L, τQi , ℓQi⟩
3 while ∃u, v ∈ SQi such that u ̸= v and ℓQi(u) = ℓQi(v) and dQi

local(u, v) ≤ ϵ2 do
4 (s, t) = arg min{dQi

local(u, v) : (u, v) ∈ SQi × SQi ∧ u ̸= v ∧ ℓQi(u) = ℓQi(v)}
5 Compute Xi by running Algorithm 1 with input Qi and (s, t)
6 Construct an LMC Mi+1 := ⟨Xi, L, τMi+1 , ℓMi+1⟩ from Qi where

τMi+1(E) :=
{

(τQi(u)(E′))E′∈Xi for any u ∈ E if E ∈ Xi and E ̸= {s, t}
(τQi (s)(E′))E′∈Xi

+(τQi (t)(E′))E′∈Xi

2 if E = {s, t}
and ℓMi+1(E) := ℓQi(u) for E ∈ Xi and any u ∈ E

7 Qi+1 := Mi+1/∼Mi+1

8 i := i + 1
9 end

Minimisation Algorithm Using Local Bisimilarity Distances

Algorithm 2 shows the minimisation algorithm using local bisimilarity distances. The input
is an LMC M′ and a compression parameter ϵ2. We start by initializing an index i to 0 and
building the quotient LMC Q0 = M′/∼M′ . If there are no states in Qi with local bisimilarity
distance less than ϵ2, the algorithm terminates. Otherwise, it steps into the i’th iteration of
the loop and computes the local bisimilarity distances for all pairs of states in Qi with the
same label. It selects the state pair (s, t) which has the smallest local bisimilarity distance
on line 4. It then computes the new approximate quotient by merging states s and t on
line 5-7. This computation is in three steps where the first step is to compute the partition
Xi (line 5) by running Algorithm 1 with input Qi and the state pair (s, t). The second
step is to construct a new LMC Mi+1 by setting Xi as its state space (line 6). The final
step is to compute a new approximate quotient Qi+1 by taking the exact quotient of the
LMC Mi+1 obtained from the previous step. We increment i at the end of the iteration and
continue with another iteration if there are states in Qi+1 with local bisimilarity distance at
most ϵ2. Since there are finitely many states and it is polynomial time to compute the local
bisimilarity distances, the algorithm always terminates and runs in polynomial time.

4.2 Minimisation by Approximate Partition Refinement
Consider the LMC in Figure 1. Assume ϵ < 1

2 and ϵ2 < 1
2 . The minimisation algorithm

using local bisimilarity distance (Algorithm 2) cannot merge states s1, t1 (or s2, t2) as
dlocal(s1, t1) = dlocal(s2, t2) = 1

2 > ϵ2 as shown by Example 5.
We introduce an approximate partition refinement, a polynomial algorithm similar to

the exact partition refinement, which can fix this problem. In the exact partition refinement
algorithm, the states will only remain in the same set in an iteration if they have the
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X0 = {S}
X1 =

{
{s1, t1}, {s2, t2}

}

(a) The partitions.

s t

1
2 − ϵ

2

1
2 − ϵ

2

1
2 + ϵ

2
1
2 + ϵ

2

(b) The final LMC.

Figure 7 Example of running the minimisation algorithm using approximate partition refinement
(Algorithm 3) on the LMC in Figure 1.

same label and their probability distributions over the previous partition are the same.
Similarly, we design the approximate partition refinement such that states only remain in
the same set in an iteration if they have the same label and the L1-distance between the
probability distributions over the previous partition is small, say, at most ϵ2. Given an
LMC M′ = ⟨S, L, τϵ, ℓ⟩ with perturbed transition probabilities, the minimisation algorithm
using the approximate partition refinement also proceeds in iterations. In each iteration,
the approximate partition refinement computes a partition X and then the states which are
together in X are lumped to form a new LMC. To make sure the new LMC is a quotient,
we take the (exact) quotient of this LMC as our new approximate quotient. The algorithm
continues when there are states that could be lumped, and it terminates when all sets in the
partition computed by the approximate partition refinement are singletons, that is, no states
can be lumped.

▶ Example 6. Consider again the LMC in Figure 1. Assume ϵ < 1
2 and the compression para-

meter ϵ2 ≥ 2ϵ. We run the above-mentioned minimisation algorithm using the approximate
partition refinement. It will only run for one iteration of approximate partition refinement,
as we will see in the following. Figure 7(a) shows the partitions of this iteration. At the
beginning of the approximate partition refinement, we have partition X0 as all states are
in the same set. The states are then split by the labels and we get partition X1. There is
no further split since the L1-distance between the probability distributions over X1 from
s1 and t1 (resp. s2 and t2) is 2ϵ which is bounded by the compression parameter ϵ2, that
is, ∥(τ(s1)(E))E∈X1 − (τ(t1)(E))E∈X1∥1 = ∥(τ(s2)(E))E∈X1 − (τ(t2)(E))E∈X1∥1 = 2ϵ ≤ ϵ2.
The states together in X1 are then lumped to form the new LMC shown in Figure 7(b). The
algorithm terminates as no states in the new LMC can be lumped.

Approximate Partition Refinement

Given a compression parameter ϵ2, the approximate partition refinement is shown in Al-
gorithm 3. At the beginning, an index i is initialized to zero and we have X0 = {S}, that
is, all states are in the same set. In a refinement step, we increment i and split each set
E ∈ Xi−1 into one or more sets. We iterate though all E ∈ Xi−1 and for each E we construct
a set XE , a partition of E. Starting with XE = ∅, we iterate over all s ∈ E (line 6). After
each iteration, the current s ∈ E appears in one set in XE : either as a singleton or as
an additional state in an already existing set in XE . We give more details on this loop
(lines 6-14) below. After having partitioned E into XE , we add all sets in XE to the new
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Algorithm 3 Approximate Partition Refinement.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a compression parameter ϵ2
Output: A partition X over S

1 i := 0; X0 := {S}
2 repeat
3 i := i + 1; Xi := ∅
4 foreach E ∈ Xi−1 do
5 XE := ∅
6 for s ∈ E do
7 ESet := {E′ ∈ XE : for all t ∈ E′ we have ℓ(s) = ℓ(t) and

∥(τϵ(s)(E))E∈Xi−1 − (τϵ(t)(E))E∈Xi−1∥1 ≤ ϵ2}
8 if ESet = ∅ then E′ := {s}
9 else

10 E′ := arg min
E′∈ESet

{∑
t∈E′ ∥(τϵ(s)(E))E∈Xi−1 −(τϵ(t)(E))E∈Xi−1 ∥1

|E′|
}

11 remove E′ from XE ; E′ := E′ ∪ {s}
12 end
13 add E′ to XE

14 end
15 Xi := Xi ∪ XE

16 end
17 until Xi = Xi−1

partition Xi. The way we split the sets ensures that for any two states from the same set
in Xi the L1-distance between the successor distributions over Xi−1 is at most ϵ2. The
algorithm terminates when no splitting can be done. Let X be the final partition produced
by the approximate partition refinement. For any two states s, t ∈ E where E ∈ X, we have
ℓ(s) = ℓ(t) and ∥(τϵ(s)(E′))E′∈X − (τϵ(t)(E′))E′∈X∥1 ≤ ϵ2.

Let us give more details on the loop (lines 6-14) that partitions an E ∈ Xi. For a state
s ∈ E, a candidate set ESet is computed such that for all E′ ∈ ESet the state s and all
x ∈ E′ have the same label and the L1-distance between the successor distributions over
Xi−1 of s and any x ∈ E′ is at most ϵ2 (line 7). If ESet is empty, we add the singleton
{s} into XE (line 8 and 13). If there is only one set E′ in ESet, we add s to the set E′.
Otherwise, if there are multiple elements in ESet that satisfy the condition, we select the one
as E′ such that the average L1-distance between the successor distributions of s and x ∈ E′

is the smallest (line 10). We add s to the selected set E′ and include E′ in XE (line 10-13).

Minimisation Algorithm Using Approximate Partition Refinement

The minimisation algorithm using approximate partition refinement is shown in Algorithm 4.
The input is the same as the first minimisation algorithm: an LMC M′ and a compression
parameter ϵ2. An index i is initialised to 0. Similar to the approximate minimisation
algorithm using local bisimilarity distances, we also start by computing the quotient LMC
Q0 = M′/∼M′ . It then steps into a loop. We compute the approximate partition Xi of Qi

on line 4 and construct a new LMC Mi+1 by setting Xi as its state space on line 5. For any
state E ∈ Xi, we set the probability distribution as the average probability distribution over
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Algorithm 4 LMC Minimisation by Approximate Partition Refinement.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a compression parameter ϵ2
Output: An LMC Qi

1 i := 0
2 Qi := Mi/∼Mi

where Mi = M′ and Qi = ⟨SQi , L, τQi , ℓQi⟩
3 repeat
4 Compute Xi by running Algorithm 3 with Qi and ϵ2 as input
5 Construct an LMC Mi+1 := ⟨Xi, L, τMi+1 , ℓMi+1⟩ from Qi where

τMi+1(E) :=
∑

u∈E

(τQi (u)(E′))E′∈Xi

|E| and ℓMi+1(E) := ℓQi(x) for all E ∈ Xi and
any x ∈ E

6 Qi+1 := Mi+1/∼Mi+1

7 i := i + 1
8 until |SQi | = |SQi−1 |

Xi from all u ∈ E. The label of any E ∈ X is set to ℓQi(u) where u can be any state from
E. A new approximate quotient Qi+1 is obtained by taking the exact quotient of Mi+1. We
increment i at the end of the iteration and continue another iteration if the size of the state
space of the new approximate quotient decreases. Otherwise, the algorithm terminates as we
have no states to merge. As there are finitely many states, the algorithm always terminates.

Let i ∈ N. The following theorem applies to both the LMCs Qi from Algorithm 2 and
those from Algorithm 4.

▶ Theorem 7. For all i ∈ N, we have that Qi+1 is an ϵ2-quotient of Qi. Furthermore, by
the additivity lemma, we have that Qi is an iϵ2-quotient of M′.

In the case that M′ = ⟨S, L, τϵ, ℓ⟩ is a slightly perturbed version of M = ⟨S, L, τ, ℓ⟩, that
is, for all s ∈ S we have ∥τ(s) − τϵ(s)∥1 ≤ ϵ, the following corollary holds:

▶ Corollary 8. For all i ∈ N, we have that Qi is an (ϵ + iϵ2)-quotient of M.

5 Active LMC Learning

We apply our approximate minimisation algorithms in a setting of active learning. Before
that, we first describe how to obtain a perturbed LMC M′ by sampling. Assume that we
want to learn the transition probabilities of an LMC M, that is, the state space, the labelling
and the transitions are known. We also assume the system under learning (SUL) M could
answer the query next which takes a state s as input and returns a successor state of s

according to the transition probability distribution τ(s).
Given a state s of the LMC. We denote by xs the number of successor states of s and

by ns the number of times we query the SUL on next(s). Let Ns,t be the frequency counts
of the query result t, that is, the number of times a successor state t appears as the result
returned by the queries. We approximate the transition probability distribution by τϵ(s)
where τϵ(s)(t) = Ns,t

ns
for all successor states t of s. (Such an estimator is called an empirical

estimator in the literature.)
Intuitively, the more queries we ask the SUL, the more accurate the approximate probab-

ility distribution τϵ(s) would be. In fact, the following theorem holds [2, Section 6.4], [6].

▶ Theorem 9. Let ϵ > 0 be an error parameter and δ > 0 be an error bound. Let s ∈ S. We
have Pr(∥τ(s) − τϵ(s)∥1 ≤ ϵ) ≥ 1 − δ for ns ≥ 1

2ϵ2 ln( 2xs

δ ).
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For each state s ∈ S, we query the SUL on next(s) for ns ≥ 1
2ϵ2 ln( 2xs

δ ) times. We can
make δ small since it appears in the logarithmic term. We then approximate the transition
function by τϵ and construct a hypothesis LMC M′ = ⟨S, L, τϵ, ℓ⟩. Since the queries next(s)
and next(t) for all s, t ∈ S and s ̸= t are mutually independent, by Theorem 9, we have that
Pr(∀s ∈ S : ∥τ(s) − τϵ(s)∥1 ≤ ϵ) ≥ (1 − δ)|S|.

We then apply the minimisation algorithms with compression parameter ϵ2 on M′ and
obtain a minimised system Qi which is an iϵ2-quotient of M′, the LMC constructed by
sampling. Since with high probability the LMC M′ (or its exact quotient Q0) has small
distance ϵ with the SUL M, it follows from Corollary 8 that with high probability the
minimised system Qi is an ϵ′-quotient of M where ϵ′ is small: for all i ∈ N, we have
Pr(Qi is an ϵ′-quotient of M with ϵ′ ≤ ϵ + iϵ2) ≥ (1 − δ)|S|. The probability does not come
from our minimisation algorithms and depends solely on the sampling procedure.

6 Experiments

In this section, we evaluate the performance of approximate minimisation algorithms on a
number of LMCs. These LMCs model randomised algorithms and probabilistic protocols
that are part of the probabilistic model checker PRISM [16]. The LMCs we run experiments
on have less than 100, 000 states and model the following protocols or randomised algorithms:
Herman’s self-stabilisation algorithm [13], the synchronous leader election protocol by Itai
and Rodeh [14], the bounded retransmission protocol [7], the Crowds protocol [17] and the
contract signing protocol by Even, Goldreich and Lempel [11].

We implemented algorithms to obtain the slightly perturbed LMCs M′. We call LMCs
with fewer than 300 states small; otherwise we call them large. For small LMCs, we sample the
successor distribution for each state and obtain an approximation of it with error parameter
ϵ and error bound δ. For large LMCs, sampling is not practical as the sample size required
by Theorem 9 is very large. For these LMCs, we perturb the successor distribution by
adding small noise to the successor transition probabilities so that for each state with at
least probability 1 − δ the L1-distance of the successor distributions in the perturbed and
unperturbed systems is at most ϵ and otherwise the L1-distance is 2ϵ. We vary the error
parameter ϵ in the range of {0.00001, 0.0001, 0.001, 0.01} and fix the error bound δ = 0.01.
For each unperturbed LMC and a pair of ϵ and δ, we generate 5 perturbed LMCs.

We also implemented the two minimisation algorithms in Java: Algorithm 2 and Al-
gorithm 4. The source code is publicly available2. We show some representative results
in [15]. The full experimental results are publicly available3.

For the small LMCs, we apply both approximate minimisation algorithms to the perturbed
LMCs with ϵ2 ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}. The results for a small LMC which models
the Herman’s self-stabilisation algorithm is shown on the left of Table 1. For the large
LMCs, we only apply the approximate minimisation algorithm using approximate partition
refinement to the perturbed LMCs, since the other minimisation algorithm could not finish
on the large LMCs with timeout of two hours. The results for a large LMC which models
the bounded retransmission protocol is shown on the right of Table 1.

For almost all models, given a perturbed LMC, we are able to recover the structure of
the quotient of the unperturbed LMC when ϵ2 is appropriately chosen, that is, ϵ2 is no less
than ϵ and is not too big; for example, see Table 1 where the rows are highlighted in yellow.
However, when ϵ2 is too big, the approximate minimisation algorithms may aggressively

2 https://github.com/qiyitang71/approximate-quotienting
3 https://bit.ly/3vcpblY

https://github.com/qiyitang71/approximate-quotienting
https://bit.ly/3vcpblY
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Table 1 In the tables, local and apr stand for the minimisation algorithms using local bisimilarity
distance and approximate partition refinement, respectively. The tables show the results for the
first perturbed LMC (labeled with #1) among the five perturbed LMCs generated by sampling or
perturbing with ϵ = 0.0001. (Left) Results of running the two minimisation algorithms on the LMC
that models Herman’s self-stabilisation algorithm with 5 processes. (Right) Results of running apr
on the LMC that models the bounded retransmission protocol with N = 32 and MAX = 2.

Herman5 # states # trans # iter
M & M′ 32 244
M/∼M 4 11
M′/∼M′ 23 167

Perturbed LMC #1
ϵ2 = 0.00001

local & apr 23 167 0
ϵ2 = 0.0001

local & apr 22 143 1
ϵ2 ∈ {0.001, 0.01, 0.1}

local 22 143 1
apr 4 11 1

BRP32-2 # states # trans # iter
M & M′ 1349 1731
M/∼M 647 903
M′/∼M′ 961 1343

Perturbed LMC #1
ϵ2 = 0.00001

apr 879 1230 2
ϵ2 = 0.0001

apr 705 986 2
ϵ2 ∈ {0.001, 0.01}

apr 647 903 1
ϵ2 = 0.1

apr 196 387 1

merge some states in the perturbed LMC and result in a quotient whose size is even smaller
than that of the quotient of the unperturbed LMC, as highlighted in red in Table 1. Also,
we find that, as expected, the exact partition refinement in general could not recover the
structure of quotient of the original LMCs, except for the LMCs which model the synchronous
leader election protocol by Itai and Rodeh. Furthermore, compared to the other approximate
minimisation algorithm using the local bisimilarity distance, the one using approximate
partition refinement performs much better in terms of running time and the ability to recover
the structure of the quotient of the original model.

One might ask whether the minimisation algorithm using approximate partition refinement
always performs better than the one using the local bisimilarity distances. In general, this is
not the case as shown by Example 10.

▶ Example 10. Consider the LMC M = ⟨S, L, τ, ℓ⟩ shown in Figure 8. Let ϵ2 = 0.1. First,
we run Algorithm 2. It proceeds in two iterations. In the first iteration, it computes the local
bisimilarity distances for all pairs of states with the same label. We have dlocal(s1, s2) =
dlocal(s2, s3) = 0.54 and dlocal(s1, s3) = 0.04. It then selects the pair s1 and s3 of which the
local bisimilarity distance is less than ϵ2 and is the smallest. These two states are merged
into s13 in the LMC shown on the left of Figure 9. In the second iteration, the only pair of
states with the same label are s13 and s2. Since dlocal(s13, s2) = 0.06 ≤ ϵ2, they are merged
and we arrive at the final LMC shown on the right of Figure 9.

Next, we run Algorithm 4 with the same inputs. In the first iteration, we run approximate
partition refinement on line 5 (Algorithm 3) and present Table 2 as the possible partitions
of the algorithm. At the beginning of the approximate partition refinement, we have
partition X0 as all states are in the same set. The states are then split by the labels and
we get partition X1. Next, we work on the set {s1, s2, s3}. Suppose that we see s1 and s2
before s3. We have s1 and s2 remain together as ∥(τ(s1)(E))E∈X1 − (τ(s2)(E))E∈X1∥1 =
0.08 ≤ ϵ2. However, since ∥(τ(s3)(E))E∈X1 − (τ(s2)(E))E∈X1∥1 = 0.16 > ϵ2, we have
ESet = ∅ for s3 on line 9 of Algorithm 3 and it is split out. In the next iteration, since
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∥(τ(s1)(E))E∈X2 − (τ(s2)(E))E∈X2∥1 = 0.54 > ϵ2, {s1, s2} is split into two singleton sets.
The final partition X3 in which all sets are singletons suggests no merging can be done and
we are left with the original LMC M.

This example also shows that the order of iterating through the states matters for the
approximate partition refinement algorithm. Indeed, suppose we iterate though s1 and s3
before s2 after arriving at the partition X1, we will have Table 3 as the partitions and finally
get the LMC on the right of Figure 9 just as the other minimisation algorithm.

s1 s2 s3

v

0.5

0.5 0.46

0.54

0.54

0.46

1

Figure 8 The LMC for which Algorithm 2 may
perform better than Algorithm 4.

Table 2 Example of running Algorithm 3
on the LMC in Figure 8. (Suppose we iterate
through s1 and s2 before s3.)

X0 = {S}
X1 =

{
{s1, s2, s3}, {v}

}
X2 =

{
{s1, s2}, {s3}, {v}

}
X3 =

{
{s1}, {s2}, {s3}, {v}

}

s13 s2

v

0.52

0.48

0.46

0.54

1

s123

v

0.49

0.51

1

Figure 9 Two Steps of Running Algorithm 2.

Table 3 Example of running Algorithm 3
on the LMC in Figure 8. (Suppose we iterate
through s1 and s3 before s2.)

X0 = {S}
X1 =

{
{s1, s3, s2}, {v}

}
X2 =

{
{s1, s3}, {s2}, {v}

}

7 Conclusion

We have developed and analysed algorithms for minimising probabilistic systems via ap-
proximate bisimulation. These algorithms are based on ϵ-quotients, a novel yet natural
notion of approximate quotients. We have obtained theoretical bounds on the discrepancy
between the minimised and the non-minimised systems. In our experiments, approximate
partition refinement does well in minimising labelled Markov chains with perturbed transition
probabilities, suggesting that approximate partition refinement is a practical approach for
“recognising” and exploiting approximate bisimulation.

Future work might consider the following questions: Does approximate minimisation
allow for further forms of active learning? Can our techniques be transferred to Markov
decision processes?
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